
Exploring Perceptron-Based Register Value Prediction

John Seng
Department of Computer Science

Cal Poly State University
San Luis Obispo, CA 93407
jseng@calpoly.edu

Greg Hamerly
Department of Computer Science

Baylor University
Waco, TX 76798

greg hamerly@baylor.edu

Abstract

Register value prediction has been proposed as a tech-
nique to exploit register value reuse, a form of locality
where the result produced by an instruction is the same as
the value that is already in a destination register or other
registers in the register file. Register value prediction al-
lows increased performance by breaking true dependencies
between an instruction that exhibits this locality and its de-
pendents.

This paper presents a study into using perceptron-based
predictors to guide one form of register value prediction.
For a given storage budget, we find that on the average a
perceptron predictor performs better than previously pro-
posed register value predictors. Secondly, we demonstrate
the impact of perceptron history length on register value
prediction. Lastly, we analyze predictor structures which
improve upon previous predictors targeting register value
reuse. With a 4KB hybrid perceptron predictor we show an
average speedup of 7.5% for the benchmarks studied.

1. Introduction

Value prediction has been proposed as a technique to
break true dependencies between instructions. By predict-
ing the input and/or output values of instructions, instruc-
tions that were once required to execute serially can be ex-
ecuted in parallel. When a high number of dependencies
can be correctly predicted, this parallel execution can lead
to higher overall performance.

Implementing value prediction in a processor often re-
quires the use of a storage structure to hold the values which
will be used in the prediction. These value files may need
to be large in order to obtain good performance. In order
to reduce the need for large value files, Tullsen and Seng
propose a technique called register value prediction [11].
Register value prediction exploits a type of locality called
register value reuse. Register value reuse occurs when an
instruction produces a value that is the same as the value
that is already in the destination register of the instruction
or in another register in the register file. Tullsen and Seng
demonstrated prediction techniques that allow register value
reuse to be exploited via predictor structures, giving higher
performance.

One recent innovation in predictor design has been the
proposed use of perceptrons in order to implement branch
prediction [5, 6]. A perceptron is a simple model of an arti-
ficial neuron which can predict boolean events after having
been trained on past events. Recent research has demon-
strated how perceptrons work well when being trained on
the global history of branch outcomes during program exe-
cution.

In this paper, we present techniques using perceptron-
based predictors to perform a limited form of register value
prediction, only the case where the value written to a reg-
ister will be the same as the value that is currently in the
register. We will refer to instructions that produce the same
value as that already in the destination as redundant instruc-
tions. If a dynamic instance of an instruction is redundant
and is correctly predicted early in a processor pipeline, then
instructions dependent upon that instruction need not wait
for the execution of the predicted instruction.

This paper is organized as follows: Section 2 provides
background information on perceptrons. Section 3 dis-
cusses related studies. Section 4 describes the simulation
methodology and tools. Section 5 discusses our results on
perceptron-based prediction. Section 7 concludes.

2. Perceptron-Based Prediction

A perceptron [9] is a simple, easy-to-implement model
of an artificial neuron from artificial intelligence. See Fig-
ure 1 for an example of a typical perceptron. The percep-
tron typically takes a fixed number of inputs and produces
a single numeric output. The perceptron is specified by the
number of inputs N , and the weights connecting the inputs
to the output node. The weights are the parameters which
must be either set by hand or learned by a learning algo-
rithm. Learning the weights online allows the perceptron to
adapt to time-varying behavior and does not require expert
intervention. A perceptron can be considered a simple sin-
gle neuron in larger neural networks, which are much more
complex and which we do not consider here.

The input to our perceptron is a vector of values (1 or -1)
corresponding to the global history of most recent commit-
ted instructions. A value of 1 indicates that the instruction
was redundant and a -1 indicates otherwise. The history
length is the number of inputs to the perceptron. In our



predictor, we have chosen not to use the typical bias input,
instead allowing one more instruction in the global history.

Perceptrons typically produce a numeric output, which
we compare with a preselected threshold value θ to produce
a binary value. Our perceptron outputs one (predict redun-
dant) if

∑
ijwj ≥ θ, and zero (no prediction) otherwise.

