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Abstract

Real-Time Visualizations of Ocean Data Collected By The NORUS Glider

Daniel Medina

Scientific visualization computer applications generate visual representations of

large and complex sets of science data. These types of applications allow sci-

entists to gain greater knowledge and insight into their data. For example, the

visualization of environmental data is of particular interest to biologists when

trying to understand how complex variables interact. Modern robotics and sen-

sors have expanded the ability to collect environmental data, thus, the size and

variety of these data-sets have likewise grown. Oftentimes, the collected data are

deposited into files and databases where they sit in their separate and unique

formats. Without easy to use visualization tools, it is difficult to understand and

interpret the information within these data-sets.

NORUS, the North America-Norway educational program, has a scientific

focus on how climate-induced changes impact the living resources and ecosys-

tems in the Arctic. In order to obtain the necessary science data, the NORUS

program utilizes the Slocum Glider, a form of Autonomous Underwater Vehicle

(AUV). This thesis aims to create a compelling, efficient, and easy to use inter-

active system for visualizing large sets of science data collected by the Slocum

Glider. This goal is obtained through the implementation of various methods

taken from scientific visualization, real time rendering, and scattered data inter-

polation. Methods include visualizations of the surrounding terrain, the ability

to map various science data to glyphs, control over color mapping, scattered data

interpolation and interactive camera control.
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Chapter 1

Introduction

The oceans are an important focus of scientific study and exploration. They

cover over 70% of the earth’s surface, are a significant source of food for a large

part of the planet, and due to the impact of global warming, are increasingly

central to predicting how our climate will evolve during the next century. An

ocean is a complex, highly interconnected envrionment. A full description of an

ocean must include not just physical characteristics, such as temperature and

currents, but chemical, biological, and even geological parameters [7].

Scientific visualization computer applications generate visual representations

of large and complex sets of science data. These types of applications allow sci-

entists to gain greater knowledge and insight into their data. For example, the

visualization of environmental data is of particular interest to biologists when

trying to understand how complex variables interact. Modern robotics and sen-

sors have expanded the ability to collect environmental data, thus, the size and

variety of these data-sets have likewise grown. Oftentimes, the collected data are

deposited into files and databases where they sit in their separate and unique

formats. Without easy to use visualization tools, it is difficult to understand and
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interpret the information within these data-sets.

NORUS, the North America-Norway educational program, has a scientific

focus on how climate-induced changes impact the living resources and ecosystems

in the Arctic. In order to obtain the necessary science data, the NORUS program

utilizes the Slocum Glider, a form of Autonomous Underwater Vehicle (AUV).

This thesis aims to create a compelling, efficient, and easy to use interactive

system for visualizing large sets of science data collected by the Slocum Glider.

This goal is obtained through the implementation of various methods taken from

scientific visualization, real-time rendering, and scattered data interpolation.

This project is an implementation of a real-time scientific visualization system

desgined to visualize ocean science data collected by the NORUS glider. The

system was written entirely in C++, using OpenGL and GLSL for graphics and

Qt for rapid development of a platform independent graphical user interface. It

allows for the real-time rendering of offline ocean data containing upwards of

250,000 measurement points across more then 20 different sensors. Within the

context of this paper, real-time or real-time rendering refers to the system’s ability

to render approximately 30 to 60 frames per second (fps).

The primary dataset available during development was from a glider deploy-

ment in a fjord of Svalbard, Norway. The glider’s mission spanned from longitude

13.3042◦ East to 16.6875◦ East and latitude 78.1042◦ North and 78.7042◦ North.

The 17 day mission began on June 30, 2009, during which time the glider collected

242,693 measurements for each of the on-board sensors.

The system uses a generic mesh loader to generate an accurate and compelling

environment. The look of the environment is obtained through the use of multi-

texturing to produce detailed terrain, a quasi-realistic ocean surface with reflec-
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tion, refaction, and specular highlighting, and simple animated clouds generated

by 3-D perlin noise. Also, various user configured scientific visualizations allow

the user to analyze the measurements taken by the glider. They include glyphs

that display the discrete data measurements and interpolated visualizations such

as isosurfaces, gradient planes, and volume slices that provide interpolated values

across continous surfaces. An interactive camera control allows the user to freely

move through the environment and a virtual glider retraces the physical glider’s

mission path. Finally, an intutive graphical user interface provides the user with

the highest possible level of customizability across the entire system.

Initial feedback from NORUS biologists working on the project conveyed en-

thusiasm for a tool that allowed them to visualize their data in a virtual envi-

ronment [1]. Many of the tools included in the system were defined and refined

through feed-back from biologists about what they would like to be able to see

and what parameters they needed to be able to control [2].

The system presented in this thesis addresses the problem of creating an

interactive underwater visualization system capable of handling very large and

diverse sets of science data collected by AUVs such as the Slocum Glider. Beyond

that, the system also provides a high level of configurability for each individual

visualization.

Chapter 2 describes previous work related to the system, concentrating pri-

marily on different methods of scattered data interpolation and underwater visu-

alization systems. Chapter 4 provides an in depth look at the primary algorithms

used by the system. These include radial basis functions, marching cubes, and

multitexturing. Chapter 3 provides an overview of the implemented system,

outlining its various components and how each one is configurable by the user.

Chapter 5 provides analysis of various visualizations generated by the system and

3



describes feedback received from the users. Chapter 6 summarizes the results of

the project and outlines future work that could be done to extend the system.

Appendix A provides a brief overview of the three exteranl libraries used by the

system.
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Chapter 2

Related Work

2.1 Underwater Scientific Visualization Systems

This section provides an overview of some of the known underwater visual-

ization systems, concentrating primarily on systems that generate visualizations

using real-time rendering.

The goal of research developed at the Naval Post Graduate School [9] was to

create an underwater virtual world that could comprehensively model all neces-

sary functional characteristics of the real world in real-time. The virutal world

was meant to provide AUV developers with the complete functionality of a sub-

merged environment in the laboratory. The virtual world needed to recreate every

aspect of the environment external to the AUV. The idea was to generate inter-

actions between software processes and vehicle hardware that comprehensively

modeled what would happen in the real world. Also, the physical behavior and

sensor interactions needed to be modeled and simulated exactly. Fulfilling each

of these requirements would hopefully produce a virutal world whose differences
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Figure 2.1: A view of the virtual world created in [9].

to the real world were transparent to the AUV’s software. In addition to the

virtual world, the project aimed to create a networked architecture that would

enable multiple world components to operate collectively in real time, and also

permit world-wide observation and collaboration.

Collaborative Ocean Visualization Environment (COVE) is a set collabora-

tive tools used to support deep-water ocean observatories. These observatories

allow hundreds of scientists from various fields to conduct experiments together,

provide real-time sensor and data access though the internet, and create a vast

archives of data [16]. COVE provides a common visual environment that cuts

across the specifics of the multiple disciplines to provide an interactive workplace

for individuals, groups, and the entire team. During its first and most extensive

depolyment, COVE was sucessfully used to create the core cabling and instru-

mentation layout for an ocean observatory. Additional features of COVE include

the generation of scientific visualizations for collected data in almost real-time

and a novel environment for planning ship routes. A view of COVE is shown in

figure 2.2.
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Figure 2.2: A view of COVE, the Collaborative Ocean Visualization
Environment .
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Figure 2.3: A visualization of an ROV mission generated by [26].

