
TEXTURED HIERARCHICAL PRECOMPUTED RADIANCE TRANSFER

A Thesis

Presented to

the Faculty of California Polytechnic State University

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Harrison Lee McKenzie Chapter

June 2010



c© 2010

Harrison Lee McKenzie Chapter

ALL RIGHTS RESERVED

ii



COMMITTEE MEMBERSHIP

TITLE: Textured Hierarchical Precomputed Radi-
ance Transfer

AUTHOR: Harrison Lee McKenzie Chapter

DATE SUBMITTED: June 2010

COMMITTEE CHAIR: Zoë Wood, Ph.D.

COMMITTEE MEMBER: Aaron Keen, Ph.D.

COMMITTEE MEMBER: Chris Lupo, Ph.D.

iii



Abstract

Textured Hierarchical Precomputed Radiance Transfer

Harrison Lee McKenzie Chapter

Computing complex lighting simulations such as global illumination is a compu-

tationally intensive task. Various real time solutions exist to approximate aspects

of global illumination such as shadows, however, few of these methods offer single

pass rendering solutions for soft shadows (self and other) and inter-reflections.

In contrast, Precomputed Radiance Transfer (PRT) is a real-time computer

graphics technique which pre-calculates an object’s response to potential incident

light. At run time, the actual incident light can be used to quickly illuminate the

surface, rendering effects such as soft self-shadows and inter-reflections.

In this thesis, we show that by calculating PRT lighting coefficients densely

over a surface as texture data, additional surface detail can be encoded by in-

tegrating other computer graphics techniques, such as normal mapping. By cal-

culating transfer coefficients densely over the surface of a mesh as texture data,

greater fidelity can be achieved in lighting coarse meshes than simple interpo-

lation can achieve. Furthermore, the lighting on low polygon objects can be

enhanced by drawing surface normal and occlusion data from highly tessellated,

detailed meshes. By applying such data to a decimated, simplified mesh, a more

detailed and visually pleasing reconstruction can be displayed for a lower cost.

In addition, this thesis introduces Hierarchical PRT, which extends some sur-

face effects, such as soft shadows, between objects. Previous approaches to PRT

iv



used a more complex neighborhood transfer scheme in order to extend these light-

ing effects. Hierarchical PRT attempts to capture scene information in a tree data

structure which represents coarse lighting relationships between objects. Poten-

tial occlusions can be found at run time by utilizing the same spherical harmonic

representation used to represent surface lighting to instead store light “filters”

between scene tree nodes. Such “filters” can be combined over a set of nodes in

the scene to obtain the net shadowing of an object with good performance.

We present both visually pleasing results on simplified meshes using normal

mapping and textured PRT and initial results using Hierarchical PRT that cap-

tures low frequency lighting information for a small number of dynamic objects

which shadow static scene objects with good results.

v



Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Computer Graphics Foundation . . . . . . . . . . . . . . . . . . . 1

1.2 Real-time Rendering . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Precomputed Radiance Transfer . . . . . . . . . . . . . . . . . . . 4

2 Related Work 6

2.1 Polynomial Texture Maps . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Precomputed Radiance Transfer . . . . . . . . . . . . . . . . . . . 7

2.2.1 PRT Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Neighborhood Transfer . . . . . . . . . . . . . . . . . . . . 7

2.3 Shadowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Shadow Volumes . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Shadow Mapping . . . . . . . . . . . . . . . . . . . . . . . 8

3 Background 9

3.1 The Rendering Equation . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 BRDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Monte Carlo Integration . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Spherical Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4.2 Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

vi



3.5 Shadows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5.1 Soft Shadowing . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Textured PRT 20

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 Precomputation Overview . . . . . . . . . . . . . . . . . . 20

4.1.2 Rendering Overview . . . . . . . . . . . . . . . . . . . . . 21

4.1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Precomputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 Band and Sample selection . . . . . . . . . . . . . . . . . . 24

4.2.2 Mesh Acquisition . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.3 Face Processing . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.4 Texel Processing . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.5 Coefficient Computation . . . . . . . . . . . . . . . . . . . 26

4.2.6 Coefficient Storage . . . . . . . . . . . . . . . . . . . . . . 27

4.2.7 Texture Post-Processing . . . . . . . . . . . . . . . . . . . 28

4.2.8 Further Preprocessing Considerations . . . . . . . . . . . . 31

4.3 Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.1 Basic Renderer Setup . . . . . . . . . . . . . . . . . . . . . 32

4.3.2 Texture Setup . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.3 Incident Radiance Sample Points . . . . . . . . . . . . . . 33

4.3.4 Vertex Preparation . . . . . . . . . . . . . . . . . . . . . . 34

4.3.5 Light Sampling . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.6 Lighting Coefficient Transfer . . . . . . . . . . . . . . . . . 36

4.3.7 Rendering the Triangles . . . . . . . . . . . . . . . . . . . 37

4.3.8 Rendering Addendums . . . . . . . . . . . . . . . . . . . . 40

4.4 Textured PRT Review . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Hierarchical PRT 46

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.1 Hierarchical PRT Overview . . . . . . . . . . . . . . . . . 46

5.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 47

vii



5.1.3 Hierarchy Establishment . . . . . . . . . . . . . . . . . . . 48

5.1.4 Node Types . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.5 Establishing Node Filtering . . . . . . . . . . . . . . . . . 50

5.1.6 Moving Filtering Down the Tree . . . . . . . . . . . . . . . 51

5.1.7 Combining Filtering with Lighting . . . . . . . . . . . . . 52

5.2 Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Filter Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 Hierarchical PRT Review . . . . . . . . . . . . . . . . . . . . . . . 57

6 Results and Discussion 63

6.1 Testing Environment . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2 Textured PRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2.1 Comparison Algorithms . . . . . . . . . . . . . . . . . . . 65

6.2.2 Test Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2.3 Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2.4 Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2.5 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.3 Hierarchical PRT . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3.1 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3.2 Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.3.3 Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3.4 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.5.1 Textured PRT . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.5.2 Hierarchical PRT . . . . . . . . . . . . . . . . . . . . . . . 76

Bibliography 78

viii



List of Tables

6.1 Speed statistics for Textured PRT comparison . . . . . . . . . . . 66

6.2 Storage statistics for Textured PRT comparison . . . . . . . . . . 67

6.3 Textured PRT quality comparison matrix . . . . . . . . . . . . . . 70

6.4 Hierarchical PRT frame rate variance . . . . . . . . . . . . . . . . 71

ix



List of Figures

1.1 Tyrannosaurus with Gouraud shading . . . . . . . . . . . . . . . . 4

3.1 100, 625, and 2500 component Sampler . . . . . . . . . . . . . . . 13

3.2 Visualization of Spherical Harmonic Bands [14] . . . . . . . . . . 15

4.1 Textured coefficient storage over a sphere, at band four . . . . . . 29

4.2 Textured coefficient storage over a sphere, at band twenty three . 29

4.3 Unwindowed and windowed integration, showing Gibbs’ Phenomenon 41

4.4 Tyra rendered with a ground plane, receiving shadows . . . . . . . 43

4.5 500 face bunny rendered with PRT textures compared with stan-
dard smooth shading . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.6 1000 face Tyrannosaurus rendered with PRT textures with and
without baked in normal maps . . . . . . . . . . . . . . . . . . . . 45

5.1 2 Sphere Hierarchy, calculating dynamic shadows between objects 59

5.2 Bunny Hierarchy, calculating dynamic shadows between objects . 62

6.1 Bunny Hierarchy, Hierarchical PRT vs Shadow Volumes . . . . . . 74

x



Chapter 1

Introduction

1.1 Computer Graphics Foundation

Computer Graphics is the art of transmuting models and light into images with

the quicksilver of mathematics. Since its foundation in the early 1960’s, modern

Computer Graphics has expanded to encompass areas ranging from the diverting

fields of video games and cinema special effects to the elevated disciplines of

computer aided design and medical visualization[13]. Though the types of images

that are produced for these areas are understandably different, the overriding goal

is always to produce the highest quality image possible from a set of data and

resources.

In addition to the different subjects of the images produced for the different

fields Computer Graphics serves, so too does the “budget” allocated to produce a

given image vary with the discipline. The applications used in the arenas of CAD

and film may acceptably run for hours or even days, utilizing complex simulation

tools and extremely high quality models to produce very realistic results. Highly

1



responsive applications on the other hand, such as those found in the fields of

computer gaming and scientific imaging may be forced to operate at real-time

speeds on resource constrained or mobile devices.

The disparity between these different application domains highlights an essen-

tial difference in the Computer Graphics techniques utilized to fulfill their needs:

Global Illumination or Real-time Graphics. The former offers the realms of com-

plex modeling and simulation of light at the price of space and time, while the

latter first trades all for interactive frame rates, and then builds back what it can

though clever rendering techniques.

1.2 Real-time Rendering

In order to achieve real-time rendering rates, Computer Graphics techniques

traditionally rely upon a local approximation of light interacting with a surface,

rather than modeling how light might affect a given scene holistically. Many

shading models, such as that developed by Gouraud, adopt this simplified strat-

egy for coloring components of an image after rasterization[1]. This method, and

Gouraud shading, is in fact the nominal one utilized in the conventional fixed func-

tion graphics pipeline implemented on most graphics hardware (GPUs). Though

useful and fast, it often produces images like the bland, flat results of Figure 1.1.

As Computer Graphics has become more advanced, however, additional ele-

ments have been added to real-time rendering methods to enhance their repre-

sentation of an artist’s vision. Things like texture mapping and bump mapping

can apply pre-made, “continuous” images to geometry, greatly increasing the

2



flexibility of simple, flat triangle in the quest to represent and recreate images

of complex objects. Still, simple textures or normal perturbations, regardless of

their size and detail, do not take the environment surrounding an element of the

scene into account.

The key aspect which these simple techniques fail to take into account is the

relationship between objects in the scene, beyond the simple adjacency of their

triangles. Instead of simple images clumsily wallpapered on to triangles, real-

time graphics greatly desires the effects from Global Illumination. Effects such as

shadows, which convey the spatial quality of one element being in front of another,

or reflections, which convey the way light interacts between two different objects

are prevalent in Global Illumination. The human eye is very adept at interpreting

the these effects, enunciated as color, to reconstruct where all of the objects in a

scene are “actually” located.

While, as mentioned before, it is generally impractical to run Global Illumi-

nation strategies such as Ray-Tracing or Radiosity in real-time, for some scenes

the final effects of such algorithms can be precalculated and utilized. For in-

stance, static scenes may use textured “light map” images which represent how

much light reaches a particular place in the scene. Though the assumptions nec-

essary for such interactions are weighty – nothing can move – the visual effects

granted, such as soft shadows, are very useful in improving the quality of the

representation of a scene.