We use a table of perceptrons for making predictions. To
select the perceptron used for a given instruction, the table
is indexed by the lower bits of the instruction address. Each
perceptron trains and makes predictions independently of
all other perceptrons in the table.

We train the perceptron in a manner similar to that de-
scribed by Jiménez and Lin [5]. Each time an instruction
is executed, a perceptron may make a prediction of redun-
dant or not redundant. That prediction is compared with the
actual outcome (when the instruction commits), and the per-
ceptron can receive positive or negative feedback, depend-
ing on whether or not its prediction was correct. This feed-
back is used to further train the perceptron. Each weight is
updated individually, and the update rule is best depicted in
a table:

was ghri redundant?
is this instr. redundant? yes no

yes increment wi decrement wi

no decrement wi increment wi

This update rule is used for training on each committed
instruction when the absolute value of the output is less than
the threshold θ or if the prediction was incorrect. In the
case that the prediction is correct and the absolute value of
the perceptron output is greater than θ, we do not train the
perceptron. The perceptron uses saturating weights.

The two keys to using a perceptron for redundant instruc-
tion prediction are finding an appropriate history length and
setting the weights well. The history length is limited by
the memory available, as is the range of values the weights
can use. We try various history lengths (as we show later)
and use signed integer weights with the range of 6 or 7 bits.

3. Related Work

Register value prediction [11] has been proposed as a
method for value prediction without the need for a large
value table. The output values for instructions are chosen
from the values in the architectural register file. That work
demonstrates that good performance improvements can be
obtained from register value prediction. In addition to same
register prediction (which is studied in this paper), the au-
thors studied predicting instructions that produce values that
are the same as those in dead registers (registers whose
value will not be read before being overwritten). Also in
that work, the authors looked at predicting instructions stat-
ically (by marking instructions in the code) and also dy-

0 (not redundant) or 1 (redundant)

∑
ijwj ≥ θ?

i0 = 1

w0

i1

w1

i2

w2

i3 . . . iN−1

iN

wN

Figure 1. The classical perceptron has a fixed num-
ber of inputs i1 . . . iN and weights w1 . . . wN , and
a bias term i0 (constant input of 1) with weight w0.
To make a prediction, the inputs are multiplied by
the weights and then summed. If the sum is less
than a fixed threshold θ, then the perceptron pre-
dicts 0, otherwise 1. The weights of a perceptron
are learned with a learning algorithm. In this work
we did not use a bias term.

namically. Our work focuses only on dynamic prediction of
register value reuse.

The predictor used by Tullsen and Seng [11] is designed
to target local repetitive behavior of individual instructions,
but does not look at using global history in their prediction
scheme. The perceptron predictor inherently makes predic-
tions based on global history and not on a per instruction
basis.

Burtscher and Zorn [3] present a technique which uses
outcomes of prediction in order to generate a confidence
estimate for future predictions. The patterns they used to
trigger a prediction are gathered through profiling and sub-
sequently encoded into the predictor. The perceptron pre-
dictor we use does not require any profile information and
can be used to generate a confidence for a prediction dy-
namically.

Balakrishnan and Sohi [1] note that a number of values
produced by instructions are often already located in the
register file. The authors state that a value produced by an
instruction is often the same value that was produced by a
recent instruction. This behavior is somewhat similar to the
behavior we target in this work. The authors exploit this
form of locality by not allocating a register if the instruc-
tions are executed closely in time.

Burtscher and Zorn study using a register value predic-
tor as part of hybrid load value predictors [2]. The authors
demonstrate that hybrid predictors can outperform single
component predictors. They conclude that a register value
predictor is a good addition to many hybrid load value pre-
diction schemes. The predictor they use for the register
value prediction is similar to the one described by Tullsen
and Seng [11].