The research presented at the seventh International Conference on 3-D Web

Technology [26] was aimed at creating 3-D oceanographic data visualizations for

the web. Designed by the Monterey Bay Aquarium Research Institute (MBARI)

in 1999, the goal was to synthesize various ROV-generated data sets for visual-

ization in a common, compelling, efficient, and easy-to-use system. Integration

of the visualizations into MBARI’s database of dive information would make the

data more understandable and useful. Figure 2.3 shows a visualization gener-

ated for an ROV mission. Research presented at the same conference two years

later [27] provides an updated investigation of the original system [26] two years

after its initial deployment.

Chapman, Wills, Stevens, and Brookes [10] present a system that generates

post-survey visualizations of underwater pipelines using real-time rendering. The

system provides the user with a 3-D underwater visualization environment that

8



Figure 2.4: A view of the system used to generate visualizations of
underwater pipelines.

allows them to pilot a virtual underwater vehicle around an accurate seabed

model. The two case studies, visualizing pipeline dredging and pipe restoration

visualization, were implemented using real survey data. A view of the system is

presented in figure 2.4.

Research presented by the same authors describes a system that genereates

real-time visualizations of the clear-up operation of a former U.S. Nuclear Sub-

marine Base located in Holy Loch, Scotland [11]. Using the Whole Field Model-

ing System, the paper describes a system that is capable of generating accurate

real-time visualization of a large number of varying parameters such as remotely

operated vehicles, cranes, barges, grabs, magnets, and detailed seabed topogra-

phy. The system has improved the field staffs spatial and temporal awareness

9



Figure 2.5: Views of the system described in [11]. The image on the
left shows a view of flying alongside the ROV under a barge. The
image on the right shows a bathymetric depth coloured view of the
seabed.

of the underwater environment and facilitated decision-making within the com-

plex offshore working environment. Figure 2.5 shows two views of the system

generated by the system.

While these related works provide solutions for their setting, the system pre-

sented in this paper is designed specifically to generate real-time visualizations for

ocean science data collected by the NORUS glider. Additionaly, the system was

designed from the ground up, without the use of existing visualization libraries,

to achieve a system with the maximum amount of configurability possible.

2.2 Visualization Toolkits

The Visualization Toolkit (VTK) is an open-source, freely available software

system for 3D computer graphics, image processing and visualization. VTK has

an extensive information visualization framework, has a suite of 3D interaction

widgets, supports parallel processing, and integrates with various databases on

GUI toolkits such as Qt and Tk. It is also cross-platform and runs on Linux,

10



Windows, Mac and Unix platforms [44].

VTK was not chosen as a basis for the implementation of the interactive

visualization system because of the limitations associated with it. Maintaining

real-time rendering with large sets of data and high levels of detail is difficult

with the additional overhead associated with the toolkit.

2.3 Scattered Data Interpolation

Since the system requires the visualization of continous data, but only takes

as input discrete data points gathered by the NORUS glider, scattered data

interpolation is essential for constructing continous functions from the discrete

data samples. The problem of generating a continuous interpolation function for

scattered data is encountered frequently in a wide variety of scientific disciplines

and has been researched extensively. Despite considerable efforts, no generic

method has yet been found that solves the problem of scattered data interpolation

across all domains, and it is quite possible that no such method exists. This

section provides an overview of some popular and effective methods of scattered

data interpolation. Due to the extent of research done within the field, this is by

no means an exhaustive review. Several survey papers exist that provide a more

in depth look at a wider variety of methods [4] [14] [22] [37].

The Shepard’s Method is quite possibly the most well known technique used

to generate interpolants for scattered data. It was the first of many methods to

utilize inverse distance weighting, an approach where a sample point’s influence on

the interpolated value is inversely related to the distance from the input position

11



[42] [4] [14]. In its original form, it is defined as

s(x) =
N∑

i=1

wi(x)f(xi)wherewi(x) =
||x− xi||−p∑N

j=1 ||xi − xj||−p
. (2.1)

To avoid the division by zero that occurs at a sample point, s can be extended

to require that s(xi) = yi.

The equation defines an interpolating function that is the weighted average of

the value at each sample point. This method is global because the evaluation of

the interpolant requires the evaluation of a function on all given sample points.

Global techniques are expensive for large number of sample points, but it is

possible to apply them to overlapping subsets, and blend the solutions into a

single interpolant for the whole set. There are variants to the technique, such

as the Modified Shepards Method [20], which modifies the weighting function to

take into account only the points lying in a disc within a specified radius, centered

at the point at which the interpolant is evaluated. The modification improves

the method both in addressing shape preservation and in making it local to a

neighborhood of points [15] [32] [38].

Thin-plate interpolation is another approach to solving the scattered data in-

terpolation problem. It uses an energy function E(f) that measure the smooth-

ness of a function f . The energy function is basically a measure of the aggregate

curvature of f(x) over the region of interest. The thin-plate solution to an in-

terpolation problem is the function f(x) that has the smallest possible value of

E [43].

Another method for constructing an interpolant is to consider it to be a

piecewise union of patches (usually low degree multivariate polynomials) joined

with certain continuity. Examples of this approach are those based on Spline and

Bezier patches [6] [13], which are extensively used in the area of geometric design

12



and give a user freedom to model and change the shape of an object [38].

For this project, we found that scattered data interpolation was best achieved

using radial basis functions. Radial basis functions (RBFs) are a simple and use-

ful tool for interpolating data in almost any number of dimensions. Given a set of

data points with associated values, RBFs construct a smooth and continous func-

tion which interpolates the values at each data point. For a detailed description

on radial basis functions, refer to section 4.1.1.
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Chapter 3

System Overview

3.1 Environment

Within the system, the environment has been broadly defined to include all

graphical components that are not scientific visualizations. This includes the

terrain, interactive camera, ocean surface, clouds, heads-up display, compass,

glider, etc.

3.1.1 Interactive Camera

The interactive camera allows the user to freely navigate through the envi-

ronment. The w, a, s, and d keys move the camera forwards, left, backwards,

and right respectively. The mouse allows the user to rotate the camera and look

around the environment.

14



3.1.2 Terrain

The terrain for the mission’s extent is generated from bathymetry data re-

trieved from the National Geophysical Data Center (NGDC) [30]. NGDC pro-

vides global bathymetry at resolutions of 30 arc-seconds and greater. The primary

issue is that regions around Svalbard do not have publicly available bathymetry

data that is of high resolution, resulting in strict limitations on the available de-

tail for the under water terrain. Figures 3.1 and 3.2 provide different views of

the terrain for the Svalbard mission.

The bathymetry data is loaded into a generic mesh loader that converts the

data into a renderable triangle mesh. The triangle mesh is then multitextured to

produce a detailed terrain mesh.

Generic Mesh Loader

In order to provide support for various formats of bathymetry data, the mesh

loader was developed to be format agnostic. It accepts the bathymetry data and

computes the necessary values from the data.

Multitexturing

Section 4.3 provides a detailed description of what multitexturing is and how

it works. Multitexturing is used within the application to add additional detail

to the terrain surface. Also, it provides clear differentation between surfaces that

lie above and below the sea level.

15



Figure 3.1: This image shows an aerial view of the Svalbard fjord.
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Figure 3.2: This image shows a ground view of the Svalbard fjord.

User Configuration

Within the Configure Window under the Terrain tab, The user is provided

with the functionality to scale the sea floor by a factor of between one and twenty.

With a scale of one, the terrain is rendered to scale, with the mountains and sea

floor at their appropriate heights and depths. Larger scales allow the user to

investiage specific regions carefully without having to get as close to the visual-

izations or glyphs. Also, a larger scale allows the user to navigate through the

data with greater ease. Figure 3.3 shows two images of the same region, with the

image on the right having a much larger scale.