3



Figure 1.1: Tyrannosaurus with Gouraud shading

1.3 Precomputed Radiance Transfer

Though the techniques presented above provide many tools to real-time ap-

plication developers to represent interesting effects over the surfaces of scene

elements, the limited trade-off of local approximation and static-geometry is too

limited for many domains. Many modern games, for instance, sell themselves on

dynamic, mutable environments which are rendered in life-like detail and fantas-

tic quality[3]. Precomputed Radiance Transfer is a technique which attempts to

solve part of this issue by precomputing how an object is lit by potential light

from different directions. This approach differs from the precomputation done

with light maps because the actual lighting is not known ahead of time – rather,

the precalculated potential effects are combined with the actual lighting at run-

time.

Precomputed Radiance Transfer (PRT) can give many of the effects desired

from global illumination, such as soft shadows and interreflections, affected dy-

namically by the changing lighting environment in the scene. Unfortunately, by

itself the technique still falls short of providing effects between objects – PRT

4



calculations are typically done only with respect to a given object, giving soft

self -shadows, and self -interreflections. Further, if these calculations are only

done on a per-vertex basis over an object, a dense, highly tessellated mesh will

still be required to generate smooth lighting over the surface of the object. As

additional geometric primitives engender more work to render, this is undesirable.

By creating PRT data densely over a surface as texture data, however, it

is possible to continue using less geometrically intense representations of scene

elements while maintaining the complex lighting effects, such as self-shadowing,

which PRT allows. This thesis explores the generation of dense, Textured PRT

data over meshes, as well as the storage, transfer, and rendering of that data. We

demonstrate the flexibility which such sampling engenders over more standard

per-vertex PRT methods, as well as incorporating other surface reconstruction

effects, such as normal mapping.

The dense sampling of PRT data does not, unfortunately, allow interactions

between objects. To facilitate this process and give scene objects the ability to

interact with one another by transferring light between objects in scene “hier-

archies,” this thesis develops and explores the concept of rendering Hierarchical

PRT scenes. We attempt to use this representation of a scene to quickly calculate

the appropriate shadows for nodes in the scene while minimizing the necessary

ray casting.

5



Chapter 2

Related Work

2.1 Polynomial Texture Maps

Polynomial Texture Maps, developed by Malzbender et al at Hewlett-Packard

Labs[9], was a technique which attempted to isolate the aspects of color and

illumination at a point on a surface to improve the relighting of objects with

better storage efficiency. Their work developed sets of textures which were used in

combination to shade a given point on a texture parameterized model by isolating

the Luminance Model of the texture from the underlying surface properties at

points on a surface.

Malzbender et al’s work was based on the development of fast and correct color

representation of actual objects under different lighting condition, captured with a

camera rig. This, however, prototypes the isolation of a model’s surface shading

characteristics from the actual incident lighting, in many different directions.

This isolation mirrors the approach later taken by Sloan et al with the Spherical

Harmonic representations used in PRT[15].

6



2.2 Precomputed Radiance Transfer

2.2.1 PRT Basis

Sloan et al introduce Precomputed Radiance Transfer in “Precomputed Ra-

diance Transfer for Real-Time Rendering in Dynamic, Low-Frequency Lighting

Environments[15].” In this work, the separation of how a mesh receives envi-

ronmental light and the actual incident light are decoupled, and modeled as two

separate Spherical Harmonic representations. The sampling of PRT coefficient

vectors over a mesh and the subsequent storing of such data in textures is men-

tioned, but not extensively elaborated on. One component which is noted is the

need for advanced, floating point texture profiles to successfully utilize the estab-

lished PRT data. Beyond this, Sloan et al focus on establishing other components

of PRT, rather than the specific flexibility provided by a textured representation.

2.2.2 Neighborhood Transfer

In [15], Sloan et al also develops a concept of “neighborhood transfer” which is

used to light objects which are nearby other ones in the scene. The method pre-

sented samples the spatial volume around an object ahead of time, and uses that

set of coefficients to light an object which is placed nearby. Unfortunately, due

to the unknown properties of the recipient object, a transfer matrix, rather than

a simple vector of SH coefficients, must be stored to light an object placed inside

the resulting volume. Further, this method encounters problems in combining

the shadowing from multiple volumes onto a single object.

7



2.3 Shadowing

2.3.1 Shadow Volumes

In addition to the self-shadowing aspects presented in [15], we leverage research

done by Crow in [2] on inter-element shadowing as a model for conventional real-

time shadowing. The “shadow volume” technique introduced by [2] is updated by

Heidmann to be performed on the GPU[6], and further by Kilgard et al to utilize

more modern graphics hardware[5]. Shadow Volumes utilize the stencil buffer of

modern graphics hardware over multiple rendering passes to produce the hard,

crisp shadows which we compare our hierarchical shadowing work against.

2.3.2 Shadow Mapping

Another technique used to render real-time shadows on modern graphics hard-

ware is Shadow Mapping. Like Shadow Volumes, Shadow Mapping produces hard

shadowing effects by executing multiple rendering passes of a scene from different

perspectives[1]. We do not utilize results from this method explicitly, but it is

indirectly useful as a comparison tool in terms of approach – our work focuses

on a single pass shadowing solution, where both Shadow Volumes and Shadow

Mapping utilize multiple rendering passes of the scene to produce a single frame.

8



Chapter 3

Background

In order to understand the migration of Precomputed Radiance Transfer data

into textures and hierarchies, first a foundation in some core mathematical con-

cepts is required. These systems form the basis for framing the problem PRT

solves, as well as providing the tools to represent the solutions efficiently and

compactly. In this chapter, we will first move through a generalized enunciation

of Computer Graphics lighting and then to the tools which are used to make that

representation computable.

3.1 The Rendering Equation

The Rendering Equation is an integral representing the light emitted at a

point on a surface as a function of the total light received by the surrounding

environment, and its impact on the surface from each direction[8]. As noted

in Kajiya’s seminal work, the Rendering Equation generalizes many different

lighting approximations used in Computer Graphics. It is evaluated as an integral

over the sphere surrounding a point, such that the illumination seen, I(x, x′),

9



when viewing the surface at x′ from a particular point x is:

I(x, x′) = g(x, x′)

[
ε(x, x′) +

∫
S

ρ(x, x′, x′′)I(x′, x′′)dx′′
]

This equation serves as a starting place for developing the surface and lighting

representations used in Precomputed Radiance Transfer. Specifically, the pres-

ence of the integral over a sphere encourages the use of a spherical representation

which can be evaluated quickly to represent all possible incoming directions of

light.

3.2 BRDF

In addition to the spherical lighting representation encouraged by the Ren-

dering Equation to gather incident light over a surrounding environment, the

Rendering Equation includes corresponding spherical information about the sur-

face being lit. The surface properties, such as color, diffuse reflectance, specular

reflectance, and angular reflectance relationships are embodied in the BRDF of

the surface – the ρ(x, x′, x′′) in the equation above. The BRDF stands for the

Bidirectional Reflectance Distribution Function.

The BRDF of a surface is a generalization of the material properties more often

used in real-time graphics. While the real-time pipeline often uses simple BRDF

models, such as a simple Lambertian cosine weighting coupled with diffuse and

specular colors, the properties of real materials may be much more complex. In

the ρ(x, x′, x′′) equation, ρ is a function which maps a given input radiance at

point x′, from point x′′, to an exiting radiance in the direction of x[8]. By utilizing

10



precomputation, potentially complex BRDFs may be used for the surfaces being

processed.

As described, some surface BRDFs may be much more complex than others.

One useful distinction in surface characteristics is the difference between diffuse

and specular light reflection. In diffuse lighting, the colorization seen on a surface

is independent of the viewing direction – light is reflected uniformly off the surface,

regardless of the light’s incident direction. Specular lighting over materials, such

as the lighting found on glossy, metallic objects, is reflected much more strongly

in some directions based on the incident angle to the surface.

Though considerable successful work has been done to incorporate glossy sur-

faces into Precomputed Radiance Transfer, the additional “degree of freedom”

required to represent the dependence of the color seen on the viewing angle ne-

cessitates an additional dimension in the PRT representation. This expansion

increases the volume of data which is required to represent a surface consid-

erably. Though specular contributions are quite valuable, our work focuses on

representing diffuse materials densely over mesh surfaces, and excludes the addi-

tional dimension required to represent specular materials.

With the removal of the dependence on viewing direction, the BRDF of a

surface’s material can be thought of as a spherical function, which captures light

from distinct sections of the surrounding environment, and adds them to the

final color seen from any view direction. The spherical nature of the BRDF, the

incident lighting, and the interaction between the two will play an important role

in selecting the “encoding” of a surface’s lighting characteristics.

11



3.3 Monte Carlo Integration

While the Rendering Equation is an elegant formulation of how the incident

light at a point on a surface is related to its surrounding environment, the presence

of the definite integral is problematic for the actual evaluation of the equation.

In order to solve the integral over the sphere, or more generally, to represent a

continuous spherical quantity, we use a Monte Carlo integration technique with

stratified sampling [16].

To perform Monte Carlo integration, a spherical sampler is generated by repa-

rameterizing a unit length, square grid. Each sample, however, is “jiggled” by a

small, random amount. The i and j dimensions of this square grid are used to

generate spherical coordinates on the unit sphere using the mapping:

θ = 2cos−1(
√

1− i)

φ = 2πj

To make these coordinates more spatially useful later in the procedure, we

store the Cartesian coordinates representation of each sample by reversing the

spherical coordinate mapping via:

x = sin(θ)cos(φ)

y = cos(θ)

z = sin(θ)sin(φ)

As the density of this sampling increases, the samples gradually approximate

the complete surface of a sphere. Using this set of sampling vectors, spherical

12



functions (those parameterized by θ and φ) can be approximated using the value

of the function in a particular sample direction. By summing the value of each

sample ω, weighted by the number of samples n, we can approximate the integral

of a function over a sphere:

n∑
i=1

f(ω)

[
4π

n

]
≈
∫

S

f(ω)dω

Figure 3.1: 100, 625, and 2500 component Sampler

Using a set of samples, the Monte Carlo integration method allows us to dis-

cretize the continuous problem of integrating the lighting over the sphere sur-

rounding a point on an object, allowing us to solve the rendering equation when

we have a spherical lighting function and spherical receiving function.

As described above, increasing the sampling density causes the resulting sam-

ples to more closely represent a sphere (as visualized in Figure 3.3). This also

engenders the practical consideration, however, of speed – more samples means

more calculations required to compute an integral. During the course of devel-

opment, we’ve found that while sampling sizes of around 10,000 give very nice

reconstructions, they typically encounter performance hardships when doing some

run-time calculations. Between 625 samples and 2500 samples, however, still give

fairly good results without being overly computationally taxing.

13



3.4 Spherical Harmonics

3.4.1 Introduction

Spherical Harmonics is a mathematical construct used to represent functions

which are defined over the surface of a sphere. While the Monte Carlo method

is useful for discretizing the integral presented earlier, attempting to store an

intermediate spherical representation using samples alone is highly impractical

for any useful number of sample directions. Instead, Precomputed Radiance

Transfer typically projects functions into a spherical representation once they are

sampled.

