
Food Fight!

Christopher Gilson

June 2011

1 Introduction

Efficient real-time rendering of a graphical environment is an on-going challenge

in the world of computer graphics. Video game development is on the forefront of

efforts attempting to conquer this challenge, where the balance between realistic,

vibrant graphics, and fast, seamless performance is paramount.

Today’s production video games are created by teams of often hundreds of

developers, programmers, and artists. The object of this project was to begin

to understand some of the common challenges in real-time rendering, and some

commonly used solutions, as well as to understand the myriad of skills required

to create a finished video game.

This project was developed as part of CSC/CPE 476/476++, which is a col-

laborative game development course series. Games were developed by teams of

3-6 members over the two-quarter duration of the course, although some teams

chose to work separately during the second quarter. Four regularly scheduled

demo milestones during each quarter were used to assure that students were

completing what was expected, within the expected time frame. The project

team was as follows:

Quarter 1:

• Eric Fong

• Anabel Hung

• Christopher Gilson

Quarter 2:

• Christopher Gilson

1



2 Project Overview

2.1 Genre and Setting

Food Fight falls under the umbrella of Casual Games. Casual Games aim to

provide a simple, fun environment for entertainment which requires little to no

experience or time to enjoy. Development focused less on complex gameplay

mechanics, and more on visual satisfaction. The ultimate goal was to give the

player the same feeling of destructive, messy success and satisfaction that one

gets when throwing a watermelon off of the top of a tall building.

2.2 Objectives

The objective of the game is to complete each level within the level’s time limit.

Each level contains a certain amount of enemies. To complete a level, each

enemy must be removed from the room by first knocking them over by throwing

food at them, and then pushing them to the level’s exit. When all enemies have

been removed, the level is complete and the next level begins.

2.3 Look and Feel

Food Fight was intended to have a silly, over the top, cartoonish look. The

artistic theme could be described as messy. The major visual mechanic that

achieves this is the splat system, where any food item colliding with any object

adds some colorful messy graphic to the environment. This quickly adds up,

making the environment incredibly colorful and messy looking. In order to

facilitate the feeling of dirtying the environment, the starting environment was

made to look very clean and neat, accentuating the mess that the player creates

through the course of each level.

2.4 Story

Food Fight’s story is incredibly simple, as the aim of the game as a whole was

simple, fairly mindless, cathartic fun. Your character is essentially the outcast

in a school environment, who has been picked on and tormented by everyone

else in school, even the teachers. Fed up with this horrible learning environment,

you’ve chosen to strike back, and you will not be satisfied until the school bully,

Billy, has been defeated once and for all.

2



2.5 Technical Frameworks / External Software

• Host Language: C++

• Graphics Library: OpenGL

• Windowing: GLUT

• OpenGL Extension Library: GLEW

• Audio: Irrklang Free

• Modeling: Blender

• Texturing: Blender / Photoshop / GIMP

3 Related Work

3.1 Fat Princess

Fat Princess by Titan Studios, for the Playstation 3 was a major influence on

the concept and graphical style of Food Fight. Fat Princess is an incredibly

fun and involving game, with beautifully simple graphics and simple but fun

gameplay.

Fat Princess’ game play.

3



Food Fight’s concept was, essentially, to create a game that would allow all

the silly, graphically over-the-top fun of Fat Princess, without as much blood.

One main difference between Fat Princess’ concept and Food Fight’s is that Food

Fight is much more focused on single-player, while all the gameplay, whether it

be single- or multi-player, is very much team oriented.

3.2 Animal Crossing

Nintendo’s Animal Crossing for the Nintendo Gamecube, as well as it’s prede-

cessor for the Nintendo DS, were also very influential on the graphical style of

the game. Animal Crossing’s style of completely cartoon-ish art, without the

explicit use of cel-shading, created a fun but surprisingly realistic look that Food

Fight attempted to emulate.

Animal Crossing’s visual style.

3.3 Pikmin

Nintendo’s Pikmin, for the Nintendo Gamecube, served as an additional game-

play influence. Pikmin included a game mechanic where, loosely described, you

would defeat an enemy, then bring that enemy back to your home base in order

4



to accumulate points, which could be used to obtain more minions that could

then be used to defeat more enemies. This cycle of defeating enemies in order

to get points, which were in turn used to defeat more enemies, was a good one,

and was the basis for the point system used in Food Fight.