3.1.3 Ocean Surface

A primary goal for the application was to produce an environment with an

appealing look. In an attempt to further that goal, a compelling and quasi-

realistic ocean surface was implemented using the techniques described in [19]

and [8]. Using a normal map, dudv map, two additional rendering passes, and

17



Figure 3.3: Both images show the same region. The image on the left
has a scale factor of 1 while the image on the right is scaled to a factor
of 11.

GLSL shaders, it is possible to render a compelling ocean surface with only a

single quad.

Reflection

Reflections were implemented in an attempt to create a more realistic and

appealing ocean surface. This adds an additional rendering pass where only the

terrain above sea level is rendered. The terrain is reflected about the y-axis and

rendered to a texture that is then mapped to the quad serving as the ocean

surface. Since the majority of the reflected terrain is occluded by the terrain

itself, the reflection is only visible for the terrain closest to the water’s edge. The

visibility of the reflection is also view dependent. Figure 3.4 shows a view of the

reflection of the surrounding terrain onto the ocean surface.

18



Figure 3.4: A view of the reflection of the surrounding terrain onto
the ocean surface.

Refraction

Refraction refers to the turning or bending of light waves as they pass through

a substance of differing density. The system uses a dudv map to approximate

the refraction that occurs as light passes through the ocean surface. As seen in

figure 3.4, the effect is especially noticable at sharp edges in the reflected surface.

The refraction produces the discontinuites or perturbations in the reflected sur-

face. A time based variable that modifies the refraction produces the appearance

of a dynamic surface that is constantly changing.

Specular Highlights

The specular highlights on the surface of the water imitates the effect of light

reflecting off the ocean surface. The specular highlights along with the refraction

of the surface produces the shimmering effect that results from the random change

in the angle of the reflection of light as the water moves. Figure 3.5 contains a

view of the specular highlights within the environment.
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Figure 3.5: A view of the specular highlighting that occurs on the
ocean surface.

3.1.4 Clouds

The clouds serve as a simple method for producing a more appealing environ-

ment for the user. The animation of the clouds moving slowly across the expanse

of the sky assists an environment that is constantly changing. Figure 3.6 shows

a view of the clouds within the environment. The methods for constructing and

rendering the clouds are described below.

First, a 3-D Perlin noise function is generated that the application samples

at various positions to create a 3-D texture. The texture is then mapped to a

very large sphere that the terrain is contained within. A simple GLSL fragment

shader performs the cloud animation by offsetting the texture by a factor of the

time from the application’s initialization.
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Figure 3.6: A view of the clouds generated by a 3-D Perlin noise
function.
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Figure 3.7: A view of the compass.

3.1.5 Heads-up Display

The heads-up display provides the user with updates on the status of visual-

izations being constructed in the background. Section 3.3.2 describes why it is

necessary for the construction of the interpolated visualizations to occur within

threads. The heads-up display serves as a means for the application to provide

the user with continual updates on the construction status. Figure 3.13 provides

a view of the heads-up display.

Compass

The compass provides directional orientation within the scene. Its used pri-

marily for assisting the user in specifying spatial constraints for visualizations.

Figure 3.7 provies a view of the compass.

3.1.6 Glider

The glider within the application provides a simple 3-D representation of the

physical glider as it travels along the mission path. Its purpose is to give the user

an idea of how the glider moves while collecting science data. Figure 3.8 provides

a view that shows what the glider looks like.
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Figure 3.8: A view of the glider.

Follow Glider

The follow glider feature, which can be found within the Controls menu,

attaches the camera to the glider. The features provides a third person view as

the glider moves along its mission path.

Glider Speed

The speed of the glider can be adjusted within the Controls menu. Adjusting

the glider’s speed effects the amount of time, or frames, it takes for the glider to

move between the control points of the approximated mission path discussed in

Section 3.1.7.

3.1.7 Mission Path

An approximation of the glider’s mission path is constructed for use in the

animation of the computer generated glider and the construction of the mission

defined gradient planes. The approximated mission path is constructed by lo-

cating the indicies within the mission data that correspond to the glider’s local

minimum and maximum depths. Since the glider’s motion is consistent, an ad-

equate approximation of its path can be constructed by connecting sequential

23



Figure 3.9: This figure shows the a portion of the approximated mission
path constructed for the Svalbard mission.

local minimums and maximums. Figure 3.9 shows a portion of the approximated

mission path constructed for the Svalbard mission.

3.2 Scientific Visualizations

The primary goal of the project was to generate scientific visualizations that

would allow the biologists associated with NORUS to locate areas of interest
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within the dataset as well as determine coorelation between variables. The biol-

ogists are interested in understanding how variables such as salinity, chlorophyll,

turbidity, and temperature interact with eachother.

3.2.1 Spatial Data Structure

A spatial data structure is one that organizes geometry in some n-dimensional

space. One primary use of spatial data structures is to accelerate queries about

whether geometric entities overlap [3].

A common query used during the construction of a radial basis function is to

find all data points within a specific spatial region. In order to accelerate these

queries, a bounding volume hierarchy using axis-aligned bounding boxes was

implemented. Every bounding volume contains references to each of the mission

data points within the volume’s extent. In order to assist in the construction of

radial basis functions with overlapping sample points, a bounding volume also

contains a reference to all adjacent bounding volumes of equal size.

3.2.2 Lookup Table

The lookup table allows for quick conversion from scalar values to their cor-

responding RGB color values. The construction of a lookup table requires that

both a hue and value range are specified, generating a mapping between the scalar

values and their corresponding color. Any scalar value passed to the lookup table

that falls outside the value range is assigned either the minimum or maximum

color associated with the lookup table.
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3.2.3 Glyphs

Glyphs are simple objects used for the visualization of discrete data samples.

Within the application, glyphs are represented as low resolution spheres whose

color and size are mappable to different variables. The user is provided with a

configuration window that provides the functionality to customize all aspects of

how the glyph visualize discrete data. Figure 3.10 shows a view with the glyph

size and color being mapped to different variables.

Variable Mapping

Glyphs are useful for mapping multiple variables to a single object. The ability

to independently manipulate a glyph’s size, color, orientation, and transparency

provides the opportunity to map multiple variables to a single glyph. In order

to avoid information overload, only the size and color of the glyphs within the

application can be mapped to variables.

User Configuration

One key goal of the project is to provide the highest possible level of cus-

tomizability so that the biologists have control over how the visualizations are

generated and shown. Figure 3.11 shows the configuration window that helps to

obtain this goal.

1. Variable Selection

Variable selection allows the user to update the variables that are being

mapped to either size and/or color of the glyphs.

2. Size Configuration
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Figure 3.10: A view with glyph size being mapped to chlorophyll levels
and color being mapped to salinity levels. The smaller sized glyphs
correspond to lower levels of chlorophyll concentrain. The color scale
goes from blue to red, where the blues correspond to lower values.
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Figure 3.11: This figure shows the configuration window available to
the user to manipulate how science data is displayed on the glyphs.
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(a) Size

The minimum and maximum size specify constraints on the glyph size.

The value is mapped to the size so that glyphs representing the mini-

mum or maximum value are rendered at the corresponding minimum

or maximum size. Any values in between are sized accordingly.

(b) Value

The minimum and maximum value specify constraints on the data

values that the glyphs are able to represent. Since the glyph size is

directly mapped to the value, whenever the value range is constrained

there will be glyphs with values that lie outside the value range. This

will result in glyphs with different values being mapped to the same

size. This problem can be avoided by utilizing the Filter Outside Range

feature. Filter Outside Range automatically filters glyphs whose data

value lies outside the user defined value range. The mission minimum

and maximum values for the chosen variable appear in the label name,

Min Value (X.XX).