Spherical Harmonics, more formally, are the solution to Laplace’s equation

over the surface of a sphere – more simply, however, they can be thought of

as the Fourier basis evaluated on a sphere, rather than a unit circle[15]. A

spherical harmonic representation consists of a number of polynomial coefficients,

representing the contribution of a particular basis function to the final spherical

model. By adding up all the different components of the spherical representation,

a relatively complex spherical function can be modeled.

To control the granularity of a spherical representation, Spherical Harmonics

may be evaluated at a set number of “bands,” which controls the fine-ness of

the representation. Low band representations require less coefficients to con-

struct, but can only adequately represent functions which have a low degree of

variability. Higher band representations require more coefficients to be stored,

but provide a more flexible reconstruction with greater fidelity due to the higher

degree polynomial used [14].

14



Figure 3.2: Visualization of Spherical Harmonic Bands [14]

3.4.2 Basis Functions

Meshing with the Monte Carlo integration method above, the Spherical Har-

monic basis functions are parameterized over a sphere using (θ, φ). To project a

function into spherical harmonics using the Monte Carlo style sampler described,

we first evaluate the coefficients of the spherical harmonic basis functions for

each sample direction. Since we have both the (x, y, z) and (θ, φ) values for each

sample, we can evaluate the basis functions using:

ym
l =


√

(2)Km
l cos(mφ)Pm

l (cosθ) : x > 0√
(2)Km

l sin(−mφ)P−m
l (cosθ) : x < 0

K0
l P

0
l (cosθ) : x = 0

By examining the above equations, we can see that absent the constants

(Km
l )and recurrence relations (Pm

l ), the samples are simply parameterized us-

15



ing the expected cosines and sines of θ and φ. The variation of bands l, and

the individual basis functions in that band m, control the fine-ness of each (θ, φ)

parameterization in a particular direction at a particular level.

3.4.3 Properties

SH Integration

In addition to being a convenient spherical encoding for the necessary spherical

lighting and receiving functions, the Spherical Harmonic basis has other nice

properties which make it amenable to our purpose. Most notable, the integral of

the product of two Spherical Harmonic projections is simply the “n-dimensional”

dot product of their respective coefficient vectors:

l2∑
i=1

figi ≈
∫

S

f(ω)g(ω)dω

Recall from the Rendering Equation that the shading seen at a point is pro-

portional to the lighting coming in from a particular direction multiplied by the

amount transferred in the viewer’s direction from that point, given a particular

input, over the entire surrounding area – a sphere. The quantity being integrated,

then, in the Rendering Equation is exactly the product of two spherical functions.

Thus, once we have projected a mesh’s receiving function into the Spherical Har-

monic basis, and calculated the incident radiance in terms of Spherical Harmonics

as well, the integral of the two is a fast summation over the products of a small

number of coefficients. The simplicity of this operation can be contrasted with

the possible, but more “heavyweight” representation of summing the products of

the samples used to construct both Spherical Harmonic representations.

16



SH Rotation

Another important property of Spherical Harmonics which makes them useful

for Precomputed Radiance Transfer is invariance over rotations. Once the Spher-

ical Harmonic projection of a function is established, the resulting representation

can be “rotated” to an arbitrary orientation using a matrix, much like ordinary

vector quantities are rotated in computer graphics. Though the matrix required

is more complicated – a sparse NxN matrix[12], where N is the number of co-

efficients used in the SH representation – this property allows precomputed data

to be transformed to move an object around the scene in different orientations,

rather than requiring a recalculation of the SH projection.

Other potential basis functions, such as Haar Wavelets, do not exhibit this

property. The resulting systems, such as Sun and Mukherjee’s work with Pre-

computed Radiance Transfer for glossy objects, permit only transformations such

as translation and uniform scaling, greatly restricting the versatility of the result-

ing application[17]. Though not exhibited specifically in our work, this valuable

property is an important component which influenced the choice of basis functions

used for our system and for the work done by Sloan et al[15].

3.5 Shadows

Shadows are an important tool in art and Computer Graphics as a way of

expressing spatial data in a scene. While they are often computationally diffi-

cult to create using the conventional graphics pipeline, they highlight important

relationships to the viewer with respect to brightness, shape, and position.

17



3.5.1 Soft Shadowing

When rendering shadowed areas, there is an important division in the quality

of shadows which are produced by different techniques. Hard shadows are those

produced such that the distinction between darkness and light is very abrupt – as

if light were suddenly and totally cut off from reaching beyond the edge of some

piece of occluding geometry. While these types of shadows are highly illustrative

of the shape generating the shadow, they can also look false or unsettling[1]: light

generally does not stop instantly, nor does it generally travel in the solely linear

paths that such patterns suggest.

Soft shadows often appear more natural, and are created when the amount of

light reaching around the edge of an object is eased more gradually. Physically,

the difference can be seen in an examination of the light casting the shadow.

Lights in the real world are generally not generated at a single point in space;

rather, they are illuminations of a small area: even a light bulb has a surface

with some extent in the world greater than an “infinitely small” point. The

extent of the light which casts a shadow is an important feature: as the light’s

surface is traversed, the relationship between the light and the “silhouette edge”

of a shadow casting object changes. This small but significant differential angle

causes changes in the light which makes it past an occluding object near the

edges.

The small changes in the amount of light which “reaches around” the silhouette

edges of objects forms the penumbra – the place where only part of the energy

from a light hits. The granularity between all-or-nothing lighting often makes

soft shadows appear much more natural than their crisp cousins, and is one of

18



the motivating factors for the work on our Textured PRT and Hierarchical PRT

techniques.

19



Chapter 4

Textured PRT

4.1 Introduction

Textured Precomputed Radiance Transfer represents a progression of PRT

Sampling from a more nominal per vertex basis to a much higher fidelity represen-

tation over the surface of a mesh. To frame our contributions to the projection

and storage of Precomputed Radiance Transfer coefficient vectors into texture

space, as well as the additional techniques this procedure facilitates, we will first

present an overview of the general PRT algorithm when computed in texture

space. For clarity, the precomputation and run-time steps will be divided into

discrete sections.

4.1.1 Precomputation Overview

To begin, the preprocessor accepts a set of meshes with texture coordinates

covering all the viewable triangles of the mesh, along with the size of the desired

textures. For each triangle, the preprocessing system evaluates the triangle’s ex-

20



tents in texture space, and iterates over each texel. For each texel, the object

space location is computed by interpolating over the triangle’s face in barycentric

coordinates. Using an associated normal, a vector of SH transfer coefficients is

computed, representing how that point is influenced by potential incident light.

These coefficients are stored separately in an array of textures, with each coeffi-

cient “index” being represented by a discrete texture. Finally, post-processing is

done to ensure correct evaluation of the images when texels are looked up with

linear filtering routines.

In review:

1. Select the number of SH bands to be computed, and the density of samples

to be used

2. Acquire mesh data with per-vertex texture coordinates for each face

3. Process extents of each face in texture space

4. Interpolate object space location over the face

5. Compute PRT transfer coefficient vector per texel

6. Write that texel’s coefficient vector to the texture array

7. Store one coefficient per texture, for each texel on the original face

8. Apply post-processing to the textures to eliminate potential gaps

4.1.2 Rendering Overview

To render the precomputed surface data, a mesh is loaded into memory along

with its associated coefficient textures. These textures are transferred to the

21



Graphics Processing Unit (GPU) hardware once, and stored as a two-dimensional

array texture. For each frame, the incident light at a number of sample points

on the mesh is calculated, and projected in to SH coefficients. These lighting

coefficients are encoded in a temporary one-dimensional array texture, and sent

to the GPU. The triangles of the mesh are then sent to the graphics hardware

to be rendered, along with an associated set of “contribution” factors for each

lighting sample. A fragment program is executed per pixel which is rasterized to

the screen, which finds the color by computing the “n-dimensional” dot product

of a fragment’s model coefficients (looked up in the two-dimensional texture),

and the weighted average of the lighting sample coefficients (looked up in the one

dimensional texture).

To review once more:

1. Load mesh into memory

2. Load associated texture data onto the GPU

3. For each frame, sample incident radiance over the mesh

4. Encode lighting samples into a temporary texture, and send to GPU

5. Pass the triangles of the mesh to the GPU for rendering

6. For each resulting fragment pixel, look up the textured model coefficients

7. Find the lighting coefficients, based on the contribution of each lighting

sample

8. Compute the dot product of the model transfer coefficients and lighting

coefficients.

22



4.1.3 Contributions

In addition to elucidating the method of computing, storing, and utilizing

textures to store a mesh’s transfer coefficients (as this approach is given little

coverage in other works), we present a method of coefficient storage which removes

Sloan et al’s requirement of more complex, floating point texture profiles for

model coefficient storage[15].

Furthermore, we present a technique for utilizing high quality mesh data to

compute the PRT representation over low polygon count, decimated meshes. This

technique allows lower polygon count meshes to be used to increase performance

without a substantial loss in visual quality.

Finally, we present an evolution in the storage of multiple lighting samples by

encoding them in a texture, rather than passing a single sample for the entire

mesh as a simple uniform array of floating point values.

These specific additions are found in the computation of the transfer vectors

over the surface of the mesh, the post-processing of the texture data, the loading

of a fragment’s model coefficients from the two-dimensional array texture, and

the transfer of lighting sample coefficients to the GPU.

23



4.2 Precomputation

4.2.1 Band and Sample selection

As described earlier (3.4.1), the number of bands used to project a function

into Spherical Harmonics has a direct effect on the quality of the resulting recon-

struction. At this stage of the procomputation pipeline, band selection influences

how many textures will be allocated (as one texture is required for each SH

coefficient), and how many basis functions will be evaluated for each sampling

direction.

Also as described in the preceding section (3.3), a Monte Carlo sampling system

is required to project mesh characteristics into Spherical Harmonics. At this

stage, we construct a “sampler,” to the square of a user specified density, using

the stratified sampling technique presented earlier to generate both spherical and

Cartesian coordinates per sample. For every sample constructed this way, the

associated coefficients of there Spherical Harmonic basis functions are computed

in that sample’s direction. These coefficients are stored along with the sample,

and used later to “add” that sample’s value to the final SH representation at a

particular texel.

4.2.2 Mesh Acquisition

Once all samples are prepared, meshes requested by the user are read in from

the disk and stored in memory as part of a “scene.” This scene representation

allows multiple meshes to be processed relative to each other, rather than in

isolation, if desired (the usefulness of this will be presented later in the work). For

24



each object in the scene, a number of textures are allocated and zeroed, based on

the number of bands requested earlier. The size of these textures is likewise a user

defined parameter, though to integrate nicely into with conventional Computer

Graphics hardware, they should be sized to powers of two. All meshes in the

scene, if more than one mesh is being processed, are computed at the same

number of bands and texture size.

At this stage, if a more geometrically complex set of surface normals are avail-

able in a normal map associated with any mesh being loaded, these are loaded as

a texture and associated with the corresponding mesh. These normals, if avail-

able, are used later when computing the normal at a texel location on a triangle’s

face.

