Lab #4: First step in implementing a 3D Fractal Terrain using a BinTri Tree
· Description

This lab exercise will give you practice with developing a 3D terrain surface modeled using the fractal subdivision and midpoint displacement algorithm. You will also build a BinTri tree whose triangles share their vertices with the terrain mesh. Completing this lab exercise will complete part of the requirements for Program Assignment #2. The goals of this first exercise are:

1. to render the terrain surface with a selected constant level of detail.

· Instructions and Specifications

Define a class BinTriNode, construct a BinTri tree for the fractal terrain, and render the terrain surface

0. Define a new class BinTriNode.

0. Define the class constructor and a function for building the entire BinTri tree using either a height field array or a hashmap and the splitting algorithm discussed in class. A possible design is to specify the constructor to build an entire subtree of a given depth, though you may find it simpler to separate the node constructor from the tree builder function.

0. Define a draw member function for the BinTriNode class. This function must accept an integer depth value as a parameter. It should traverse the BinTri tree starting at a given node and draw the terrain surface using the following algorithm. You may use whatever OpenGL rendering mode you wish. You could just draw individual discrete triangles using glBegin(GL_TRIANGLES), or you could use a vertex array and GL_TRIANGLES.

0. If depth is < 0 return without drawing.

0. If depth == my depth or my depth == max depth, render my triangle and return,

0. else draw each child node and return.

0. Add a keypress or other input control to your program so that you can change the depth of the LOD rendered while your program is running

Initially, create your BinTriTree to just subdivide uniformly with no vertex displacement.

You may want to store the vertices as a height map or in a hashmap. For using a height-map, solve for the number of triangles needed for a specific subdivision height. Level 0 of the subdivision should be the 2 triangles formed by the 4 corner vertices of the quadrangle height field array. Level 1 triangles should be the 4 triangles formed by the 4 corner vertices and the middle vertex of the array.
Next week:

We will be generating new sample points using fractal mid-point displacement. You will need the following information for generating the new height values…
0. depth of subdivision (number of levels)

0. minimum and maximum x and z values (in meters)

0. an array of the y (elevation) values for the 4 corner points of the array grid (in meters)).

0. a starting seed value for the random number generator (unsigned int).
See the Microsoft documentation for the rand() and srand() C library functions. rand() generates an integer pseudo-random number in the range 0 to RAND_MAX. srand() sets the starting seed value used by rand(). You can use the current time (in milliseconds) as a "random" starting seed, or you can specify a specific seed value (needed for testing when you wish to test your program with the same random numbers as a previous test). To seed the generator with the current time, call srand((unsigned)time(NULL)); These functions require that you #include <stdlib.h> and #include <time.h>. Use the constructor parameter seed value as follows: 0 means use current time as the seed, > 0 means use that number as the seed.

0. You will have to choose a method for shading the polygon mesh. Here are some suggestions (in order of complexity from easiest to most difficult -- the first alternative with pseudo-coloring is acceptable for meeting this labs requirements):

0. Use unlighted triangles by assigning a vertex color to each vertex. Using a constant color for all vertices will look horrible, because without lighting the surface will provide no visual cues for depth perception. A simple coloring scheme is to use elevation pseudo-coloring. Pick the (red, green, blue) color triad to assign to the lowest elevation in your height field and pick another color triad for the highest elevation. Then assign the color to each vertex using linear interpolation for each color based upon the vertex's y value.

0. Use texture mapping. This is fairly easy to implement, but it may not produce good results. If you use a photo as the texture, the shape of your terrain surface probably won't be anything like the shape of the surface for the photo. If you use an arbitrary texture image, such as a texture pattern like gravel, grass, or whatever, you'll suffer the same problem as the constant colored unlit surface, because without lighting the surface will provide no cues for depth perception.

0. Use lighted surfaces. This requires computing and storing a normal vector for each triangle (if you use flat shading) or each vertex (if you use smooth shading), and defining the surface material for each triangle or vertex. You'll also have to define a light source and set all the OpenGL parameters to enable lighting. Of course, you can combine lighting with either pseudo-colored vertex colors or texture mapping (or even both!). However, if you use lighting, then even using the same color for all vertices produces a result that gives some minimal amount of depth perception (although not all that wonderful).

0. Render the height field triangle mesh using OpenGL GL_TRIANGLES primitive.