Jiménez and Lin [5] proposed using perceptrons when
developing microarchitectural predictor structures. The au-
thors looked at using perceptron-based predictors to im-



Benchmark input Fast forward
(millions)

applu applu.in 1000
art c756hel.in 2000
bzip2 input.program 2000
crafty crafty.in 1000
eon kajiya 100

equake inp.in 3000
galgel galgel.in 2600
gap ref.in 1000
gcc 200.i 10
gzip input.program 50
mcf inp.in 1500
mesa mesa.in 1000
mgrid mgrid.in 2000
parser ref.in 300
perlbmk perfect.pl 2000
twolf ref 2500
vortex lendian1.raw 2000
vpr route 1000

Table 1. The benchmarks used in this study, in-
cluding inputs and fast-forward distances used to
bypass initialization.

prove branch prediction. For this work, we use similar ap-
proaches for training and computing the perceptron values,
but use the prediction for predicting redundant instruction
outputs instead of targeting branch predictions.

4. Methodology

We use the SMTSIM simulator [10] in single-thread
mode to perform simulations for this research. The simu-
lator provides an accurate cycle-by-cycle model of an out-
of-order processor executing the Compaq Alpha instruction
set architecture. Benchmarks were taken from the SPEC
2000 benchmark suite (not all benchmarks could be simu-
lated). All simulations execute 300 million committed in-
structions. The benchmarks are fast forwarded (emulated
but not simulated) a sufficient distance to bypass initializa-
tion and startup code before measured simulation begins.
The benchmarks used, their inputs, and the number of in-
structions fast forwarded are shown in Table 1. In all cases,
the inputs were taken from among the reference inputs for
those benchmarks.

Details of the simulated processor model are given in Ta-
ble 2. The processor model simulated is that of an 8-fetch
8-stage out-of-order superscalar microprocessor with 6 in-
teger functional units. The instruction and floating-point
queues contain 32 entries each. The simulations model a
processor with level 1 instruction and data caches, along
with a 2MB on-chip secondary cache.

The baseline register value predictor is similar to the con-
figuration used by Tullsen and Seng [11]. It consists of a
table of 3-bit saturating counters. The counter values are in-
cremented whenever an instruction produces the same value

Parameter Value
Fetch bandwidth 8 instructions per cycle
Functional Units 3 FP, 6 Int (4 load/store)
Instruction Queues 32-entry FP, 32-entry Int

Inst Cache 64KB, 2-way, 64-byte lines
Data Cache 64KB, 2-way, 64-byte lines

L2 Cache (on-chip) 2 MB, 4-way, 64-byte lines
Latency (to CPU) L2 18 cycles,

Memory 150 cycles
Pipeline depth 8 stages

Min branch penalty 6 cycles
Branch predictor 4K gshare

Instruction Latency Based on Alpha 21164

Table 2. The processor configuration.

as the value already in the destination and the counter is re-
set whenever the value is different. The prediction threshold
is 6, and an instruction is predicted redundant whenever its
counter value exceeds the threshold.

The perceptron predictors we use are similar in con-
figuration to those used by Jiménez and Lin [5]. For a
given hardware budget, we use the same history lengths
and thresholds used by Jiménez and Lin. Table 3 shows
the configurations used for the perceptron predictors. These
are the configuration values used in the experiments unless
otherwise specified. We have not yet had the opportunity to
perform exhaustive threshold and history length studies. A
study into the impact of predictor history length is shown in
Figure 3. We believe that with further study into threshold
selection and history length even more predictor accuracy is
achievable.

In this work we assume that loads, integer arithmetic in-
structions, and floating point arithmetic instructions are all
candidates for register value prediction. Stores and con-
trol flow instructions are not considered for prediction. We
found that on the average an additional 2.28 register read
ports per cycle is required for verification for this type of
value prediction.

For the recovery mechanism, we simulate a refetch type
recovery. Misspeculations are detected in the execution
stage of the pipeline. After a misspeculation, all instruc-
tions that are fetched after the misspeculated instruction are
flushed from the pipeline and fetch begins with the instruc-
tion following the misspeculated instruction. This is simi-
lar to the recovery mechanism that is used to recover from
branch mispredictions in the simulated pipeline. With a
more advanced recovery mechanism (such as a reexecution
of dependent instructions), we believe even higher speedups
can be obtained.