4.2.3 Face Processing

For each mesh, all its faces are iterated through. The texture space coordinates

of each face’s vertices are used to find the triangle’s extents in texture space,

given the resolution of the textures being produced. Once these locations are

determined, the texels which represent that triangle are found using a barycentric

method which finds if a texel position is inside or outside of the determined

triangle extents. Once found, each texel is processed individually to find its

object space position as well as its associated normal.

4.2.4 Texel Processing

As the texels under consideration are along the planar face of the triangle in

object space, the position of applying that texel to the face of that triangle can be

25



determined using again using barycentric coordinates. Barycentric coordinates

represent a position over the face of the triangle as a linear combination of the

three vertices which define the triangle[13]. By applying those same weights to

the normals which are associated with each triangle vertex, the normal which

closely represents that point on the triangle can also be found. This normal,

however, will simply be a “smooth” progression of the three vertex normals over

the surface of the face, and not represent any more complex geometric detail.

During this step, if a more accurate geometric representation of the mesh is

available, we can use the surface normal associated with that representation in-

stead. This approach closely mirrors that taken when normal mapping surfaces to

represent more complex geometry that is actually being rendered [1]. Therefore,

if we have a normal map available which contains more complex surface normals,

use lookup inside that mapping to find the surface normal at a point on the face,

rather than interpolating the normal. This approach gives a more detailed final

rendering with simplified meshes than is possible by a simple interpolation of

the vertex normals. Furthermore, because we are operating on a texel already

parameterized with texture coordinates, the location to look up in the normal

map are already computed.

4.2.5 Coefficient Computation

Now that the position, normal, and texel coordinates are known, we compute

the Spherical Harmonic representation of the point’s transfer function – how that

point receives light from the surrounding environment. As touched on earlier in

(3.1), the object’s surface properties (the BRDF) and visibility need to be taken

into account for each potential direction of the surrounding sphere. Utilizing

26



the set of Monte Carlo samples, we perform the SH projection into a temporary

vector of transfer coefficients.

For every sample direction in the sampler, we cast a ray out from the target

position into the scene. If the ray does not strike any objects, we add that sample’s

SH basis function coefficients to our temporary vector of transfer coefficients. This

ray cast takes into account the “geometry” term of the Rendering Equation which

limits how certain lighting directions may or may not contact the surface. This

“occlusion” of certain lighting contribution directions is what gives the effect of

soft self-shadows over the surface of the mesh.

As of yet, however, we have not taken into account the BRDF of the surface

relative to the direction being sampled. To do so, in addition to a binary “on-

off” contribution change from the ray casting procedure, we weight each sample’s

basis functions by the cosine of the angle between the sample direction and the

surface normal, clamped to zero. This simple but effective model for the BRDF,

also known as the Lambert’s Cosine Law, weights the effect of potential lighting

contacting the surface “obliquely” lower than lighting directions which contact

the surface “straight on.”

4.2.6 Coefficient Storage

Once all directions in the Monte Carlo sample have been evaluated at the

position corresponding to a given texel, the coefficients must be stored in the

textures to await post-processing. Because the texture space coordinates are

already available, we compute the texel location (given the established texture

27



resolution), and store each coefficient of the temporary transfer vector into a the

texture at its corresponding index.

4.2.7 Texture Post-Processing

Once the transfer coefficients have been calculated across all faces for a mesh

in the scene and stored in their corresponding textures, a “push-pull” algorithm

is applied to smooth the edges of triangle boundaries in texture space. This

procedure is necessary to avoid sampling errors with linear texture filtering – four

texels around a desired area may be sampled, and sharp divisions between areas

with valid data and areas with no data can generate unsightly discontinuities in

the final rendering.

To perform the “push-pull,” each texture is considered, and the texels which

have been written to are marked. If a texel has no been written to, but one or more

neighbors of the texel have, those surrounding texel values are averaged and used

to color the unwritten texel. This simple algorithm eliminates discontinuities on

the edges of triangle patches in texture space, without compromising the validity

of data at those points – due to averaging, the texel should have approximately

the same value when linearly filtered as it would otherwise receive. The case of

linear filtering including “black texels,” or texels which have no valid value, in

the final lookup process, is ameliorated.

After the “push-pull” procedure ensures that no errant texels influence the

results via linear filtering, the range of the coefficients is compressed and shifted

into the standard range of conventional textures: [0, 1]. For each texture being

produced, the range of values which occurs in that texture is found by iterating

28



Figure 4.1: Textured coefficient storage over a sphere, at band four

Figure 4.2: Textured coefficient storage over a sphere, at band twenty
three

29



over all texels in the image. Once the minimum and maximum values are found,

every value in the texture is transformed by the formula:

T =
To −min
max−min

=
To −min
range

where To is the original value at a given texel and T is the final transformed

value.

To facilitate the reconstruction of actual values during rendering (described be-

low), the minimum and maximum values used to perform the range compression

on each texture are stored in a separate file. These range compression scheme

removes the dependence of performing textured PRT on advanced, floating point

GPU profiles, which are required in Sloan et al’s work[15], and minimizes diffi-

culties in pushing the texture data in to the Graphics pipeline. Additionally, this

technique permits the viewing of each separate coefficient texture as a simple im-

age. This allowance has proved to be an invaluable tool for visualizing the data

which is generated over a mesh with the naked eye, allowing a more intuitive

view for debugging purposes. Additionally, this simple storage mechanism may

open up more image based techniques, such as smoothing, sharpening, or filling,

for future development.

A necessary note about the range compression technique used to confine the

data to the [0, 1] range is the potential for resolution loss. Converting the coef-

ficient data from normal, thirty-two bit floating point data into eight bit texture

data in a small range represents a significant potential limitation on the values

which can be reconstructed. In practice however, the floating point values dis-

played before compression were found during experimentation to rarely extend

beyond the range of [-4, 4]. Furthermore, the discretization of the Monte Carlo

30



sampling technique used, coupled with the relative smoothness of most surfaces,

generated data without a tremendous number of steps. These two observed con-

ditions serve to make the compression to the standard [0, 1] texture range more

palatable.

As an additional anecdote about the suitability of the [0, 1] range compression,

the use of thirty-two bit textures was considered and used briefly in testing. Dur-

ing this brief period, significant visual discrepancies were not observed compared

to the range compressed data, the direct viewing of the textures was impossible

due to the non-standard image format, and the texture data was four times as

large due to the increased number of bits per texel. We therefore consider this

scaling technique to be quite useful to the goals of visual and performance goals

of textured PRT.

4.2.8 Further Preprocessing Considerations

The above procedure continues for all meshes, until all the faces in the scene

have been processed, and their corresponding texels written. After the post-

processing step, these textures are written out to disk, named corresponding to

the mesh which they were generated to cover. The additional scaling data for

the texture coefficients required to “inflate” them back into their normal range is

also written out, named likewise based on the mesh the associated textures are

covering.

An additional important consideration of this preprocessing procedure is the

strict separability of all face processing tasks and texel processing tasks. Once the

scene has been set up and the textures allocated, no components of this algorithm

31



require data from any other part, which makes the system respond very well to

extremely simple parallelization strategies. In our evaluations, we have seen a

linear decrease in precomputation time with the number of processors allocated

to the task.

4.3 Rendering

4.3.1 Basic Renderer Setup

In a process mirroring the procedures used in the preprocessing system, the

number of Spherical Harmonic bands, sampling density, and possible meshes are

selected when the application is initialized. The number of bands being used for

rendering should match the number of bands utilized to preprocess the mesh,

though the sampling density may vary to permit more granularity in balancing

run-time performance with representation quality.

4.3.2 Texture Setup

During the loading of each mesh requested, the associated texture images are

loaded into memory, for transfer to the GPU. To simplify this process, a two-

dimensional array texture is pre-allocated without data and filled incrementally

with each texture. The size requested from the graphics hardware is effectively

the product of the images’ width and height, multiplied by the number of bands

being used. As each texture is loaded from disk, it is passed as a array of unsigned

bytes to the graphics hardware, used to set a particular index of the texture

array, and de-allocated. When all textures have been loaded, the texture handle

received from the graphics hardware is stored with the mesh, and used to refer

32



to the “stack” of texture images now resident on the GPU. This data is not

transferred to the graphics hardware again over the lifetime of the application

unless GPU texture memory becomes insufficient to store the data required by

the application.

In addition to the array of images loaded on to the graphics hardware, the

scaling factors used to “inflate” the range compressed data are loaded from a file

corresponding to the mesh being prepared. A [min, max] pair is loaded for each

texture, and stored in an array with the mesh – prior to rendering that mesh,

those values will be uploaded to the GPU as a simple uniform. While this transfer

is generally required every frame, the amount of data involved (two floating point

values per texture) does not represent a significant amount of data, and causes

no performance difficulties.

4.3.3 Incident Radiance Sample Points

Incident Radiance sample points are locations in the space surrounding a mesh

where the Spherical Harmonic projection of actual incident lighting will be com-

puted each frame. Recall from 3.1 that these are the second spherical repre-

sentation (in addition to the surface receiving properties) needed to solve the

Rendering Equation and find the shading at a given point on the surface. While

a single incident lighting sample can adequately represent the lighting over a sur-

face due to an infinitely distant source, more samples are needed to capture local

variation in light over a mesh. More disperse samples near the mesh capture the

differing angles between the mesh and the scene light sources in different regions

of space, leading to more realistic variation. A single sample point can only cap-

33



ture one such angle, and thus does not adequately represent large meshes with

relatively close lights.

As computing the SH projection of incident lighting at every surface point

over every mesh in the scene would be impractical given even a modest number

of vertices, a predetermined number of samples are established near each mesh to

represent the actual illumination per frame over that surface. For simplicity, our

system generally selects sample points at both extremes of a mesh’s x, y, and z

coordinates. While this sampling configuration is not ideal for all surfaces, it pro-

vides good results for many meshes which exhibit a generally convex, “balanced”

structure.

4.3.4 Vertex Preparation

After locating lighting sample points near (or on) the surface of a mesh, each

vertex is assigned a corresponding “contribution” from each lighting sample.

These “contribution” factors are based on the minimal surface distance required

to get from the vertex to the sample point. By inverting the ratio of the dis-

tance required to get to a sample (Ds) to the total distance to all samples (Dt),

a variation scheme which maximizes the effect of nearby samples to vertices is

created.

Cs =
Ds

Dt

To normalize these contribution factors, each contribution set is summed up

for a vertex, and each contribution is divided by the total of all contributions

at that vertex. These contribution factors are then stored at the vertex, and

34



passed as “attributes” of that point during rendering, in the same manner that

the texture coordinates are passed to the GPU with the vertex’s position.

At run-time, these contribution factors are used to scale each lighting sample

near the mesh, essentially interpolating the lighting representation over the sur-

face to a particular point. This allows local lighting variation over the surface

for light sources which have a perceivable angular difference between regions of

the mesh – essentially lights which are sufficiently close to the mesh to strike the

surface at different incident angles, depending on which region.