3. Color Configuration

(a) Color

The minimum and maximum color specifies a color scale for the glyphs.

The value is mapped to the color so that glyphs representing the min-

imum or maximum value are rendered with the corresponding mini-

mum or maximum color. Values between the minimum and maximum

are weighted by their distance from the minimum value and colored

by selecting the color with an equivalent distance from the minimum

color.
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(b) Value

The minimum and maximum value specify constraints on the data

values that the glyphs are able to represent. Since the glyph color

is directly mapped to the value, whenever the value range is con-

strained there will be glyphs with values that lie outside the value

range. This will result in glyphs with different values being mapped

to the same color. This problem can be avoided by utilizing the Fil-

ter Outside Range feature. Filter Outside Range automatically filters

glyphs whose data value lies outside the user defined value range. The

mission minimum and maximum values for the chosen variable appear

in the label name, Min Value (X.XX).

4. Data Range Configuration

Glyphs can be filtered by time and/or space. When either of these con-

straints is adjusted, any glyphs that lay outside the range are not rendered.

(a) Time Range

In order to specify a time constraint for the glyphs, the checkbox next

to the label Time Range must be checked. The default minimum and

maximum time values correspond to the start and end time of the

glider mission.

(b) Spatial Range

In order to specify a spatial constraint for the glyphs, the checkbox

next to the label Spatial Range must be checked. The default latitude

and longitude coordinates correspond to the glider’s extent during the

course of the mission.
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3.3 Interpolated Scientific Visualizations

The majority of the visualizations generated by the application involve the use

of radial basis functions as interpolators. The use of scattered data interpolation

allows the application to generate compelling visualizations across surfaces where

the glider may not have traveled.

3.3.1 Radial Basis Functions as Interpolators

Depth Constraints

Severe depth constraints are placed on the data samples used in the construc-

tion of the radial basis functions. These constraints arose from biologist input

on the rate of change for the underwater variables of interest. Specfically, they

noted that the variables of interest change approximately 100 times faster in the

vertical direction then in the horizontal direction.

When constructing an interpolated visualization, an interpolation function is

generated for each depth value associated with the visualization. In constructing

the interpolators, the application attempts to use only data samples within half a

meter up or down, and will only increase the depth if it did not find enough data

samples. Using this method, the interpolation function is influenced primarily by

data samples at the same approximate depth.

Basis Function Selection

The selection of a basis function and the corresponding user defined parameter

is not a particularly easy choice to make. Many popular basis functions such as

B-splines and Gaussian distribution functions seem to have an at best shaky
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mathematical justification [14]. Also, the basis functions are often sensitive to

a user defined parameter whose appropriate value will oftentimes depend upon

the function values and point distributions. The goal is to select a basis function

that best fits the surface.

Figure 3.12 provides a comparison of three popular basis functions with the

shifted log (
√
log10(r2 +B2)) that was ultimately chosen as the most desirable

basis function. Each of the other basis functions produces interpolation functions

that create local minimums and maximums that do not correspond to the discrete

data samples. The polyharmonic spline, shown in figure 3.12B, produces values

which increase as the distance increases, generating an interpolation function

whose intial points have more influence the further away the input point is. The

gaussian, shown in figure 3.12C, generates values that approach 0 as the distance

increases. The problem is that due to the path of the glider, there are regions

outside the influence of any particular point, resulting in regions of correct values

primarily where the glider traversed. The multiquadric, shown in figure 3.12A,

produces an interpolation function which is more accurate than the two previously

described, but still does not adequately fit the surface. One major problem is that

regions with sparse data samples, such as the bottom left quarter of the figure,

produce innacruate results. The shifted log, shown in fgure 3.12D obviously

generates the best interpolation function for the surface. The growth of the basis

function is severly dampened by the log and square root. This generates a radial

basis function whose weight coefficients fall into a reasonable spread, generating

a smooth interpolation function.
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Figure 3.12: A comparison of radial basis function interpolation with
different basis functions. (A) shows the result of a multiquadric
(
√
r2 +B2) basis function. (B) shows a polyharmonic spline (r2n−1).

(C) shows a gaussian (e−Br2
) basis function. (D) shows the shifted log

(
√
log10(r2 +B2))
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Figure 3.13: The HUD providing incremental updates on the status of
the construction of the mission defined gradient plane.

3.3.2 Threaded Construction

The construction of the radial basis functions requires the inversion and mul-

tiplication of matrices to solve for a linear system. Depeneding on the amount of

initial data samples provided, these can be rather lengthy calculations. In order

to allow the user to continue to navigate through the data while a visualization

is being constructed, the construction of any visualization requiring radial basis

functions occurs within a thread. The appropriate locks are made to the graphical

user interface while the visualization is being constructed, and the visualization

is automatically enabled once construction finishes. A heads-up display, or HUD,

provides updates on the status of the visualization’s construction. Figure 3.13

shows the HUD providing incremental updates for the construction of the mission

defined gradient plane.

3.3.3 Gradient Planes

The gradient planes are 2D planar surfaces rendered in the 3D environment.

Using a radial basis function interpolator, the application generates smooth color

gradients across the surface of the plane. In order to avoid hard transitions in the

color gradient when spatial constraints require a new interpolator, the application

34



uses overlapping data samples. Whenever a new interpolator is generated, the

application retrieves the data samples for the current bounding volume as well

as those for each of the adjacent bounding volumes. The data samples are then

filtered based on the depth constraints described in Section 3.3.1, and then the

new interpolator is generated with the remaining data samples. By utilizing over-

lapping data samples, smoother transitions occur between regions using different

interpolators. Figure 3.14 shows a comparison between the same gradient planes

generated with and without overlapping sample points. The image on the left

shows the hard transition that occurs without overlapping sample points. For the

region to the left of the hard transition, the glider only traveled to approximately

half of its maximum depth, producing a dark blue region that signifies a lack of

data samples. By constructing the interpolation function with overlapping data

samples, the system is able to interpolate more appropriate values for regions

lacking adequate data samples. Each gradient plane is constructed so that its

spans vertically from the sea level to the deepest depth reached by the glider.

Mission Defined Gradient Planes

Section 3.1.7 describes how the control points for the mission path are gen-

erated. The application utilizes the x and y coordinates of the control points

when constructing the mission defined gradient planes. At each control point, we

generate two new triangles, which can be viewed as a single quad, in the following

manner. The first vertex uses the x and y coordinates of the current control point

and the deepeset depth reached by the glider. The second vertex uses the same x

and y coordinates with its depth set to the sea level. The next two vertices have

similar depths, but use the next control points x and y coordinates. This is done

for every control point except the last. Figure 3.15 shows how the mission defined

35



Figure 3.14: The image on the left shows the construction of the gra-
dient planes without using overlapping sample points. The image on
the right shows the same region with the gradient planes generated
using overlapping sample points.

gradient plane corresponds to the control points of the mission path. In order

to obtain an adequate resolution in the color gradient that spans the surface,

each quad is subdivided into 256 equal sub-quads. An interpolated scalar value

is then generated for each vertex of the sub-quads. Section 3.3.3 describes how

the application utilizes texture mapping to minimize the number of triangles, or

quads, required to display the gradient plane at an adequate resolution.