Pikmin carry a defeated enemy back to base.

Pikmin, however, is a game with a larger, overreaching goal, which requires

much more additional time investment to complete. Food Fight’s aim was to

create a game with a number of smaller, easily surmounted goals.

4 Feature Overview

4.1 Quarter 1

• 3D interactive game environment (Christopher Gilson, Annabel Hung,

Eric Fong)

• Original Art and Modeling (Christopher Gilson)

• LUA Scripting (Eric Fong)

• Occupancy Grid Collision Detection (Annabel Hung)

5



• View Frustum Culling (Christopher Gilson, Annabel Hung, Eric Fong)

• Particle Systems (Christopher Gilson)

• HUD (Christopher Gilson)

4.2 Quarter 2

All Quarter 2 features were implemented by Christopher Gilson unless stated

otherwise.

• Click To Throw (Christopher Gilson)

• Shadows (Christopher Gilson)

• Mess Mechanics (Christopher Gilson)

• Rolling Enemies Effect (Christopher Gilson)

• Dodge Game Mechanic (Christopher Gilson)

• Linear-interpolation based effects (Christopher Gilson)

• Player Rainbow Shield (Christopher Gilson)

5 Feature Details

5.1 Food Selection

The food selection screen is drawn in 2 stages. First, the 2D background is

drawn, including the vending machine background, the text-based buttons, and

the food name, description text, and price. The depth buffer is then cleared, and

the 3D foods are drawn over the already drawn 2D aspects. Click detection is

handled by recognizing the absolute positioning of the mouse click, and becomes

inaccurate if the window is resized.

5.2 The Basic Cafeteria

5.2.1 The Four Walls

The walls and floor of the cafeteria are sized and drawn based on values imported

from LUA scripts. The door, as well as exit sign, are drawn as textured quads

directly in front of / above the wall and floor surfaces so that they are visible

even if the wall behind is very dirty.

6



The Game Begins!

5.2.2 HUD

The HUD is the last thing to be drawn into the scene, and is drawn over the

game environment. First, the depth buffer is cleared in order to assure that the

HUD appears on top of any already rendered geometry. The HUD is then drawn

under an orthographic projection in viewport coordinates to simplify drawing.

The positions of all HUD elements are drawn with respect to the window’s width

and height so that the HUD draws properly regardless of window size.

5.3 Effects and Mechanics

5.3.1 Click To Throw

The challenge of implementing a click-to-throw system involves correctly trans-

lating the coordinates of an actual mouse click into coordinates in world space.

OpenGL uses two different matrices to keep track of and apply geometric and

perspective transforms to geometry. The Model View matrix keeps track of ge-

ometric transforms such as rotations, translations, and scales, including camera

7



transforms (using the gluLookAt command). The Projection matrix maintains

the state of the viewing volume, allowing for orthographic (rectangular) viewing

volumes, or perspective viewing frustums. Because all geometry is transformed

according to these matrices, the coordinates of a mouse click on the game win-

dow must be transformed as well, in order for the click to be accurately inter-

preted.

This transformation of the mouse coordinates is done using the gluUnProject

function. The function takes in an x, y, and z coordinate of the original click,

as well as the current Model View and Projection matrices. It then uses the

current viewport (which determines the numerical boundaries of the window

itself), and transforms the click according to the ModelView and Projection

matrices. The z coordinate of the original click is an important argument to

this function. A z coordinate of 0 will return the world coordinates of the mouse

click on the near plane of the current projection. A z coordinate of 1 returns the

world coordinates of the mouse click on the far plane. Both of these coordinates

are needed for the final transformation.

Because the floor (which is where we are trying to find the coordinates of

the mouse click in respect to) is always in view of the camera, it is certain that

the floor is located in between the near and far planes of the view volume. The

floor is (due to hard-coding) always located on the plane y = 0, regardless of

size. So then, the coordinates of the mouse click in respect to the y = 0 plane

are found by finding the point where the line between the mouse clicks on the

near and far plane are, and the plane y = 0.

The advantage of this method is that it does not rely on any hard-coded

values, and is always accurate, regardless of changes to the viewport, Model

View, or Projection matrices, so long as the floor remains at y = 0 (although

the algorithm could easily be adjusted to work for a floor on any plane within

the view volume)

5.3.2 Shadows

The currently implemented shadows are created with overwhelming simplicity.