4.3.5 Light Sampling

Once the light samples have been placed and the per-vertex contributions of

those samples has been calculated, the mesh is finally ready to be rendered. For

each frame, it is positioned in the scene – either statically, or subject to an ani-

mation loop which continually repositions the mesh over time. Once the location

is determined, the incident radiance can be sampled at the locations established

earlier. For each sample, a coefficient vector is initialized corresponding to the

number of bands being used in the current Spherical Harmonic representation.

A single vector is then constructed from the sample point to each light and nor-

malized to unit length. In a manner reminiscent of the construction of the Monte

Carlo sampler in 3.3, the spherical coordinates (θ, φ) are found which correspond

to the x, y, and z components of the new vector pointing towards the light.

Again akin to the Monte Carlo sampler developed earlier, the (θ, φ) coordinates

are used to evaluate the corresponding Spherical Harmonic basis functions in the

direction of the “light vector.” These coefficients are multiplied by π to represent

35



an attenuated cosine lobe in the direction of the light. This operation is performed

for each light in the scene, and the coefficient are summed up independently for

each band and basis function to give the final Spherical light representation at

that point in space, from all lights in the scene.

4.3.6 Lighting Coefficient Transfer

After calculating the lighting representations for each sample point near a

particular mesh, the lighting coefficients need to be transferred to the GPU before

they can be used to evaluate the surface shading along a fragment. While previous

work passed a single lighting sample’s coefficient vector as a uniform array (similar

to how our work passes texture scaling factors)[15], this approach can become

unwieldy when utilizing a larger number of lighting samples. Instead, we package

our lighting samples into a small, temporary one-dimensional array texture. The

texture is sized to be NxS units in size, where N is the number of Spherical

Harmonic coefficients being used, and S is the number of lighting sample points

being evaluated near the mesh. Similar to the assembly of the two dimensional

array texture discussed previously, we allocate this texture once, and simply

update sections of it each frame if the lighting may have changed at that sample

point.

This method of transferring lighting sample data to the GPU is more compu-

tationally challenging than the more basic approach of passing a simple uniform

array to the GPU per mesh, and may invoke small performance penalties as the

GPU binds the texture into a texture unit. However, given the relatively small

number of lighting samples being used in relation to the number of vertices and

faces being rendered, the amortized cost of assembling and transferring the light-

36



ing samples once each frame has not become a performance bottleneck. As such,

we consider the greater flexibility of our method in representing multiple lighting

sample locations to the GPU, in contrast with a single sample, be worth the slight

performance cost.

4.3.7 Rendering the Triangles

Vertex Data

Once the per-mesh data has been transferred (the lighting samples texture)

and activated (the model coefficient texture array), each triangle of the mesh

may be passed to the GPU for rendering. Transformations may be applied to the

positions of the geometric primitives, which are faithfully carried out by a simple

vertex shader. Additional data must be passed per vertex, however, to give the

fragment program enough data to find the correct model and lighting coefficients.

For any vertex, the following data is required:

• Vertex Position

• Texture Coordinates

• The contribution of each light sample to that vertex

Notably absent as a requirement is the per-vertex normal which is usually a

stable of shading calculations. Because of the effort put in during the precom-

putation step – particularly with respect to our work using models with more

complex surface detail available – all of the usefulness of the normal has been

“baked in” to the texture data, and is not required explicitly.

37



All vertex attributes are passed through to the fragment shader subject to

interpolation over a triangle’s face. The vertex position handles the additional

task of transforming the position from object space to world space by utilizing

the current Model-View-Projection matrix stack.

Fragment Shading

Once the vertex shader is done transforming the positions of the vertices, each

triangle is rasterized to the screen and a fragment program is called to shade

each pixel. This fragment shader is the element which brings together a point

on the mesh’s surface, the textured model coefficients, and the sampled lighting

coefficients to create the color which is seen on the screen. To recap the origins

of this data, texture coordinates and lighting contributions come from the vertex

shader and are interpolated over a triangle’s face, the lighting sample coefficients

from the temporary one-dimensional lighting texture, and the model coefficients

from the two-dimensional texture loaded for the mesh.

As described in 3.1, the color seen on the surface is the integral of the product

of two spherical representations. And as elaborated in 3.4.3, the integral of the

product of two functions projected into Spherical Harmonics is simply the sum of

the product of their coefficient vectors. So, to bring these elements together, we

need to look up the model coefficients from the two-dimensional texture defined

over the surface of the mesh, and interpolate the lighting samples to get the

lighting at our current point on the surface.

The first element, the model coefficients, are nearly trivial: we use the coeffi-

cient index to get a specific “depth” out of the two-dimensional texture array, and

38



use the texture coordinates (u, v) to look up the value at that point on the mesh,

subject to linear smoothing over the surrounding four texels. To “re-inflate” the

resulting [0, 1] value acquired from the texture to the real range, we the [min,

max] scaling values associated with that texture. Because the [0, 1] range can

be thought of as a parametric variable ranging from the real [min, max] scale,

we can use the standard library functions provided by most shading languages to

interpolate between the minimum and maximum value.

Cg : Cm = lerp(min,max, compressed)

GLSL : Cm = mix(min,max, compressed)

These two functions quickly and easily linearly interpolate between the min-

imum and maximum values found in the texture before compression, and are

generally implemented in hardware on modern GPUs.

The lighting coefficients are slightly more complicated, but not significantly so:

each row of the lighting texture is processed as a separate lighting sample, and

all the rows are weighted by the “contribution” scaling factor associated with

that vertex for that lighting sample. To find the coefficient at a given index, a

column of coefficients is examined – all these coefficients are of the same Spherical

Harmonic basis function, just of each different sample location. The sum of these

coefficients, each scaled by that light’s contribution on the point in question, and

normalized by the total contribution added, is used as the interpolated light value

from all samples at that point on the mesh’s surface, as:

Ln =

∑samples
i=0 contrib[i]× tex(n, i)∑samples

i=0 contrib[i]

39



Now that we can acquire all the model and lighting coefficients necessary at a

point, the only step left is to combine them: starting with a color initialized to

black, we loop from zero to the number of Spherical Harmonic coefficients being

used, take the product of the model coefficient and the lighting coefficient at that

index, and add that to the color. After all the coefficients have been processed,

we write that color, along with a full opacity alpha channel, to the framebuffer:

Color =
l2∑

i=0

modeli × lighti

4.3.8 Rendering Addendums

While the above description of the shading procedure is complete in all essential

parts, there are two other elements of concern which have some influence on the

final shading calculation.

Material Properties

While the diffuse color of a material may be included and “baked in” to the

precomputation step, we have found it much more useful to calculate effects

of potential lighting on the initial surface in the absence of the specific surface

color, and apply this color later by multiplying it by the summation produced

from model and lighting coefficients. While this does not capture the effects of

some more interesting BRDFs, we have found it very useful for utilizing a single

pre-processed mesh multiple times with arbitrary run-time coloration. If more

complex BRDFs need to be represented, those properties should be “baked in”

to the texture during precomputation as described earlier.

40



Gibbs’ Phenomenon

A common signal processing problem known as “Gibbs’ Phenomenon” occurs

when functions with discontinuities (like our synthetic lights) are projected into

discrete representations meant to represent continuous functions, like Spherical

Harmonics[14]. As the number of bands increases, the resulting representation

error can cause artifacts around areas of discontinuities, such as when the bright

lights go to sudden black on the back surfaces of objects. In practice for Computer

Graphics applications, this causes “Ringing” artifacts, in which areas on the

shadowed side of a bright object exhibit rings of light. These artifacts are a large

problem because they are often obvious – the human eye is good at spotting

discontinuities, particularly when it comes to objects which should be in total

shadow.

Figure 4.3: Unwindowed and windowed integration, showing Gibbs’
Phenomenon

To combat Gibbs’ Phenomenon, we utilize a technique called windowing which

progressively reduces the impact of higher order Spherical Harmonic basis func-

tions on the final results. In our work, we follow Sloan et al in utilizing a tra-

ditional signal processing window – the“Hann” window, or “Hanning Function.”

This window progressively reduces the weight given to higher order coefficients

41



using a cosine curve, normalized to the number of total bands used in the repre-

sentation. By incorporating this into the summation loop in the fragment shader,

most of the distinctly effected of parts of the surface are calmed to a much more

appropriate color.

4.4 Textured PRT Review

In this chapter, we have presented our techniques for generating and rendering

densely sampled Precomputed Radiance Transfer data over the surface of a mesh.

We have highlighted our specific contributions in the areas of:

1. Texture storage normalization, via range compression

2. Complex surface detail utilization, with normal mapped surface data

3. Textured transfer of lighting samples

These factors increase the utility of Precomputed Radiance Transfer tech-

niques for real-time applications by decreasing the performance hardships though

lower texture sizes (1), improving visual reconstruction by allowing highly de-

tailed PRT transfer data over the surfaces of low polygon meshes (2) and permit-

ting local light variation over mesh surfaces when using GPU textured rendering

methods (3).

42



Figure 4.4: Tyra rendered with a ground plane, receiving shadows

43



Figure 4.5: 500 face bunny rendered with PRT textures compared with
standard smooth shading

44



Figure 4.6: 1000 face Tyrannosaurus rendered with PRT textures with
and without baked in normal maps

45



Chapter 5

Hierarchical PRT

5.1 Introduction

Having established a basis for rendering advanced effects – namely shadows

– over the surfaces of simple geometry using textured mapped, densely sampled

data, we turn our attention to migrating the local, self-shadows seen over such

surfaces to shadows cast between objects. As described previously in Section

2.2.2, this process is often called neighborhood transfer, because it attempts to

transfer radiance information between spatially related objects. To once more

ground our contributions in an understanding of how Hierarchical PRT works,

we will first provide a general overview of the algorithm.

5.1.1 Hierarchical PRT Overview

After loading the necessary run-time components of the previous Textured

PRT system, we establish an “ordering” of the scene which divides it into pieces.

First, we attempt identify scene elements which exhibit spatial coherence, and

46



are likely candidates for further clustering. For each of these groups, a “top

level” scene element is generated which will form the root node of a tree of scene

elements. Once these general areas are established, we group geometry inside

these nodes hierarchically on the basis that objects which are close to each other

may be treated as a uniform object by more distant geometry. After these trees

are established, for each frame, we attempt to find the “filtering” effect that each

node has on its neighbors as light passes through the tree. Using these filter

representations, the actual incident light at mesh sample points is masked off

in directions corresponding to cast shadows. The resulting, shadowed incident

lighting is used to light that surface.

Again, in review:

1. Load Textured PRT data normally

2. Identify “top level” node areas

3. Build “scene node” trees using the top level nodes as roots

4. Find the “filtering” effect that scene nodes at a particular tree level have

on their neighbors

5. Mask off elements of the incident lighting found at a mesh’s sample points

using “filters”

6. Pass the incident lighting and render as in normal Textured PRT

5.1.2 Contributions

Rather than attempting to precompute models which represent the way that

objects in a scene cast shadows onto their neighbors, our work develops the

47



concept of a hierarchy of scene nodes which limits the extent of visibility testing.