User Defiend Gradient Planes

The user defined gradient planes are generated in much the same manner

as the mission defined gradient planes, with two primary differences. The first

of which is that rather then utilizing the control points for the entire mission,

the user defined gradient planes allow the user to specify the location of each

control point. This allows the user to generate gradient planes that do not corre-
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Figure 3.15: The image shows how the mission defined gradient plane
corresponds to the control points of the mission path.

spond to the mission path taken by the glider. Figure 3.16 shows a user defined

gradient plane that does not correspond to the mission path. The second pri-

mary difference is that the user defined gradient planes allows the user to specify

time constraints on the data samples used to generate the radial basis functions.

Throughout the course of a mission, the glider will oftentimes pass the same

region multiple times in an attempt to determine how the time of day and the

passage of time affect the measured values. The ability to specify time constraints

on the data samples used in the generation of the radial basis functions allows

the user to construct seperate visualizations for each glider pass.

Texture Mapping

Simply put, texture mapping is the process of mapping a function onto a

surface in 3-D [18]. In order to minimize the number triangles required to render

the gradient planes at an adequate resolution, a simple form of texture mapping

was implemented into the system. Section 5.1.2 describes how control points are
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Figure 3.16: The image shows a user defined gradient plane that does
not correspond to the mission path.
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used to generate the vertices of the quads that define the gradient planes and

how those quads are subdivided in order to obtain an adequate resolution for the

color gradient. Rather then store and render 256 quads per control point, the

application generates textures that store the RGB value at each vertex, reducing

the amount of vertex storage to two times the number of control points.

Depending on the number of control points, it is sometimes necessary to

generate multiple textures in order to accomodate the destired resolution. When

this occurs, the textures are stiched together so that transitions between textures

are not discernable. The mapping between vertex position and texture coordinate

occurs as follows. The t value alternates between 0.0 and 1.0, depending on the

position depth. The s value is the distance from the texture’s first control point

as a percentage of the total distance.

Texture Generation

In order to continue to provide a responsive and user configurable application,

an additional feature was implemented that allows real-time texture generation to

handle user configuration changes of the gradient planes. The only configuration

change that does not occur in real-time is the selection of a new variable. When

a new variable is selected, it is necessary to generate an entirely new set of

interpolation functions, resulting in the re-creation of the entire surface.

Whenever a configuration change occurs that does not involve the selection

of a new variable, the following steps occur in the generation of the new textures:

1. Delete the previous textures.

The previous textures are stored in the graphics card’s memory. At this

point, the application makes the appropriate openGL function calls to delete
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the previous textures from memory.

2. Generate a new lookup table with the updated color values and range.

The new lookup table allows the application to easily generate the RGB

values for each scalar value stored in the gradient plane.

3. Create and store the new textures.

Using the scalar values stored in the gradient plane, the application gener-

ates the new textures for the updated configuration. Once the textures have

been generated, they are once again stored on the graphics card’s memory.

User Configuration

In order to maintain the highest possible level of customizability, all aspects

of the user and mission defined gradients planes are customizable. Figure 3.17

shows the configuration window for the mission defined gradient planes.

1. Color Range

The minimum and maximum color specifies a color scale for the gradient

planes. The value is mapped to the color so that scalar values representing

the minimum or maximum value are rendered with the corresponding min-

imum or maximum color. Values between the minimum and maximum are

weighted by their distance from the minimum value and colored by selecting

the color with an equivalent distance from the minimum color.

2. Color Value Range

The minimum and maximum value specify constraints on the data values

that the gradient plane is able to represent. Since the color is directly
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Figure 3.17: The image shows the configuration window for the mission
defined gradient planes.
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mapped to the value, whenever the value range is constrained there will be

scalar values that lie outside the value range. This will result in texels with

different values being mapped to the same color. The mission minimum

and maximum values for the chosen variable appear in the label name, Min

Value (X.XX).

3. Time Constraints

In order to specify a time constraint for the gradient planes, the checkbox

next to the label Time Range must be checked. The default minimum and

maximum time values correspond to the start and end time of the glider

mission.

As described in Section 3.3.3, the time constraint for the user defined gra-

dient planes specifies constraints on the data samples used to generate the

radial basis functions.

4. Spatial Constraints

In order to specify a spatial constraint for the mission defined gradient

planes, the checkbox next to the label Spatial Range must be checked. The

default latitude and longitude coordinates correspond to the glider’s extent

during the course of the mission.

Since the user specifies the control points for the user defined gradient

planes, no spatial constraints are provided.

3.3.4 Volume Slices

Volume slicing provides a method for visualizing interpolated values across

planar surfaces. The primary benefit that volume slicing provides over gradient
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planes is the ability to generate different orientations of the 2-D planar surfaces.

The volume slices configuration allows the user to specify that the slices be ori-

ented in either the X-Y, X-Z, or Y-Z planes. Additionally, the user is able to

specify the volume extent that the slices span, the resolution of each slice, and

the variable used to generate the interpolation functions.

Radial Basis Function Construction

Section 3.3.1 describes in detail the depth constraints used to generate the

radial basis functions used as interpolators. Briefly, an interpolation function is

generated for each depth value associated with the volume slices. In constructing

the interpolators, the application attempts to use only data samples within half

a meter up or down, and only increases the depth if it did not find enough data

samples. Using this method, the interpolation function is influenced primarily by

data samples at the same approximate depth.

User Configuration

As with each previous visualization, the volumes slices have been designed

to have the maximum amount of configurability possible. Figure 3.18 shows the

configuration window for the volume slices.

1. Volume Specification

The configuration window provides an interface for specifying the extent

used to generate the volume slices. When the user selects the New... button,

they are prompted to select four points within the scene that specify the

initial volume selection. Figure 3.19 shows the wireframe box generated

after the initial volume is selected by the user. The spinners within the
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Figure 3.18: This image shows the configuration window for the Vol-
ume Slices.
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configuration window allow fine tune adjustments to the initial volume that

ensure that the user is able to generate slices in the desired position.

2. Plane Orientation

The application provides three different planar orientations when generating

the volume slices. The orientations are the X-Y, X-Z, and Y-Z planes. The

various orientations allow the user to generate interpolated 2-D surfaces

across regions that the glider did not travel. Figure 3.20 shows an example

of the three different orientation of the volume slices.

3. Color Mapping

The color mapping for the volume slices occurs in much the same manner

as each of the previous visualizations. Refer to section 3.3.3 for a detailed

description on how the color mapping occurs.

One unique component for the volume slices is that the minimum and max-

imum color values are not editable until the volume slices have been gener-

ated. When the volume slices are generated, the minimum and maximum

values are determine for the specified volume, and they are used as the

default values. After the initial construction, the color values as well as the

color range are editable in real-time.

4. Resolution

The resolution of the volume slices is a user configurable property. This

allows the user to specify both the number slices to generate and the res-

olution of each individual slice. The volume slices are not textured in the

same manner as the gradient planes, so specifying a higher resolution re-

sults in more geomtery being drawn on the screen. It is important to keep
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Figure 3.19: This image shows the wireframe box that is a visual
representation of an initial volume selection for Volume Slices.
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Figure 3.20: These image shows the three different orientations for
the volume slices. The image on the left is showing chlorophyll being
mapped to volume slices in the X-Y plane, the image in the center is
the same variable mapped to volume slices in the X-Z plane, and the
image on the right is showing the same thing but with images in the
Y-Z plane.

this trade off in mind, especially on slower machines. An additional feature

added for convenience is the ability to specify the generation of a single

slice at sea level with a single click. Enabling the Single slice at sea level

checkbox sets the min and max depth to be equal, the slice orientation to

the X-Y plane, and the number of slices to one.