Every game object that casts a shadow is rendered twice. Once normally, and

then again in black, without any lighting or texture calculations, flattened using

a glScalef command.

8



Shadows of different models

5.3.3 Making a Mess

The mess making mechanic refers to the effect where whenever a food item or

particle system particle touches the ground or another player, it creates some

small puddle shaped graphic (a splat) on whatever it touched. It adds a major

feeling of fun and accomplishment to the overall gameplay.

Messy Walls, Messy Floors Each wall, as well as the floor, has two textures.

The first texture is the base texture, (orange tiles on the floor, striped pastel

colors on the walls. This base texture is static, and is always painted. Each

surface also has an individual, completely transparent texture, that is painted

over the base texture. Whenever a food contacts either a wall or the floor, a

splat is then painted onto the transparent texture (the splat texture).

The splats are painted onto the texture using a Frame Buffer Object (FBO).

First, the FBO is bound, and the splat texture of the surface to be painted on

is bound to the FBO. New Projection and Model View matrices are pushed to

the OpenGL stack, and cleared with glLoadIdentity(). The current viewport is

9



then stored, before being set to the exact dimensions of the actual wall texture.

An orthographic projection is then set, with the bottom-left at (0,0), and the

top-right at (texture width, texture height). This assures that the world and

viewport coordinates are the same. The Model View matrix remains as an

identity matrix. At this point, the coordinates of the food’s collision with the

surface are transformed into the texture coordinates, and the splat is painted

directly onto the texture.

A big, big mess.

This approach yields two very beneficial qualities. Because every splat is

kept track of in one solid texture, as opposed to each splat being it’s own quad,

there is no risk of z-buffer related flickering when splats overlap. While this

problem could also be solved by z-ordering the splats before each render, this

approach solves the problem much more elegantly and efficiently. Additionally,

this approach creates very little overhead for drawing the splats each frame.

Each individual splat is only processed once, when it is drawn onto the splat

texture, and after that the splats are all kept track of and drawn by one single

texture, which speeds up processing greatly.

10



Messy Enemies, Messy Friends All enemies, as well as the player model,

do also get dirtier as they get hit with more and more food. Because the

texturing coordinates on each model are different because of shape and size, the

exact position of the food impact on the model is not calculated. The splat

is painted onto a texture that is then multi textured over the model’s original

texture in the same way that it is in the case of the walls and floors. Each model

has it’s own unique texture reserved for splats.

5.3.4 Rolling Enemies

The semi-realistic rolling effect that occurs when the player bumps into an

enemy that has fallen down is achieved via some simple vector math.

We begin with the object’s velocity, which is represented as a vector of the

form (x,y,z), representing the magnitude of the vector along each axis. Because

the enemies are (as of yet) incapable of flying, the y magnitude of the vector will

always be 0. This allows us to, mathematically, deal with the vector as though

it were a 2D vector on the X-Z plane, which will greatly simplify calculations

later on.

Now we have a velocity vector of the form (x,z), representing the enemy’s

2D movement along the ground. In order to achieve a realistic rolling effect,

the enemy must be rotating at a speed proportional to the magnitude of the

velocity, around an axis that is perpendicular to the velocity. Basic geometry

tells us that the perpendicular vector of (x,z) will be (-z,x). The object keeps

track of it’s current rotation, and on each update, the rotation angle is increased

by some base value multiplied by the velocity’s magnitude. When drawn, the

model is first rotate 90 degrees from it’s current orientation around the y-axis

(so that the model looks as though it is rolling around it’s middle, not over

it’s head), then it is rotated the current rotation amount, around it’s velocity’s

perpendicular (-z, x). Because the velocity is decreased at each update, the

resulting effect is a smooth roll which slows down to a stop.

One disadvantage to this approach is that it treats the object like a cylinder,

and in the case of more triangularly shaped models, the rolling effect does look

somewhat unnatural. However, overall it creates a very nice rolling effect which

requires little processor overhead.

11



An enemy is knocked over.

5.3.5 Dodging Mechanic

The ”Karate Kid” enemy has the ability to dodge any foods thrown at him from

the front. This mechanic was also achieved using simple vector math.