While the idea of a “scene graph” or spatial subdivision scheme is well established

in Real-time Graphics[1], we believe that its applicability to shadowing PRT

representations is a new way of harnessing tree-like scene structure.

With that in mind, we contribute the use of a tree-like hierarchy of objects

and bounding volumes, the restriction of shadowing checks for establishing “fil-

ter” functions, and the application of windowing techniques to create a stable

“masking” function, to the area of Precomputed Radiance Transfer.

5.1.3 Hierarchy Establishment

To begin our system, we require as input a set of meshes which have been

preprocessed with Textured PRT techniques, a number of Spherical Harmonic

bands to establish representation fineness, and a Monte Carlo sampler to project

functions into Spherical Harmonics. As the rational and techniques underlying

these elements have been presented elsewhere in this document, we will refrain

from expounding upon them again here.

Once the meshes of a scene have been read in, the scene needs to be searched

for spatial groupings between elements which are relatively close together. The

rational for this decision is shadowing effects, particularly those generated from

light sources that are relatively far away, are much more likely to result from

an interaction between two elements close to either other than those which are

far apart. Using this assumption, we create “top level” nodes for each grouping,

which will form the basis of a tree at that location. The “top level” node forms

48



the root of the new “shadowing hierarchy,” and is used to cast shadows down

though its branches.

The problem of locating which nodes are close to each other may be solved

using methods from clustering or computational geometry. In our current imple-

mentation, however, the application programmer loading the models specifies the

relationships between scene nodes, keeping in mind location, size, and expected

animation motion. Updating the system to automate this step and include run-

time checks for hierarchy elements which have become degenerate is an important

area of future work. However, because these updates just attempt to keep the

tree coherent, we see them as somewhat orthogonal to the original problem of

passing shadowing data through the tree itself and do not attempt to solve it

more completely here.

5.1.4 Node Types

In the Hierarchy, nodes in the tree may be of two types: a “Mesh Node” or a

“Composite Node.” As named, mesh nodes are scene elements which represent

actual geometry. These leaf nodes possess transfer coefficient textures, geometry,

lighting sample points, filtering coefficients, and boundary extents. Composite

nodes, on the other hand, possess only lighting sample points, filter coefficients,

children, and bounding extents. To arrange the tree-like structure, composite

nodes may have as children either mesh nodes or more composite nodes. Further,

both node types may exist at different levels of the tree simultaneously, permitting

shadows cast from both composite nodes and mesh nodes to affect each other

directly.

49



5.1.5 Establishing Node Filtering

To first establish a straight forward intuition about how the “filtering” of scene

nodes should work, the reader might consider a natural example of lighting the

floor of a dense rainforest. While the observer on the ground is clearly sheltered

from the brilliant equatorial sun, no one tree removes all the light which would

be seen in the trees absence, nor does any one tree remove light from all the sur-

rounding directions it could reach the observer from. Rather, it is the interlocking

combination of all the arboreal occlusion surrounding the observer which “filters”

out light from different angles. Reverting back to Computer Science, we could

say that we “mask off” certain representative areas of the lighting representation

where we want to remove the values.

To shadow objects progressively down the node hierarchy, we perform an opera-

tion similar to the progressive assembly of a bitmask – we start with a completely

“on” representation, which removes nothing when “and-ed” with a lighting repre-

sentation, and then zero out components corresponding to regions which should

receive no light from the world due to occlusions. When this mask is combined

with the actual incident light computed at one of the sample points discussed

Section 4.3.3, the mask “lets through” only lighting directions which are not

shadowed.

To migrate this approach to the Spherical Harmonic representation we use for

spherical functions, of which shadowing is now one, we first must construct a

filter which has “all bits on,” and filters out no light. Using our set of Monte

Carlo sampling directions, we simply add up all the contributions present into

a Spherical Harmonic coefficient vector. This is in contrast to its usage before,

50



where we cast rays out along the sample directions to determine occlusions. While

that approach will be used later, the initial unshadowed representation is of simple

unit intensity over the entire sphere.

5.1.6 Moving Filtering Down the Tree

Once the unit basis for the “filter” is established, we traverse our way down

the tree. At the next level down, we attempt to find out how much light is

“removed” from the unit representation. We establish this by performing roughly

the opposite of the calculation done earlier in preprocessing PRT meshes – for

each object, we cast rays out along the set of Monte Carlo sampling directions.

If a collision with a scene node at the same level of the tree is detected, we

subtract that direction’s corresponding Spherical Harmonic coefficients from the

parent’s filter, and store the resulting coefficient vector with that node in the tree.

Progressively, these filters represent how much total shadow there is affecting a

particular node and all of its children for a static scene.

Obviously, the tree-walking filtering goes beyond the first level in the tree. After

all filters are computed among a node’s children, the same procedure is invoked on

all sub-nodes of those elements. This recursive darkening of the filtering function

continues, as more and more shadowing is accumulated, until the process hits an

actual mesh. As mesh nodes can only be leaves in the tree, the process stops.

This method has been utilized to shadow trees of relatively shallow depth suc-

cessfully without performance penalties relative to the depth of the tree. Con-

cern does exist over the stability of the Spherical Harmonic representation in

excessively deep trees – extremely high values in some small areas may cause

51



more artifacting in reconstruction than windowing techniques can reliably com-

bat. The problems associated with sharp jumps in the projected representations

is discussed in Section 4.3.8.

5.1.7 Combining Filtering with Lighting

After all tree-walking has been performed to establish the spherical shadowing

function at each node in the tree, the actual incident lighting is calculated at each

mesh node’s sample points. Before these spherical lighting samples are transferred

to the GPU and used to light the mesh as described in Section 4.3.6, the portions

which are in shadow must be removed. We took a number of different approaches

to subtracting lighting from the initial incident representation, and the ways in

which they fail may be informative to the reader in understanding why we settled

on the “product masking” operation which we contribute.

Subtraction

An obvious approach to removing lighting from the representation is to simply

subtract the total filtering representation from the total lighting representation.

This approach actually gives relatively smooth, stable results in simple cases, but

tends to generate very unbelievable shadows. Because the filter representation is

based in Spherical Harmonics, the areas which tend to get “blocked out” by other

geometry tends to become nicely circular. When one of these representations is

subtracted from another, the result is a large, black circle over the receiving

object. Again, while this may sound like a desirable trait, the shadow tends to

appear far in advance of the “casting” object, without any softness or smoothed

edge. The penumbra of a casting object tends to remove even bright light, before

52



the shadow casting object has actually interposed itself between the light and the

shadowed recipient.

Spherical Harmonic Products

As an alternative to direct subtraction, another approach we took in developing

the filtering procedure was to multiply the incident lighting sample coefficients

with the filtering function. The filtering function, which only has darkened “low

value” areas which should be in shadow, remains at a relatively unit scale over the

rest of the sphere. Mathematical intuition, then, suggests that for non-shadowed

areas the product of the two representations will be the analog of “multiplying

by 1,” preserving the original value. Concordantly, intuition suggests that the

reverse should also be true – “multiplying by zero,” will erase any value which

was there.

Unfortunately, this approach fails as well. Spherical Harmonics, do not neces-

sarily have “zeroed” coefficients in areas where they are black. Instead, the in-

tegration procedure explained earlier utilizes many different bands of coefficients

to influence the final value at a particular point on the spherical representation.

While some of areas may genuinely be zero or “one,” much of the time values

close to those are the result of a complex interaction between Spherical Harmonic

bands. While this relationship is just fine for integration product utilization of

the type discussed earlier, computing the product of the filtering function and the

lighting function tends to “turn on” errant parts of the lighting representation

on the back of the object. Regions which were black due to a complex balance

of bands become lit when subjected to a representation which is generally quite

bright, absent a few locations: the filtering function.

53



Additionally, the Spherical Harmonic product has more severe difficulties when

more occluders are added to the tree; the combinations of relatively high fre-

quency, discontinuous shadows on different areas of the sphere at the same time

exacerbates the mutation of formerly dark parts of the incident lighting repre-

sentation, leading to a highly “unstable” lighting function which tends to warp

dramatically whenever something in the scene moves.

Spherical Harmonic Product Masking

Finally, we have the approach we developed to solve the problem of instability

in the Spherical Harmonic products. Realizing that comparatively bright regions

of the shadowing function were strongly effecting otherwise undetectable items

in the lighting function, we employ a smoothing tool from earlier to lessen the

impact of these bands on the final lighting coefficients which are generated – the

Hanning function.

Ordinarily, the Spherical Harmonic product of functions f and g, when com-

puted in the frequency (coefficient) domain, is generated using:

Ck =
l2∑
i,j

Γijkfigj

to find the coefficient Ck, for each kth coefficient desired (Γijk is a triple

product tensor of three basis functions, and is constant). Observing this, we can

see that the ith and jth coefficients of the respective functions will have just as

much impact on the low band coefficients of the resulting product as the existing

low band coefficients. As these low bands represent the most dramatic, course

changes in the value of the function, the product rule in the frequency domain

gives high bands potentially disproportionate power over the final representation,

54



particularly if those high i and j coefficients represent dramatic changes in the

function – like sudden, discontinuous, highly negative occlusion data.

By applying the Hanning function to this summation process, we can convert

the equation to the much more stable form of:

Ck =
l2∑
i,j

Γijkω(i, l)fiω(j, l)gj

where ω(i, l) is the Hanning function evaluated at coefficient index i, over possible

total bands l. This formulation is used to combine the filter representation and

lighting representation in a stable manner. It should be noted, however, that this

stabilization comes at a cost: it is more difficult to preserve some high frequency

data over multiplication, because of the lower overall impact of the higher band

Spherical Harmonic basis functions.

5.2 Transfer

Once the filter has been successfully applied to the incident lighting represen-

tation, the result can be encoded into the temporary textures presented in the

previous section in exactly the same manner. Similarly, after the mask is ap-

plied, all the rendering functions for the textured data function exactly as they

did before.

5.3 Filter Caching

In some cases, it is possible that some filtering data can be preserved across

frames. This is a desirable property, as the ray casting procedure used to find

55



if a tree node is occluded by its neighbors can be an expensive operation – even

when placed in the hierarchy which dramatically limits the number of nodes in

the scene is has to be checked against. While the idea of caching some scene data

to avoid repeated calculations is certainly not new, we mention this approach’s

amenability to it as a merit of the method.

In order to provide simple caching services, the run-time system includes in

the representations of composite and mesh nodes additional data about their

“dirtiness.” A mesh node propagates dirtiness when it is translated in the scene.

Upon translation, the mesh node informs its parent about the move, and then

waits to be recalculated. If the mesh occurs on a level in a composite node with

any siblings, they will also have to be recalculated (as the translation may have

affected their occlusion). Objects further in the tree, however, may not have to

update their occlusion information. If the objects contained low in the tree are

treated as a simple “point mass,” or bounding volume, and the move does not

cause that bounding volume to be modified, then the local variation will not cause

any filtering changes further up the tree. This property preserves the filtering

representations already established higher up, and allows them to be refined only

at the smallest level necessary, rather than throughout the entire tree.