3.3.5 Isosurfaces

An isosurface is a 3-D surface that represents points of a predefined con-

stant scalar value within a volume. The algorithm used to generate isosurfaces

is discussed in Section 4.2. Isosurfaces provide a compelling method for visual-

izing interpolated values using 3-D surfaces. Also, the ability to map colors to

the isosurface provides an effective means of visualizing the coorelation between
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two different variables. When generating an isosurface, the user can specify the

volume extent, isovalue, surface resolution, and the color mapping.

Radial Basis Function Construction

Refer to sections Radial Basis Functions As Interpolators and 3.3.4 for detailed

descriptions on how the radial basis functions are generated.

One unique component for the construction of the isosurface interpolators is

that the use of multiple variables requires the construction of two sets of inter-

polation functions. One set is used to generate the isosurface and the second is

used to generate the colors for the surface.

Variable Coorelation

An interesting attribute of the isosurface is its ability effectively map multiple

variables to a single visualization. It allows the user to easily determine the values

of the variable mapped to color at positions of the specified isovalue. Figure 3.21

shows an isosurface generated using chlorophyll and color gradient generated from

the temperature within the volume.

User Configuration

The isosurface provides an interface that allows the user to fully customize

the surface’s configuration. Figure 3.22 show the configuration window for an

isosurface.

1. Isovalue

The isovalue is the primary attribute of an isosurface. It specifies the scalar
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Figure 3.21: This image shows an isosurface generated chlorophyll with
the color gradient generated from temperature.
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Figure 3.22: This image shows the configuration window for the Iso-
surface.
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value for which the 3-D surface is generated. The application provides the

functionality to update the isovalue in real-time after the initial surface

generation. This allows the user to quickly change the isovalue, generating

vastly different surfaces for the user to examine.

2. Resolution

The resolution of the isosurface is a user configurable property. Higher

resolutions result in denser grids from which to generate the 3-D surface.

As the grid becomes denser, the amount of geometry being drawn to the

screen also increases, resulting in a slower rendering time. It is important

to keep this trade off in mind, especially on slower machines.

3. Color mapping

The color mapping for the isosurface occurs in much the same manner as

each of the previous visualizations. Refer to section 3.3.3 for a detailed

description on how the color mapping occurs.

One unique component for the isosurface is that the minimum and maxi-

mum color values are not editable until the isosurface has been generated.

Once the isosurface has been generated, the minimum and maximum val-

ues are determine for the specified volume, and they are used as the default

values. After the initial construction, the color values as well as the color

range are editable in real-time.
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Chapter 4

Algorithms

4.1 Scattered Data Interpolation

Scattered data interpolation is the broad category for methods that construct

a continuous function f : Rn → R given N sample values fi ∈ R at N scattered

data points xi ∈ Rn. The methods of particular interest are those that construct

the continous function as a linear combination of N basis functions, where f(x) =∑N
i=0 λiφ(||x−xi||). Methods of this form use radially symmetric basis functions

which are centered at each of the data points [17] [29].

4.1.1 Radial Basis Functions

Radial Basis Functions (RBFs) are a simple and useful tool for interpolating

data in almost any number of dimensions. Given a set of data points with associ-

ated values, RBFs construct a smooth and continous function which interpolates

the values at each data point. The procedure is to represent the function as a

sum of radial basis functions each weighted by a coefficient with the addition
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of a linear polynomial term. It is a requirement that the interpolated surface

honors the original data points, so f(xi) = fi for i = 1 to N . This leads to a

simple system of linear equations where we solve for the coefficients of the basis

functions and polynomial terms [5].

Radial Basis Functions are represented mathematically as

f(x) =
N∑

i=1

λiφ(||x− xi||) + P (x) (4.1)

where the function is a sum of the basis functions, φ, weighted by a coefficient λi

with the addition of a polynomial P (x) in the components of x. The addition of

the linear polynomial term gives the RBFs linear precision, allowing the system

to realize an affine transformation. Generating a solution for the RBFs can be

reduced to solving a system of linear equations.

For radial basis functions whose scattered data points xi ∈ R3, the linear

system can be written in standard matrix form, Ax = b, as

φ11 · · · φ1N 1 x1 y1 z1

...
. . .

...
...

...
...

...

φN1 · · · φNN 1 xN yN zN

1 · · · 1 0 0 0 0

x1 · · · xN 0 0 0 0

y1 · · · yN 0 0 0 0

z1 · · · zN 0 0 0 0





λ1

...

λN

a

b

c

d



=



f1

...

fN

0

0

0

0



(4.2)

where φji = φ(||xj − xi||). The first N rows of matrix A contain the expansion

of equation 4.1 without its coefficients. The last 4 rows of A consist of four

additional side constraints

N∑
i=1

λi =
N∑

i=1

λix =
N∑

i=1

λiy =
N∑

i=1

λiz = 0 (4.3)

53



which provide the necessary equations for a fully determined linear system. For a

discussion on how these side constraints are generated, refer to [29]. The weight

and polynomial coefficients are located in matrix x, and matrix b contains each

equations associated value. Solving for the unknowns in equation 4.2 requires the

inversion of matrix A, leading to the requirement that A not be singular.

The effectiveness of radial basis functions in scattered data interpolation relies

heavily upon the selection of proper basis functions. For a discussion on the basis

function used in this application, refer to section 3.3.1.

4.2 Marching Cubes

Marching cubes is a high resolution 3-D surface construction algorithm. Specif-

ically, it uses a constant value, or isovalue, to create a triangle mesh from 3-

D data. When the marching cubes algorithm was originally published, it was

used primarily for constructing 3-D surfaces from medical imaging data such

as magnetic resonance (MR), computed tomography (CT), and single-photon

emission computed tomography (SPECT) [23]. Since its original publication,

it has been adapted to solve countless other 3-D surface construction prob-

lems [33] [34] [28] [21] [41] [25]. Its popularity is due to the simplicity of the

algorithm and the ease of implementation.

Constructing the 3-D surface with the marching cubes algorithm consists of

two primary steps. First, the surface, or isosurface, corresponding to the isovalue

is located and then triangulated. Second, surface normals are calculated for each

triangle of the isosurface so that the surface will be properly illuminated. Since

each cube has eight verticies and each vertice can be either inside or outside

the surface, there are a total of 28 = 256 ways that a surface can intersect a
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Figure 4.1: The 14 unique triangulations of a cube. Each of the 256
possible cube configurations can be obtained from these unique 14.

cube. With the use of two different symmetries of the cube, the 256 cases can be

reduced to 14 unique triangulation patterns. First, the topology of the triangu-

lated surface is unchanged if the relationship of the surface values to the cubes

is reversed. Complementary cases, where vertices greater than the surface value

are interchanged with those less than the value, are equivalent. This means that

only cases with zero to four vertices greater than the surface valu need to be

considered, reducing the number of cases to 128. Using rotational symmetry, the

128 cases can be reduced to 14 unique triangulations [23]. Figure 4.1 depicts the

14 unique triangulations.

Figure 4.2 provides the vertex and edge numbering order presented in the

original paper. Using this numbering order, marching cubes precalculates a table

consisting of the 256 possible edge configurations. The edge table is constructed

so that the indexing method depicted in figure 4.2 corresponds to the appropriate

edge configuration. Starting with a grid of voxels or cubes, the marching cubes

algorithm proceeds as follows:

55



Figure 4.2: Cube Numbering
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1. Iterate, or march, over each cube, determining edge intersections by gener-

ating an index into the edge table based on each vertices state (inside or

outside the surface).

