Lab 1 –csc 476 WD40 for 3D programming

The purpose of this lab is to let you start playing with some important tools for 3D game development. For this lab you will need to complete three tasks

1) Create a ground plane for your game world (rendered in wireframe now is fine).

2) Enable 2D bitmap fonts in order to display text to the screen and display the frames per second for your program.

3) Enable a pitch and yaw camera with zoom and translate (using the gluLookAt command).

In addition, for visual richness for this initial program, I recommend starting with your code to display a 3D mesh. If you do not have this code, you can download it from:

http://www.csc.calpoly.edu/~zwood/teaching/csc476/material/
mesh files can be found at:

http://www.csc.calpoly.edu/~zwood/teaching/csc471/data/
You must at very least have some objects appear on your grid plane (for example, if you are not displaying a mesh you must display 3 different solid and shaded glut primitives).

For task 1, you can refer to:

http://www.gametutorials.com/Tutorials/opengl/OpenGL_Pg1.htm
(any of the camera tutorials include a ground plane example). Note that you will need to change the Draw3DS function such that it loops over variable (extents) and spacing. Also note that you need your objects (i.e. mesh or primitices) to sit on the ground plane. Note that you may use the camera tutorials in the future but for this assignment I want you to write your own camera controls (see task 3).

For task 2, I recommend using a variety of online code to assist you. For example, refer to:

http://www.lighthouse3d.com/opengl/glut/index.php3?bmpfont
for a tutorial on bitmapped fonts.

Refer to:

http://www.gametutorials.com/Tutorials/opengl/OpenGL_Pg1.htm
for an example program to calculate frames per second using windows – or – refer to:

http://www.cs.man.ac.uk/software/OpenGL/frames_wl.txt
for an example of computing fps that is not window dependant (this is the method I would prefer you look into).

For task 3, you need to write your own pitch and yaw camera controls, which include a zoom and translate mode. Use the left mouse button to control camera rotations, the middle mouse to control zoom and the right mouse button to control translation. Make sure that these controls work in conjunction with one another. You may also hook these commands up to keys from the keyboard, but must make the mouse keys work as specified.

Given a pitch and yaw angle, you can compute the eye location by:

 x = radius*cos(phi)*cos(theta)

 y = radius*sin(phi)

 z = radius*cos(phi)*cos(90.0-theta)

You can control zoom by modifying radius.

You can compute phi and theta as some portion of the mouse’s movement in the window in the vertical (phi) and horizontal (theta).

Pitch controlled by phi

Yaw controlled by theta