Though the assumption that sub nodes can be treated as simple bounding

volumes may lead to some inaccuracies, it can also lead to magnificent speed

increases. We leave it for other developers to decide if it is more important to

have very precise occlusions contributed from sub nodes, or to have fast, “blob”

like shadows in such cases – the hierarchical method presented here can support

either.

56



5.4 Hierarchical PRT Review

In this chapter, we have presented our techniques for representing spatially

coherent elements of a scene with a hierarchical model. Specifically, our contri-

butions are in utilizing such a hierarchy to:

1. Progressively refine “filters” representing shadow data down the hierarchy,

using the Spherical Harmonic basis

2. Generate stable products of the resulting shadow representations and the

sampled incident lighting at particular points in the tree

These factors increase the utility of Precomputed Radiance Transfer by pro-

viding a simple model for transferring shadow information across elements of a

scene. Though the results are imperfect in some cases due to the trade-offs re-

quired to eliminate low “noise” in the combination of light and shadow, we believe

it is a valuable step for assembling more spatially coherent methods utilizing PRT

rendering.

57



58



Figure 5.1: 2 Sphere Hierarchy, calculating dynamic shadows between
objects

59



60



61



Figure 5.2: Bunny Hierarchy, calculating dynamic shadows between
objects

62



Chapter 6

Results and Discussion

In this chapter, we will discuss the results which our implementations of the

Textured PRT and Hierarchical PRT generate. In light of the properties of the

Real-time domain, we will generally concentrate our analysis over three areas:

• Speed

• Storage Requirements

• Image Quality

Speed In our discussions of speed, we will focus primarily on nominal run-time

speed, from the perspective of interactive, Real-time Graphics systems. While the

thresholds for interactivity may vary with content being displayed, a minimum

of fifteen frames per second (fps) is recognized from early literature[1]. More

conventionally, however, a frame rate of sixty hertz (sixty frames per second) is

the targeted rate of most Real-time Graphics applications[13]. We analyze the

efficacy and scalability of our contributions with respect to this primary goal.

63



Storage While speed is the overriding performance concern in Real-time Graph-

ics, the data sizes required to represent some elements may have a significant,

though indirect, impact on both the frame rate and system scalability with re-

spect to video memory, hard disk space, and distribution bandwidth. We analyze

the storage issues associated with our contributions, attempting to separate per-

formance difficulties due to storage from those due to other run-time factors.

Image Quality Finally, the quality of the final images produced is the key to

a Computer Graphics system. While it is difficult to form objective criteria to

quantify the quality of images, we use different rendering techniques as baselines

to compare the resulting images subjectively using the following criteria:

• Perceived Surface Detail

• Fine Surface Shadowing Quality

• Inter-Object Shadow Quality

6.1 Testing Environment

Testing for our techniques was primarily performed on an Intel Core 2 E6420

running at 2.13 Ghz, with 2 GBs of system memory. The GPU utilized was an

NVIDIA 8800 GTS with 320 MBs on-board memory and 96 stream processing

units. To interact with the GPU, we use OpenGL 3.2 with GLSL 1.5.

We have also confirmed that these techniques run reasonably on lower-spec

graphics hardware, such as a set of NVIDIA 8400 GSs (down to a mere 16 stream

processors), but we do not present experimental data from these configurations.

64



6.2 Textured PRT

6.2.1 Comparison Algorithms

To analyze the efficiency of the presented Textured PRT algorithm, we de-

compose the run-time complexity of four different rendering techniques:

1. Phong Shading

2. Phong Shading with Normal Map

3. Per Vertex PRT

4. Textured PRT

Using these different cases we illustrate the speed, size, and quality trade-offs

which our Textured PRT technique achieves relative to other, move conventional

procedures.

To normalize the performance of these algorithms, we implement each using a

vertex and fragment shader pair implemented in GLSL. This eliminates potential

performance differences by creating a more uniform pipeline for testing content

to flow though.

6.2.2 Test Case

To provide a simple test case which highlights lighting variations and occlu-

sions over a surface, we use a decimated, five hundred face version of the Stanford

Bunny. We draw the high-quality normal data required for normal mapping and

65



empowered Textured PRT from the full resolution, sixty nine thousand face re-

construction of the Bunny. For the PRT examples, we use five Spherical Harmonic

bands, for a total of twenty five coefficients. We preprocess such meshes using

a ten thousand element sampler as described in 3.3. For textured data, we use

512× 512 resolution images.

6.2.3 Speed

Technique Frame Rate GPU Operations CPU Operations
Phong Shading 100 19 0

Normal Mapping 100 24 0
Vertex PRT 99 1 75

Textured PRT 66 23 0

Table 6.1: Speed statistics for Textured PRT comparison

As shown in Table 6.2.3, the utilization of Textured PRT in the fragment

shader has an impact on the performance of the application, but still succeeds

in maintaining interactive rates. Because of the similarity in operation count

between the normal mapping shader and the Textured PRT shader, we believe

that the performance penalty is due the streaming of our multisampled texture

to the GPU, rather than the plurality to texture samples being used. Further

anecdotal evidence has suggested that single sampling, such as that done in our

Vertex PRT test, returns the frame rate back into the 90 fps region as well.

6.2.4 Storage

As shown in Table 6.2.4, these storage metrics reflect the amount of data re-

quired to be passed to the graphics hardware to render a mesh using the specified

66



Technique Per Mesh Data Size Per Vertex Data Size
Phong Shading 0 24

Normal Mapping 786 kb 56
Vertex PRT 0 24 (300)

Textured PRT 19.6 Mb 44

Table 6.2: Storage statistics for Textured PRT comparison

technique. The “Per Mesh” data size reflects quantities like texture data or light-

ing samples which must be utilized on a per-mesh basis. “Per Vertex” data, on

the other hand, reflects the amount data which must be passed for each vertex

of the mesh.

As shown, Textured PRT takes a large amount of memory on the GPU: we

project that our testing hardware could only hold sixteen unique representations

at a time without having to begin swapping texture data back to main memory.

While GPU memory sizes are consistently increasing – the modern generation

of GPUs have upwards of one gigabyte [11]– this level of memory consumption

represents a hurdle for Textured PRT usability.

As a result of these findings, we have investigated the compressibility of our

coefficient textures on the graphics hardware. Not enough research has been per-

formed to present definitive conclusions, but anecdotal evidence suggests that a

roughly 4:1 compression rate may be achievable without performance degradation

through the use of the “S3TC” texturing extension to the OpenGL standard[4].

Unfortunately, some artifacting can occur around areas of high signal change

when the texture is rendered – we leave this optimization of the algorithm as an

element of future work.

67



Another interesting result shown by the above data is the comparatively large

volume of data which must be transferred per vertex when using normal mapping.

Intuitively, one might assume that Textured PRT would require yet more data to

supply the “contributions” of each lighting sample, for each vertex. As our system

uses six lighting samples per object, this translates into an additional twenty four

bytes per vertex to interpolate the lighting representation alone. Surprisingly, the

normal, bi-normal, and tangent vector data required to rotate scene lights into

the “tangent space” utilized by normal mapping requires even more per vertex.

Unsurprisingly in the above results, the two interpolated methods – Phong

shading and Vertex PRT – require the least data to be sent to the graphics

hardware. In the former case, the interpolated position and normal data are

simply used to evaluate the Phong lighting equation, while the latter does an

even more straight forward interpolation of the position and color data sent per

vertex over the entire triangle.

The low data volume for per-vertex PRT here is deceptive, however – in our

implementation, the color calculated for each vertex is the result of a 25 compo-

nent dot product performed before the vertex is passed to the graphics hardware.

If the coefficients used to calculated the color passed to the graphics card are

accounted for in our analysis, then the total jumps from twenty four bytes to

three hundred bytes per vertex.

Another important consideration which reduces the effectiveness of per-vertex

PRT rendering compared with Textured PRT rendering is the preclusion of stor-

ing the geometry on the graphics card. While we have not taken that step in

this work, a standard technique in real-time rendering to utilize the GPU’s mem-

68



ory is to set up “display lists,” or “Vertex Buffer Objects”[7]. These constructs

transfer geometry and per-vertex attribute data from the application’s memory

to the GPU once, and then simply ask the GPU to use that geometry over and

over again. Because the color being interpolated between vertices in Vertex PRT

rendering is established per-frame on the CPU side – and is dependent on a

potentially changing light – it must be recalculated, resent, and re-interpolated

every time the light or geometry moves.

Textured PRT circumvents this limitation by using a storage and transfer

mechanism which, while large, defers the actual colorization (the dot product

of spherical harmonic coefficients) until the fragment shading stage. This means

that transforms can be applied to geometry, and the lighting changed, per-frame,

without requiring the retransmission of all vertex data.

6.2.5 Quality

In terms of subjective quality, we’ve found the results of our Textured PRT

technique to be the most satisfying of those in this set of methods. The following

matrix describes the virtues and issues with each of the rendering methods, in

terms of visual appearance.

Because of the nice properties which Textured PRT exhibits, in terms of

surface effects like self-shadowing and normal reconstruction, we believe that the

resulting image quality stands out from the other representations.

69



Technique Virtues Issues
Phong Shading Nice per-pixel variation of light-

ing across faces
Does not add additional surface
detail, leaving some areas feeling
very faceted on simple meshes

Normal Mapping Good approximation of complex
surface geometry

Does not capture self-shadowing
information over the model

Vertex PRT Captures self-shadowing detail,
interpolated over the mesh

Does not evaluate per-pixel, lead-
ing to the smoothing of disconti-
nuities on simple meshes

Textured PRT Recaptures surface detail and
provides self-shadowing effects

Edges of lighting representation
occasionally seem to extend a lit-
tle far

Table 6.3: Textured PRT quality comparison matrix

6.3 Hierarchical PRT

We will now turn our attention to the results produced by our Hierarchical

PRT lighting system. As this work utilizes much of the Textured PRT technique

as a basis, we will avoid reproducing the more holistic analysis covered in the pre-

vious section, and focus on the additional constraints which utilizing Hierarchical

PRT places on the system.

6.3.1 Test Cases

Test A Our most simple test case of using the Hierarchical PRT system to cast

shadows from one node to another is using a one level tree with two leaf nodes.

One mesh, a sphere, is located above (+y) the origin, while another mesh rotates

around it in the X-Z plane. A light cast from < 8, 8, 8 > causes the moving object

to occasionally pass into shadow behind the large sphere. We have used this test

cast to confirm that shadows are cast from one node to another along an equal

level of a single tree.

70



Test B A more advanced test case uses concentric rings of meshes in a “inverted

planetary” configuration. A small mesh is placed in the center of the group, at the

origin. A slightly larger mesh orbits around it. These two meshes are arranged

into a “composite node” as presented in Section 5.1.4. This composite node is in

turn orbited by a third mesh. The existing composite node and the third mesh

are assembled into a second composite node, which forms the root of the tree.