We assume that the latency of the predictor can be
pipelined. A possible configuration of low latency percep-
tron predictors was presented by Jiménez [4]. The maxi-
mum perceptron weights used in our studies are 7-bit signed
integers, and in a number of cases 6-bit signed integers. We
simulated the perceptron predictor using 5 through 8 bits



Parameter Value
Total size 4KB 8KB 16KB

History length 28 34 36
Maximum weight 32 64 64

Prediction threshold 68 80 83

Table 3. Table of perceptron predictor configura-
tions.

and select the weight size with the best performance for a
given predictor configuration.

5. Results

In this section, we test the effectiveness of perceptrons
as register value predictors and proceed to find ways to im-
prove their performance. First, we study the performance of
a perceptron predictor on various individual benchmarks.
Secondly, we look at the effect that history length has on
perceptron predictor performance. Lastly, we look at hy-
brid predictor structures to improve predictor effectiveness.

5.1. Performance of Perceptron-Based Register
Value Prediction

In this section, we compare the performance of an dy-
namic register value predictor (from now on referred to as
rvp) as proposed by Tullsen and Seng [11] and a perceptron
predictor.

Figure 2 shows the performance improvement achieved
for each of the benchmarks when using an 8KB rvp predic-
tor, an 8KB perceptron predictor, and the speedup achieved
with perfect prediction. There is significant variation in the
speedups between applications. The perceptron predictor
significantly outperforms the rvp predictor on gap, mcf,
and vpr. In these three cases we find the perceptron pre-
dictor to predict more instructions with register reuse than
does rvp (for the average of the three benchmarks, 84.7% of
the actual number of redundant instructions versus 63.4%)
and does so with a higher accuracy (for the average of the
three benchmarks, 98.6% prediction accuracy for the per-
ceptron versus 96.5% for rvp).

The rvp predictor performs better on crafty, mesa,
and perlbmk. We find that for each of these benchmarks,
the perceptron predictor encounters significantly more mis-
predictions than with rvp.

With perfect prediction, the average speedup across the
benchmarks is 13.2%. The perceptron predictor achieves
61% of the maximum speedup possible. There is still more
performance to be obtained from register value prediction.

Because of the nature of the rvp predictor, it tends to de-
tect local predictability during the execution of individual
instructions. In contrast, the perceptron uses a global his-
tory register containing the behavior of the last N instruc-

Figure 2. Performance speedup for an 8KB rvp pre-
dictor and an 8KB perceptron predictor. The po-
tential speedup achieved with perfect prediction is
also shown.

tions, where N is the length of the history stored. Therefore
it is not surprising to see that there are some applications
where the rvp predictor excels and some where the percep-
tron excels. We do find though that over the average of the
benchmarks, the perceptron does better. This demonstrates
that register value reuse can be effectively predicted with
global history information.

5.2. Effect of History Length

Because the perceptron predictor is a global prediction
scheme, its accuracy is dependent upon the number of bits
stored in the global history register. In this section, we ex-
amine the impact that history length has on overall perfor-
mance.

Figure 3 shows the average speedup obtained when us-
ing a perceptron predictor with a varying amount of global
history. The predictor used is a perceptron predictor con-
sisting of 8192 perceptrons with 6-bit weights. We use a
predictor with a large number of perceptrons to minimize
the effect of aliasing. We simulate global histories from 4
to 60 inputs in increments of 4. We choose thresholds based
on the thresholds given by Jiménez and Lin [5].

As expected, performance improves with increasing his-
tory length. 90% of the speedup achieved with a history
length of 60 can be achieved with a history length of 40.
80% of speedup with a history length of 60 can be achieved
with a history length of greater than 16.

When increasing history length, both predictor coverage
(the fraction of correctly predicted redundant instructions to
actual number of redundant instructions) and accuracy are
affected positively. We find that coverage increases from
85.6% to 87.8% with history length of 4 and 32 respectively,



Figure 3. Performance speedup for the average
of the benchmarks with varying lengths of global
history. The perceptron predictor used in each
data point consists of 8192 perceptrons with 6-bit
weights.

but does not increase any further beyond a history length of
32. When increasing history from 4 bits to 16, accuracy
increases from 94.2% to 97.7%. When there are 60 bits of
global history, the prediction accuracy increases to 98.6%.

