CSC 476 midterm 1 topics

Note that the first midterm for csc 476 will likely include a fair amount of conceptual questions about what we have learned so far. The possible topics (and the basics of what you should understand about those topics) are listed below:

Time based movement: you should know why we use time based movement and how we use it – i.e. be able to write simple pseudo-code to compute where an object should move given a velocity and direction and dt and know how to compute dt.

The graphics pipeline (Chpt. 4): you should know the various stages of the graphics pipeline (i.e. the major transformations and why they are carried out). You should understand the general complexity of the operations in each stage. For a given scenario you should be able to identify the possible bottlenecks in the pipeline. You should understand what you could control to speed-up the pipeline. You should understand the z-buffer algorithm (i.e. why it is so useful and what its drawbacks are).

Acceleration Algorithms (Chpt. 9 & Chpt. 4): Understand the general concepts for acceleration algorithms; this includes some of the useful data-structures (including how to compute bounding spheres and AABB) and how to test against these data structures (and their advantages and disadvantages). In addition, this includes an understanding of view frustum culling (including specifics of how it is done) and level of detail (including specifics with regards to the usefulness of a binary triangle tree data structure for terrain rendering).

General: There could likewise be some simple questions about collision detection and response (with respect to AABB and linear motion) and some questions about terrain representations (height-maps and fractal terrain generation).

For the conceptual questions in the test, you will need to be thorough in your answers. These questions will be testing your understanding of the concepts that we have discussed and implemented. Below you can find an example of a conceptual question and examples of answers and what their corresponding scores would be. A similar rubric will be used for all conceptual questions (i.e. accuracy and thoroughness equates to more points). There will also be specific (mathematical) questions with numeric answers and algorithmic questions (e.g. write pseudo-code to compute the AABB for a specified polygon).

An example of a conceptual question and points rewarded for the response – likewise similarly detailed and accurate (or lack of detailed or incorrect) responses would earn a similar amount of points:

Question: (10 pts.) Why are binary triangle trees a useful representation for terrain for real time rendering?

Answer 1) Because it allows you to draw triangles of different sizes. (2 pts)
Answer 2) Because it allows you to draw triangles of different sizes which is useful for level of detail rendering. For example, for the parts of the terrain that are far away from the user, these triangles can be approximated by bigger triangles. (4 pts)
Answer 3) Because it allows you to approximate the appearance of your terrain when needed to accelerate rendering. Specifically, you can implement level of detail rendering by approximating parts of the terrain that are far away from the user with larger triangles. This is important because the terrain that is far away from the user will only ultimately be rendered as a few pixels on the screen and instead of rendering lots of tiny triangles (at an expensive cost to pass them all the way through the graphics pipeline), you can approximate the terrain (with a decent approximation) with a larger face because a binary triangle tree allows you to represent neighboring faces with different sizes. (8 pts)
Answer 4) Because it allows you to approximate the appearance of your terrain when needed to accelerate rendering. Specifically, you can implement level of detail rendering by approximating parts of the terrain that are far away from the user with larger triangles. This is important because the terrain that is far away from the user will only ultimately be rendered as a few pixels on the screen and instead of rendering lots of tiny triangles (at an expensive cost to pass them all the way through the graphics pipeline), you can approximate the terrain (with a decent approximation) with a larger face because a binary triangle tree allows you to represent neighboring faces with different sizes. In addition, the hierarchical tree structure of a binary triangle tree allows for rendering speed-ups with the use of view frustum culling. For example, if you encompass each triangle in a bounding sphere and test from the root node down, you can avoid traversing (and thus the drawing) of any subtree whose parent is not in the viewing volume saving on the total cost of triangles passed down the graphic’s pipeline. (10 pts)