2. Using the values of the verticies at each intersected edge, use linear inter-

polation to estimate the position of the surface-edge intersection.

3. Calculate a unit normal at each cube vertex using central differences. In-

terpolate the normal to each triangle vertex.

For a more detailed description on why it is possible to use central dif-

ferences to calcualte vertex normals, refer to [23]. For the purposes of

generating the 3-D surface, it is enough to know that the normal of each

cube vertex is calculated as follows:

Nx(i, j, k) =
D(i+ 1, j, k)−D(i− 1, j, k)

∆x

Ny(i, j, k) =
D(i, j + 1, k)−D(i, j − 1, k)

∆y

Nz(i, j, k) =
D(i, j, k + 1)−D(i, j, k − 1)

∆z

The normals of each triangle vertex are calculated using linear interpolation

between the two edge adjacent cube vertices.

4. Render the triangle vertices using the calculated normals.

4.3 Multitexturing

Multitexturing is the combination of two or more textures applied to a sin-

gle primitive. Proper application of multitexturing can greatly increase the level
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Figure 4.3: A depiction of how the vertex normals for the triangulated
surfaces are calculated.
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Figure 4.4: (A) shows the simple mapping scheme for two textures.
(B) shows the normalized mapping scheme.

of detail within an environment without adding any additional geometry to the

scene. Hardware multitexturing utilizes the graphics card’s texture units to allow

the hardware to apply a combination of multiple textures in a single pass, result-

ing in a rendering time that is noticably faster then previous techniques [3] [35].

The specific application of multitexturing discussed here is the use of weight

coefficients to determine a texture’s contribution at each vertex. Using weight

coefficients that are calculated as a factor of the vertex height allows for smooth

transitions between region specific textures. For example, the application uses a

snow texture for regions above sea level and a sand texture for all terrain under

the sea level; with smooth transitions between the two [39].

In order to generate the weight coefficients for the textures at each vertex, a
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mapping scheme must be defined that maps vertex height to a weight coefficient.

Figure 4.4a shows the ideal mapping scheme for the two textures described above.

As figure 4.4a shows, the minimum and maximum heights receive a weight value

of 1.0 for the sand and snow textures respectively. As the height approaches the

sea level, the vertex is assigned a weight between 0.0 and 1.0 for both textures.

The simple mapping scheme shown in figure 4.4a can be defined mathematically

for each vertex as follows:

sandWeight = 1.0− clamp(
∣∣∣∣ (vertex.z − 0.0)

(2.0/3.0 ∗ (maxHeight−minHeight))

∣∣∣∣ , 0.0, 1.0)

snowWeight = 1.0− clamp(
∣∣∣∣ (vertex.z −maxHeight)
(2.0/3.0 ∗ (maxHeight−minHeight)

∣∣∣∣ , 0.0, 1.0)

The weight for the sand texture scales between 1.0 and 0.0 for vertex.z values

between 0.0 and 2/3 of the total height span. Similarly, the weight for the snow

texture scales between 1.0 and 0.0 for the vertex.z values between the maxHeight

and 1/3 of the total height span.

The problem with this simple mapping scheme is that the total vertex weight

for heights between the minimum and maximum will not add up to 1.0, result-

ing in dark primitives being rendered for values close to the middle. This can

be corrected by normalizing the weights at each vertex so that the sum of the

texture weights equal 1.0. Figure 4.4b shows the original mapping scheme with

normalized weights. Using the previously defined sand and snow weights, the

normalized mapping scheme can be defined mathematically as follows:

totalWeight = sandWeight+ snowWeight

sandWeight = sandWeight/totalWeight

snowWeight = snowWeight/totalWeight
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Figure 4.5: A view of the smooth transition that occurs between tex-
tures.

For the sake of simplicity, only two textures were used in the mapping scheme,

but it can easily be extended to include more then two textures. Figure 4.5

provides a view of the smooth transition that occurs between textures when the

weights are defined appropriately.
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Chapter 5

Results

5.1 Scientific Visualizations

This section provides analysis of the scientific visualizations generated by the

system. The focus is put primarily upon validating the interpolated values gen-

erated by the radial basis functions and showing how user configurable properties

can be changed to highlight areas of interest.

5.1.1 Glyphs

Figure 5.1 provides a view of the glyphs with both size and color mapped to

chlorophyll. Both are using a minimum value of 0.2178 (global minimum) an a

maximum value of 4.0. The sizes range from a scale of 0.2 to 1.0 and the colors

range from a dark blue (0.667) to red (0.0). The maximum was lowered from

the global maximum of 49.3317 in order to provide more variation in the glyphs.

Since the vast majority of chlorophyll measurements lie between 0.2178 and 8.0,

the regions with excessively high chlorophyll levels most likely constitue an error
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Figure 5.1: A view of the glyphs
with both size and color mapped to
chlorophyll.

Figure 5.2: A view of the glyphs
with size mapped to chlorophyll
and color mapped to salinity.

in measurement or a region of interest.

Figure 5.2 provides a view of the glyphs with size mapped to chlorophyll and

color mapped to salinity. The size values are identical to those in figure 5.1. The

color values range from a minimum of 32.473 and a maximum of 34.5, which

constrain the range by 2.0 and 1.5541 respectively. The colors range from dark

blue (0.667) to red (0.0), with dark blue corresponding to the lowest values.

Simple analysis shows that the salt content is lowest at the surface of the water

and increases steadily until approximately one third of the glider’s maximum

depth, where it stays fairly consistent. For the most part, there appears to be

an inverse correlation between chlorophyll levels and salt content, with regions of

variability.
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Figure 5.3: A sequence of images that show how altering the minimum
and maximum value range can highlight different regions of the mission
defined gradient plane.
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5.1.2 Mission Defined Gradient Planes

Figure 5.3 provides a sequence of images that show how altering the minimum

and maximum value range can highlight different regions of the mission defined

gradient plane. In every image, the gradient plane is being mapped to salinity

with a minimum color of dark blue (0.667) and a maximum color or red (0.0).

Figure 5.3A has a minimum value of 30.473 and a maximum value of 36.0541,

figure 5.3B has a minimum value of 31.473 and a maximum value of 35.0541,

figure 5.3C has a minimum value of 33.473 and a maximum value of 35.0541,

figure 5.3D has a minimum value of 34.473 and a maximum value of 35.0541,

and both figure 5.3E and figure 5.3F have a minimum value of 32.473 and a

maximum value of 35.0541. Figure 5.3F shows the glyphs being mapped to with

the same value and color range as the gradient plane to show the coorelation

between discrete data sample values and the interpolated values generated by

the interpolation function. With default values shown in figure 5.3A, the areas

of higher values are barely visible. By constraining the minimum and maximum

value range in different ways, it is possible to highlight the areas of higher values

within the specific region. Figure 5.3E produces the best looking results, with

the regions of higher values clearly visible.

Figure 5.4 provides a view of the temperature mapped mission defined gradi-

ent planes. The gradient planes are being rendered with a value range of -1.8549

(default) to 8.2805 (default) and a corresponding color range of dark blue (0.667)

to red (0.0). The specific region shows an interesting striping pattern where

there are regions of lower temperature above regions of higher temperature. The

glyphs in the lower image show how the interpolated values of the gradient plane

correspond to discrete data samples.
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Figure 5.4: This view of the temperature mapped mission defined gra-
dient planes shows a region with interesting temperature values. The
glyphs in the lower image show how the interpolated values coorelate
to discrete measurements.