Not shown in this work is the effect that history length
has on individual benchmarks. Some benchmarks greatly
benefit from an increased history length while others do not.
We find that mcf reaches near perfect prediction with only
12 global history inputs and does not improve in perfor-
mance with increasing history. The mgrid benchmark con-
tinues to improve in performance even beyond a global his-
tory of 60. Galgel performs poorly at low history lengths
(30.4% and 15.1% slowdown at 4 and 8 bits respectively),
but achieves speedup beyond 16 bits (5.1%) and continues
improving up through 60 bits (15.2%).

5.3. Hybrid Predictors

The design of the perceptron predictor makes it well
suited for global pattern detection, whereas the rvp predic-
tor targets exploiting local history. In this section, we an-
alyze the impact of creating hybrid predictors using an rvp
predictor combined with a perceptron predictor, as previ-
ously described.

We look at three different techniques of combining an
rvp with a perceptron predictor to form a hybrid predictor.
The first is a tournament style selection mechanism similar
to the mechanism described by McFarling [7]. We use an
additional 1K entry selection table of 2-bit saturating coun-
ters indexed by the lower 10 bits of the program counter. A

Figure 4. Speedup for the various predictors for the
average of the benchmarks. Results are shown for
the rvp, gshare, perceptron, tournament, cascade,
and tournament-cascade predictors.

counter in the selection table is incremented if the percep-
tron predicts a redundant register value and is correct. The
counter in the selection table is decremented if the rvp pre-
dictor predicts a redundant value and it is correct. If both
predictors are correct, the counter value does not change. If
the counter value for an instruction is 2 or 3, then the predic-
tion from the perceptron is used. If the counter value is 0 or
1, then the prediction from the rvp predictor is used. In this
hybrid configuration, half of the storage space is used by
each of the predictors, although the size of the rvp predictor
is reduced by the size of the tournament selector table. We
refer to this predictor configuration as tour.

The other hybridization technique studied involves cas-
cading the rvp predictor with a perceptron predictor.
Michaud and Seznec [8] studied this cascading technique
for perceptrons used for branch prediction. The prediction
bit from the rvp predictor is used as additional input to the
perceptron. One less bit from the global history register is
used to compute the perceptron weight and the rvp predic-
tion bit is used instead. We refer to this predictor configura-
tion as casc.

We also look at a hybrid predictor that combines the
tournament selector mechanism and the cascaded predic-
tion scheme. The same prediction from the rvp is used as
an input to the perceptron and also as a prediction itself. A
1K entry table of saturating counters is used to select be-
tween the cascaded predictor and the rvp predictor. We will
refer to this predictor configuration as tour-casc.

For comparison, we also study a gshare register value
predictor, which in configuration is similar to the gshare
branch predictor [7]. For our experiments, we use a table
of 3-bit saturating counters. The index into the table is the
result of the XOR of the lower bits of the instruction address
and the global history register. If the instruction is verified



Figure 5. Predictor coverage for the various pre-
dictor configurations. Coverage is the ratio of
correctly identified redundant instructions to the
number of actual redundant instructions. Data is
shown for 8KB predictors.

to be redundant, then its counter is incremented; otherwise,
the counter value is reset. If the counter value exceeds a
threshold, then a prediction is made. The same threshold is
used for the gshare predictor as for rvp.

Figure 4 shows the performance results of the various
predictors for the average of the benchmarks. The speedup
results are shown for rvp, gshare, perceptron, tour, casc,
and tour-casc predictors in 4KB, 8KB, and 16KB total pre-
dictor sizes.

At all storage sizes, gshare, perceptron, and the hybrid
predictors outperform rvp. With a storage budget of 8KB,
perceptron performs the best, achieving a higher speedup
than any of the hybrids. The same is true at a 16KB storage
budget. At 4KB, the performance of perceptron is slightly
lower than that of gshare. We find that the accuracy of
gshare is slightly higher (97.6% for gshare versus 97.5%).
The best performing predictor at a 4KB budget, is tour-casc
with a speedup of 7.5%.