Every game object has a velocity vector, which determines how fast, and in

what direction, the object is traveling. It is possible to determine the orientation

of two objects in relation to each other using these two velocity vectors. For the

purposes of this calculation, ”in front of” is assumed to be any direction within

90 degrees on each side of the velocity vector, making a full 180 degree ”front”.

First, the angle of each velocity vector is determined in relation to the vector

(0,0,1) which is an arbitrary reference vector, in the range of 0 to 360 degrees

using the dot product vector operation

12



The Karate Kid, unsuspecting

The 0-360 degree range is achieved by using a second reference vector (1,0,0)

in order to determine whether or not the angle between the vectors is obtuse.

Once the angle of each vector is known, a simple calculation tells us whether or

not the angles are within 90 degrees of each other, and consequently whether

the colliding object is approaching from the back or the front.

Note: The method used to determine the angle of the velocity vector relative

to a reference vector is also used in the calculation that makes all the models

face forward along their velocity vectors.

5.3.6 Healing and Haste Effect

The effects accompanying the ”heal” (green) and the ”haste” (red) abilities are

both accomplished using the same method, using a different function to control

particle displacement.

13



A wizard casting haste on a fatty

The distance between the two objects is calculated. The distance between

each particle is then calculated according to the total number of particles in the

effect. A cursor is placed at the origin object, and is then moved incrementally

along the line, placing particles as it goes. Each particle’s position is displaced

by a pattern function before being drawn. The pattern function for the healing

effect is a simple sin function, while the function for the haste effect is a trans-

lation upwards by a set radius, followed by a rotation by an increasing angle

around a vector equal to the effect’s original line, creating a spiral effect.

5.3.7 Player Shield (Color)

The player’s shield effect, triggered by using the ”candy” food item, is drawn

using a simple glutWireSphere call. The rainbow effect however, is created using

a specific sequence of color alterations.

Every color value is broken into three parts, representing the red, blue, and

green components of the color. In order to achieve the oscillating effect seen in

the player’s shield, the color values are changed in the follow order, beginning

14



with a bright 100% green:

Increase Red

Decrease Green

Increase Blue

Decrease Red

Increase Green

Decrease Blue

The player’s sugar-induced shield

This causes a full rotation through the color spectrum without creating colors

too close to black or white.

5.3.8 Particle System

Particle systems are used to render all of the fountains of particles when food

contacts the ground, such as the explosion from the watermelon, or the spray

from the soda. The mechanics and rendering of the systems are dealt with sep-

arately, so the soda spray, which is rendered as billboarded quads, are processed

15



in the same way as the watermelon explosion is, which is rendered as 3D mod-

els. System Mechanics Each particle system has a gravity, maximum radius,

maximum height, total number of particles, a maximum number of displayed

particles, and a list of particles. Each particle object has a position, a veloc-

ity, and a rotation angle. On each update, the particle list is iterated through.

Each particle’s position is updated based on it’s velocity, and each velocity is

updated based on the system’s gravity. Additionally, each particle’s rotation

angle is updated by a fixed amount +/- a random amount. Any particles that

fall below the floor (y ¡= 0) are removed from the system, and particles are

then added at the source position with a random velocity within the maximum

height and width constraints, until the total number of active particles is equal

to the maximum, and any added particles are deducted from the total number.

This is beneficial in that it allows control of the density, size, and duration of

the particle system, and it keeps the rendering of the system entirely separate

from the processing. System Rendering System rendering is very simple.

Each particle system contains a list of particles, and a specific model or texture

to use to draw each particle. The list is iterated through, and each particle

is drawn. Particles that are to be drawn as billboarded quads are rendered as

point-sprites, which automatically create billboarded quads. Otherwise, a model

is drawn at each particle’s position, rotated by the particle’s current rotation

amount.

16



Watermelon mid-explosion.

6 Results

The result of this project is a fully functioning Video Game, featuring an inter-

active, fully 3D environment powered by OpenGL. Although many technologies

are present and fully functioning, the development team is particular proud of

some particular aspects of the project.

6.1 Resource Independence

With the exclusion of sound effects, all visual assets used in the game were

created internally. All models present in the game were built, textured, and

animated by the development team, using a combination of Adobe’s Photoshop

CS4 and Blender, a free 3D modeling program. The team artist had no prior

experience with Blender, or any 3D modeling software, prior to the beginning

of the course. We are very proud that we were able to produce quality assets

and simultaneously learn the tools necessary for building those assets.