This test case demonstrates the transmission of filtering data down branches of

the tree, rather than merely over a single level. To utilize the “orbital” model,

the light is placed along the positive Z axis, and the meshes are animated to

rotate about the origin at different speeds.

6.3.2 Speed

Test Case 625 samples 2500 samples 10,000 samples
Test A 50 26 8
Test B 57 38 15

Table 6.4: Hierarchical PRT frame rate variance

An analysis comparing of performance results from Table 6.3.2 yields some

interesting results. Increased sampling density has the expected effect of slowing

the application due to an increased number of ray casts being performed, but the

variation between Test A and Test B is intriguing, given that Test B has more

objects and more complicated animation patterns. We believe that this artifact

is caused by the distances between the objects in each test case; the two meshes

in Test A are closer together, and therefore they are more likely to generate

potential collision hits. As our collision detection scheme for ray casts passes

first through a bounding volume check before assessing contact with an actual

71



face on a mesh’s surface, we believe that the performance difference is explained

by this “early culling” of rays happening more often in the Test B case than in

the Test A case.

Another interesting note about the performance of Test B is the relative inde-

pendence of the hierarchy’s performance from the number of total nodes in the

tree. Instead, as expected, the tree maintains similar performance at each step

proportional to the number of nodes at a particular level.

Another important criteria in examining the performance of the hierarchy is

the plurality of sampling locations utilized by the Textured PRT system. In Tex-

tured PRT, the addition of increased number of sample points does not pose a

significant performance impediment, due to the simplicity of sampling incident

radiance at a point in space. In contrast, finding the “filtering” representation

for each point is much more time intensive, due to the ray casting procedure

required to determine occlusion information. Removing multisampling from fil-

tering calculations significantly increases performance, but forces shadowing to

be “all or nothing” over an object. This has the no adverse effects for large ob-

jects occluding small ones, but precludes correct results for small objects casting

small shadows on to large receivers.

6.3.3 Storage

The storage of the Hierarchical PRT system is very comparable to that of the

Textured PRT system; While some additional data is necessary to maintain the

tree representation, this is a very small amount of data relative to even a single

simple mesh in the system – much less the texture data being used.

72



6.3.4 Quality

The quality and type of shadows which can be successfully cast using a Hier-

archical PRT representation leaves something to be desired. We have had decent

initial results casting shadows from large occluding objects on to small receivers,

as well as in progressively darkening the filtering representation used to shadow

leaf nodes. Unfortunately, we found that the limitations of Spherical Harmonic

representability and the aggressiveness necessary in our stabilization function for

the masking procedure causes the creation of small, crisp shadows to be very

difficult.

As a basis for comparison on shadow quality, we will use the same test cases

rendered with stencil Shadow Volumes instead. Shadow Volumes are a screen

space, stencil buffer technique which detects shadowed areas of the framebuffer by

extending the “silhouette” edges of objects when viewed from the light’s location

[10].

While the shadows generated using our Hierarchical PRT technique are reason-

able, and softer, in the case where large occluding geometry is moving between

the light and a smaller receiving object, our technique does not generate nearly

as convincing results for small occluders. We believe these poor results occur for

two reasons.

First, course incident lighting sampling, even with interpolation, cannot faith-

fully reproduce the shadowing effects granted using densely sampled representa-

tions. This becomes more apparent if we consider that in the initial Textured PRT

calculation, we calculate occlusion information at every texel. This density allows

73



Figure 6.1: Bunny Hierarchy, Hierarchical PRT vs Shadow Volumes

for relatively quick changes in occlusion, because every texel’s representation is

independent. To recreate the visually pleasing soft shadows which occur over

surfaces using our Textured PRT data, a very large number of sample points

would be required. Calculating filter data through ray casting at all of those

points would most likely result in computational intractability for most sampling

densities.

Second, we believe that the Spherical Harmonic representation used is not

amenable to representing the crisp, clear silhouettes which give effective shadow-

ing from arbitrarily shaped shadow casters. The Spherical Harmonic representa-

tion set, though robust, is arranged in very circular patterns at each coarse-ness

of basis function. Furthermore, Fourier style polynomial function reconstruc-

74



tions do not deal well with sharp discontinuities (as discussed before, in 4.3.8).

Because we often want shadow to go from light to dark very quickly – a dis-

continuity – Spherical Harmonics turn out to not a great way to represent the

necessary shadowing data. Combining these two issues has caused our resulting

shadowing data, when made stable, to be relatively coarse in comparison with

other real-time shadowing methods.

6.4 Conclusions

In this section we’ve discussed the results which we have found in our ex-

periments implementing Textured PRT and Hierarchical PRT. We are relatively

satisfied with the results we’ve gained through applying PRT techniques densely

over meshes, though some potential subjective analysis remains in determining

“optimal” textures sizes for different types of meshes.

Unfortunately, our exploration of Hierarchical PRT was less fruitful – while we

have accomplished our goals in developing a system which can carry filter data

downwards through a tree to provide occlusion information, our experiments have

encountered unforeseen weaknesses in the standard representation. Though our

system works well when the necessary “filter” function for the scene matches

nicely with the Spherical Harmonic basis, our work has discovered cases which

limits the viability of this approach.

Nevertheless, our exploratory work in Hierarchical PRT has generated soft, gen-

eral shadows over dynamic scenes in a single pass. By comparison, conventional

real-time shadowing algorithms like shadow volumes or shadow mapping often re-

75



quire a rendering pass for each light source, engendering concerns in complexity

and scalability. Though conventional shadowing approaches utilizing hardware

support, like shadow volumes, surpass the performance of our Hierarchical PRT

tests, future optimizations possible utilizing our tree-like representation may nar-

row the gap.

6.5 Future Work

6.5.1 Textured PRT

To extend our work on textured PRT, we would be interested in seeing tech-

niques which attempt to do more with high quality meshes being used to generate

texture data. While we accomplish some feature preservation and reconstruction

in this area, additional work could develop adaptive simplification techniques

which correctly match “crevices” in the model with the self-shadowing shading

variations which are possible using PRT.

6.5.2 Hierarchical PRT

We would be interested to see extensions to the Hierarchical PRT work which

either utilize a different basis function which permits a more fine grained, stable

product reprojection that we have been able to accomplish with the “masking

product” method we have presented here. Such basis functions, however, will have

to provided for the same arbitrary set of motions which Spherical Harmonics does

(ie, rotations), which other basis function sets referenced in current literature do

not.

76



Further, as mentioned in 5.1.3, we do not currently have a system which auto-

matically groups elements into trees – that process is managed by hand. Work

utilizing some adaptive clustering techniques might be able to do a better job,

particularly over the course of an application’s life, than a user can set up ahead

of time.

77



Bibliography

[1] T. Akenine-Moller, T. Moller, and E. Haines. Real-Time Rendering. AK

Peters, Ltd. Natick, MA, USA, 2002.

[2] F. Crow. Shadow algorithms for computer graphics. ACM SIGGRAPH

Computer Graphics, 11(2):242–248, 1977.

[3] CryTek. CryEngine 3 Specifications, May 2010.

[4] S. Domine. Using Texture Compression in OpenGL. NVIDIA.

[5] C. Everitt and M. Kilgard. Practical and robust stenciled shadow volumes

for hardware-accelerated rendering. NVIDIA White paper, 6, 2002.

[6] T. Heidmann. Real shadows, real time. Iris Universe, 18:28–31, 1991.

[7] C. E. John Spitzer. Using Vertex Array Range and Fences. NVIDIA, August

2000.

[8] J. Kajiya. The rendering equation. In Proceedings of the 13th annual con-

ference on Computer graphics and interactive techniques, page 150. ACM,

1986.

[9] T. Malzbender, D. Gelb, and H. Wolters. Polynomial texture maps. In

SIGGRAPH ’01: Proceedings of the 28th annual conference on Computer

78



graphics and interactive techniques, pages 519–528, New York, NY, USA,

2001. ACM.

[10] A. K. Martin Stich, Carsten Wachter. GPU Gems 3 - Efficient and Robust

Shadow Volumes, chapter 11. Addison-Wesley Professional, 2007.

[11] Newegg. Newegg desktop gpu memory amounts, June 2010.

[12] V. Schø̈nefeld. Spherical harmonics, July 2005.

[13] P. Shirley and S. Marschner. Fundamentals of Computer Graphics. AK

Peters, Ltd., 2009.

[14] P.-P. Sloan. Stupid spherical harmonics (sh) tricks. GDC 2008 Lecture,

2008.

[15] P.-P. Sloan, J. Kautz, and J. Snyder. Precomputed radiance transfer for

real-time rendering in dynamic, low-frequency lighting environments. In

SIGGRAPH ’02: Proceedings of the 29th annual conference on Computer

graphics and interactive techniques, pages 527–536, New York, NY, USA,

2002. ACM.

[16] M. Slomp, M. Oliveira, and D. Patŕıcio. A gentle introduction to precom-

puted radiance transfer. RITA, 13(2):131–160, 2006.

[17] W. Sun and A. Mukherjee. Generalized wavelet product integral for render-

ing dynamic glossy objects. In SIGGRAPH ’06: ACM SIGGRAPH 2006

Papers, pages 955–966, New York, NY, USA, 2006. ACM.

79


	List of Tables
	List of Figures
	Introduction
	Computer Graphics Foundation
	Real-time Rendering
	Precomputed Radiance Transfer

	Related Work
	Polynomial Texture Maps
	Precomputed Radiance Transfer
	PRT Basis
	Neighborhood Transfer

	Shadowing
	Shadow Volumes
	Shadow Mapping


	Background
	The Rendering Equation
	BRDF
	Monte Carlo Integration
	Spherical Harmonics
	Introduction
	Basis Functions
	Properties

	Shadows
	Soft Shadowing


	Textured PRT
	Introduction
	Precomputation Overview
	Rendering Overview
	Contributions

	Precomputation
	Band and Sample selection
	Mesh Acquisition
	Face Processing
	Texel Processing
	Coefficient Computation
	Coefficient Storage
	Texture Post-Processing
	Further Preprocessing Considerations

	Rendering
	Basic Renderer Setup
	Texture Setup
	Incident Radiance Sample Points
	Vertex Preparation
	Light Sampling
	Lighting Coefficient Transfer
	Rendering the Triangles
	Rendering Addendums

	Textured PRT Review

	Hierarchical PRT
	Introduction
	Hierarchical PRT Overview
	Contributions
	Hierarchy Establishment
	Node Types
	Establishing Node Filtering
	Moving Filtering Down the Tree
	Combining Filtering with Lighting

	Transfer
	Filter Caching
	Hierarchical PRT Review

	Results and Discussion
	Testing Environment
	Textured PRT
	Comparison Algorithms
	Test Case
	Speed
	Storage
	Quality

	Hierarchical PRT
	Test Cases
	Speed
	Storage
	Quality

	Conclusions
	Future Work
	Textured PRT
	Hierarchical PRT


	Bibliography