Upon analyzing the behaviors of the various predictors,
we find that although the accuracy of the hybrid predictors
is slightly better that a single component rvp or gshare, it
is in fact the coverage of the redundant instructions which
separates the predictors. Figure 5 shows the coverage for
the various predictors with a size of 8KB. Upon compar-
ing the coverage of rvp or gshare, we find that any predic-
tor with a perceptron component correctly identifies many
more redundant instructions. This is due to the ability of the
perceptron to identify redundancy that spans longer history
lengths.

6. Future Work

In future work, we intend to look at limiting the scope of
the predictions made by the perceptron predictor. That is,
we would like to limit the number or types of instructions
predicted. The current predictor targets a number of dif-
ferent instruction which produce register values. We would
like to look at targeting load instructions only or floating-
point instructions only. Some phase-based behavior may
also provide some guidance into which types of instructions
to target at different times in program execution.

In addition to, or in place of, the history of redundancy
we consider in this paper, we would also like to consider
a value predictor perceptron that uses the branch history.
Since processors already keep track of branch history, using
this information may require less hardware than a percep-
tron based on value redundancy. Branch history may yield
other insights that allow further success at value prediction
as well.

7. Conclusions

Perceptrons are a simple model of neuron behavior. Re-
cently, perceptrons have been proposed for use in branch
predictors and have demonstrated good performance. In this
work, we study the impact that a perceptron-based predic-
tor has on register value prediction, a type of value locality
where an instruction produces the same value that already
exists in the instruction destination register. When an in-
struction can be correctly predicted to exhibit this locality,
the dependents of that instruction can be issued before the
predicted instruction is done executing.

We demonstrate that for a given size predictor, a per-
ceptron predictor performs better than a saturating counter
based register value predictor. On the average of the bench-
marks studied, an 8KB perceptron predictor achieves a
speedup of 8.1%, with speedups of as much as 45.2% on
one benchmark.

We study using global history lengths of up to 60 bits
and find that using a history of 40 bits allows a perceptron
predictor to achieve 90% of the performance of a predictor
with a history of 60 bits. We find that some benchmarks can
benefit from even longer histories.

Finally, we study hybrid predictors which combine a per-
ceptron predictor with a saturating counter based predictor.
With a 4KB hardware budget, a speedup of 7.5% is achieved
using the tournament-cascade hybrid.

8. Acknowledgments

We would like to thank the UC San Diego Processor Ar-
chitecture and Compilation lab and Intel for providing the



simulation environment for this work. We would also like to
thank our anonymous reviewers for their valuable feedback.

References

[1] S. Balakrishnan and G. S. Sohi. Exploiting value locality in
physical register files. In 36th Annual International Sympo-
sium on Microarchitecture, 2003, Dec 2003.

[2] M. Burtscher and B. Zorn. Hybrid load-value predictors.
IEEE Transactions on Computer, 51(7), July 2002.

[3] M. Burtscher and B. G. Zorn. Prediction outcome history-
based confidence estimation for load value prediction. Jour-
nal of Instruction-Level Parallelism, 1, May 1999.

[4] D. A. Jiménez. Reconsidering complex branch predictors.
In the Ninth International Symposium on High Performance
Computer Architecture (HPCA-9), Feb 2003.

[5] D. A. Jiménez and C. Lin. Dynamic branch prediction with
perceptrons. In Seventh International Symposium on High
Performance Computer Architecture (HPCA-7), Jan 2001.

[6] D. A. Jiménez and C. Lin. Neural methods for dynamic
branch prediction. ACM Transactions on Computer Systems,
20(4), Nov 2002.

[7] S. McFarling. Combining branch predictors. Technical Re-
port TN-36, DEC-WRL, June 1993.

[8] P. Michaud and A. Seznec. A comprehensive study of dy-
namic global history branch prediction. Technical Report
1406, IRISA, June 2001.

[9] F. Rosenblatt. The perceptron: A probabilistic model for
information storage and organization in the brain. Psycho-
logical Review, 65(6):386–408, 1958.

[10] D. Tullsen. Simulation and modeling of a simultaneous mul-
tithreading processor. In 22nd Annual Computer Measure-
ment Group Conference, Dec. 1996.

[11] D. Tullsen and J. Seng. Storageless value prediction using
prior register values. In 26th Annual International Sympo-
sium on Computer Architecture, pages 270–279, May 1999.