17



Title Screen

18



Food Selection Screen

6.2 Particle Systems

Food Fight’s particle systems were designed to be especially generic. Although

due to time constraint, there is only one ”type” of particle system in the game

currently, the particle system was designed to be as general as possible. The

current model for particle systems could be used to model fountain-like effects,

water-fall or shower effects, explosions, and even smoke clouds, with little to no

modification to the system’s internal representation. The main changes required

would be in particle rendering, which was purposely abstracted away from the

particle’s mechanics.

6.3 Mess Mechanics

The technology used to create the food mess is the team’s major accomplish-

ments. We are especially proud of this because the method used to implement

the effect never becomes more complex or costly, regardless of the number of

splats that have occurred. The inspiration for the rendering of this effect came

19



from the mechanics of reality, where if a food were to really leave a mark on

a wall, it would literally be attached to (or, graphically, painted on) the wall.

The usage of FBOs and textures reduced the rendering costs of the mess me-

chanic drastically, and made the overall complexity of the rendering method

considerably more effective.

6.4 Player Feedback

Food Fight was tested throughout the development cycle, and results of player

testing have been summarized by development phase.

Phase Pros Recommendations

End of Quarter

1 (100%) • Click to Throw / Move is

new / fun

• Good food models

• Toon Shader improves look /

feel

• More mess

• More clear objective

• Way to win/lose

• Way to select foods

• More variety of foods / ene-

mies

• Fix minor glitches

Phase Pros Recommendations

Quarter 2 Week

5-7 (150%) • Removing enemies mechanic

good / fun

• Much messier, more fun

• Food purchase mechanics

• WASD movement

• More enemies

• Display enemy health

• Visual effects for enemy abil-

ities/ food effects

• Walls need to get dirty as

floor does

• Small glitches/bugs

20



Phase Pros Recommendations

Final Version

(200%) • Good visual effects for

foods.enemies

• The entire environment gets

messy

• Multiplayer?

• Small glitches/bugs

• More varied level designs

• Stationary game objects

don’t get messy

• Balancing needs work

The most common comment from player feedback was that the visual effects

were fun, and contributed greatly to the game’s experience. The addition of

WASD controls was the most well received addition to the game.

6.5 Development Process

The development process was unfortunately not nearly as effective as it was

intended to be. A major problem with the development process as a whole

was that unfortunately the experience and work ethic was concentrated mostly

in one member of the team, who ended up shouldering most of the work for

the first quarter. This was solved during the second quarter by segmenting the

team.

However, working on a project of this magnitude by oneself comes with cer-

tain disadvantages. Being responsible for so many different resources, including

modeling, art, and coding, leads to a sacrifice in quality, especially in the struc-

ture and readability of the code.

I believe the development process would have been considerably more suc-

cessful if my team’s experience and work output was more balanced.

7 Conclusion

This project was a major learning experience for all involved in a number of

ways. To begin with, although there was a wealth of experienced developers,

nobody on the Food Fight team had any experience with creation of artistic

resources, such as textures or models. Additionally, although the development

team was experienced in general, there was a lack of experience in OpenGL

21



graphics programming. A major part of the development process was research-

ing and learning new programs and processes.

In addition to technological difficulties, learning to effectively work in a

group was another important learning experience. Balancing work loads be-

tween group members, as well as effectively using version control, were both

important skills learned in the first quarter of the development cycle.

Overall, this project was a better learning experience than any other singu-

lar project that I have completed during my higher education. I would highly

recommend this experience to others in the Computer Science/Software Engi-

neering major, and would go as far as to say that a similar experience should

be required for all students.

8 Future Work

Although much has gotten done with Food Fight, there are many goals left for

the future.

8.1 Clean Code Base

A disadvantage of attempting to create a game and all associated resources

including models and art in a small time frame is that the rush can cause some

unorganized or inefficient code. A major goal for future improvement would

be to drastically clean and re-factor the code base to be more extensible and

readable.

8.2 Variable level design

Currently, the cafeteria is drawn based on a hard-coded square design with

four tables and one vending machine. Another important addition would be the

ability to design levels, that would be stored in a simple script file (or something

equivalent). A level editor might be another important addition.

8.3 Additional Enemies and Foods

Although there are currently 9 foods and 5 enemy types, there is drastic room

for improvement. A modular system to add new types of foods and enemies

could be integrated into the current code base, making it easy to add new foods

or enemies.

22



8.4 Enemy AI

Currently, the enemies have no actual intelligence. They are simply capable

of executing an ability if the player is within a certain range. An intelligent

enemy AI could be a very interesting addition to make the game more fun and

challenging.

8.5 Multiplayer

The single player mode of food-fight is a perfectly workable game concept on it’s

own, but the game concept could be modified slightly to accommodate multiple

players, either cooperatively or competitively.

8.6 Mobile Device Compatibility

Although click-to-move was removed because of controllability issues, the orig-

inal concept of food-fight, using only mouse controls, could easily be ported to

a touch-screen based system. Additionally, because food-fight is so simple in

concept, it would be a game ideal for mobile devices, where people require an un-

complicated, fun, momentary distraction, instead of a complex game requiring

time investment.

9 References

1. http://www.naturewizard.com/tutorial08.html

2. http://library.forum.nokia.com/index.jsp?topic=/S60_5th_Edition_

Cpp_Developers_Library/GUID-441D327D-D737-42A2-BCEA-FE89FBCA2F35/

OpenGLEx/Shadows/doc/index.html

3. http://www.bluevoid.com/opengl/sig00/advanced00/notes/node199.

html

4. http://www.songho.ca/opengl/gl_fbo.html

5. http://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro

6. http://psd.tutsplus.com/

7. http://planetmath.org/encyclopedia/LinearInterpolation.html

8. http://www.ambiera.com/irrklang/

23

http://www.naturewizard.com/tutorial08.html
http://library.forum.nokia.com/index.jsp?topic=/S60_5th_Edition_Cpp_Developers_Library/GUID-441D327D-D737-42A2-BCEA-FE89FBCA2F35/OpenGLEx/Shadows/doc/index.html
http://library.forum.nokia.com/index.jsp?topic=/S60_5th_Edition_Cpp_Developers_Library/GUID-441D327D-D737-42A2-BCEA-FE89FBCA2F35/OpenGLEx/Shadows/doc/index.html
http://library.forum.nokia.com/index.jsp?topic=/S60_5th_Edition_Cpp_Developers_Library/GUID-441D327D-D737-42A2-BCEA-FE89FBCA2F35/OpenGLEx/Shadows/doc/index.html
http://www.bluevoid.com/opengl/sig00/advanced00/notes/node199.html
http://www.bluevoid.com/opengl/sig00/advanced00/notes/node199.html
http://www.songho.ca/opengl/gl_fbo.html
http://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro
http://psd.tutsplus.com/
http://planetmath.org/encyclopedia/LinearInterpolation.html
http://www.ambiera.com/irrklang/


9. http://www.lighthouse3d.com/opengl/glsl/

10. http://www.opengl.org/resources/faq/technical/glu.htm

11. http://pyopengl.sourceforge.net/documentation/manual/

12. http://www.gamedev.net/topic/388298-opengl-hud/

13. http://www.wikihow.com/Find-Perpendicular-Vectors-in-2-Dimensions

14. http://nehe.gamedev.net/

24

http://www.lighthouse3d.com/opengl/glsl/
http://www.opengl.org/resources/faq/technical/glu.htm
http://pyopengl.sourceforge.net/documentation/manual/
http://www.gamedev.net/topic/388298-opengl-hud/
http://www.wikihow.com/Find-Perpendicular-Vectors-in-2-Dimensions
http://nehe.gamedev.net/

	Introduction
	Project Overview
	Genre and Setting
	Objectives
	Look and Feel
	Story
	Technical Frameworks / External Software

	Related Work
	Fat Princess
	Animal Crossing
	Pikmin

	Feature Overview
	Quarter 1
	Quarter 2

	Feature Details
	Food Selection
	The Basic Cafeteria
	The Four Walls
	HUD

	Effects and Mechanics
	Click To Throw
	Shadows
	Making a Mess
	Rolling Enemies
	Dodging Mechanic
	Healing and Haste Effect
	Player Shield (Color)
	Particle System


	Results
	Resource Independence
	Particle Systems
	Mess Mechanics
	Player Feedback
	Development Process

	Conclusion
	Future Work
	Clean Code Base
	Variable level design
	Additional Enemies and Foods
	Enemy AI
	Multiplayer
	Mobile Device Compatibility

	References