66



Figure 5.5: A sequence of images that show how altering the minimum
and maximum color range can highlight different regions of the mission
defined gradient plane.
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Figure 5.5 provides a sequence of images that show how altering the minimum

and maximum color range can highlight different regions of the mission defined

gradient plane. In every image, the gradient plane is being mapped to chloro-

phyll with a minimum value of 0.2178 (default) and a maximum value of 4.0.

Figure 5.5A has a minimum color or dark blue (0.667) and a maximum color of

red (0.0), figure 5.5B has a minimum color of green (0.333) and a maximum value

of red (0.0), figure 5.5C has a minimum color of red (0.0) and a maximum value

of blue (0.667), figure 5.5D has a minimum color of blue (0.667) and a maximum

value of red (1.0), and both figure 5.5E and figure 5.5F have a minimum color of

sky blue (0.5) and a maximum value of purple (0.8). Figure 5.5F shows the glyphs

being mapped to with the same value and color range as the gradient plane to

show the coorelation between discrete data sample values and the interpolated

values generated by the interpolation function.

5.1.3 Volume Slices

Figure 5.6 provides a view of a chlorophyll mapped volume slice along the

ocean surface. The slice is being rendered at a resolution of 50x50 with a value

range of 0.8712 to 3.4606 and a corresponding color range of dark blue (0.667)

and maximum color of red (0.0). The glyphs represent discrete data samples used

to generate the interpolation function for the region. The important thing to note

is the coorelation between color of the glyphs and the color of the volume slice.

Since the data samples within the selected region are fairly spare, there is some

error in the generated interpolation function. The area labeled A shows how the

interpolation function generates a smooth increase in values as the interpolated

position moves further from the initial sample points. The area labeled B shows

the opposite effect.
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Figure 5.6: A chlorophyll mapped volume slice along the ocean surface.
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Figure 5.7: A chlorophyll mapped volume slice in the YZ plane.
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Figure 5.8: A sequence of views for a chlorophyll mapped isosurface
with temperature mapped to color.

Figure 5.6 provides a view of a chlorophyll mapped volume slice along the YZ

plane. The slice is being rendered at a resolution of 50x50 with a value range

of 0.8712 to 3.4606 and a corresponding color range of dark blue (0.667) and

maximum color of red (0.0). The slice generates interpolated values for the area

inbetween the two distinct glider passes that are defined by the position of the

glyphs. Also, the dark blue region at the top of the slice results from a lack of

data samples at that depth.

5.1.4 Isosurfaces

Figure 5.8 provides a sequence of views for a chlorophyll mapped isosurface

with temperature mapped to color. Figure 5.8A is defined with an isovalue of

0.9, and in each successive image the isosvalue is increased by 0.05, resulting in

figure 5.8D being mapped to an isovalue of 1.05. The color of each isosurface is
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Figure 5.9: Two views for a chlorophyll mapped isosurface with salinity
mapped to color.

mapped to the temperature within the region. The minimum and maximum color

values are set to the corresponding global values of -1.8549 and 8.2805, while the

color ranges from dark blue (0.667) to red (0.0).

Figure 5.9 provides two views for a chlorophyll mapped isosurface with salinity

mapped to color. Figure 5.9A is mapped to an isovalue of 0.9 and figure 5.9B is

mapped to 0.95. The color of both isosurfaces are mapped to the salinity levels

within the region, with a color range of dark blue (0.667) to red (0.0).

5.2 Interpolated Visualization Creation Time

The primary bottleneck in constructing the interpolated visualizations is the

construction of the radial basis functions. Specifically, finding a solution to the

linear system requires the inversion of a matrix, which has a run time of O(n3).

Table 5.1 shows how the creation time for a single volume slice oriented in the

XY plane is effected by the number of data samples used in the creation of the

radial basis functions.
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Number of Data Points Volume Slice Creation Time (ms)
202 217
438 1715
457 2176
523 2746
751 7373
789 8364
1292 3486
1415 50029
1463 50765

Table 5.1: A Table that shows how the number of data points effects
the creation time of a volume slice. The volume slice is constructed
with a resolution of 25x25 and is oriented in the XY plane.

When the volume slice is constructed, an interpolation function is generated

for the slice’s depth value. When constructing the interpolator, the application

attempts to use only data samples within half a meter up or down, and will

only increase the depth if it did not find enough data samples within range.

Since the appliction applies severe constraints on the data points used for the

construction of the interpolator, the problem illustrated in table 5.1 is mitigated.

For a full description on the depth constraints used when generating the radial

basis functions, refer to section 3.3.1.
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Chapter 6

Conclusions

This thesis has presented a compelling, efficient, and easy to use interactive

system for visualizing large sets of science data collected by the Slocum Glider.

An interactive camera allows the user to navigate through accurate terrain gener-

ated from bathymetry data. The visualization system constructs glyphs, mission

defined gradient planes, user defined gradient planes, volume slices, and isosur-

faces. Although the glyphs are generated from discrete data measurements taken

by glider, all other visualizations, known as interpolated visualizations, use scat-

tered data interpolation to allow continous sampling over regions containing a

discrete number of data measurements.

The system was developed iteratively to ensure that it would be a useful tool

for the biologists involved in analyzing and interpreting the glider data. At the

completion of each iteration, the system was presented to NORUS biologists to

obtain user feedback and gather additional requirements for the next iteration.

Overall, user feedback was extremely positive, and the biologists were excited to

have an additional tool for visualizing the glider data.
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On a personal note, I gained a lot of experience in the field of scientific

visualization and computer graphics as a whole. Working on a project that users

were excited to have the opportunity to use was a rewarding experience. At the

completion of each iteration, the biologists were eager to provide us with feedback

on the system and additional features they wanted to have implemented.

The following list outlines some future work that can be done to extend the

system, making it more user accessible.

1. Support for Multiple Missions

At this point, the system only allows the user to visualize a single mission

at a time. It’s reasonable to believe that the glider could complete multiple

missions within the same region. Ideally, multiple missions would produce

a better spread of data sampling, making it possible to construct more

accurate visualizations.

2. Support for Multiple Instances of Interpolated Visualizations

The system does not currently allow the user to generate multiple instances

of the same type of interpolated visualization. For example, the user cannot

have more then one isosurface being rendered at a time.

3. Exporting Data

A feature that was requested by the biologists but never implemented is

the funcionality to export the data for a specific region or interpolated

visualization.

4. Glider

Due to time constraints, two requested features involving the glider were

not implemented. The first of these was to have the glider’s speed be scaled
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to a factor of real-time. This would allow the user to get a better idea of

how quickly the glider traversed its mission path. The second feature was

to have a toggle that would cause the mission defined visualizations to be

constructed in the wake of the glider. So, rather then show the entire

mission data at once, it would produce the effect of the visualizations being

constructed as the glider made the measurements.

5. Terrain Optimizations

At this point, the only optimzation being done on the terrain mesh is tri-

angle stripping. A number of terrain optimzation algorithms exist that

produce view-dependent triangle meshes in order to reduce the number of

triangles needed to be rendered. One such algorithm, ROAM, produces

optimal adapting triangle meshes in real-time [12].

6. Uncertainty Visualizations

Since the construction of continuous functions from discrete data samples

is inherently error prone, some form of uncertainty visualization would pro-

vide a means for the biologists to gauge the accuracy of the interpolated

visualizations. Alex Pang’s paper on ”Approaches to Uncertainty Visual-

ization” provides a survey of uncertainty visualization techniques, several

of which could be used within the sytem.

7. In-Depth User Study

Due to time constraints, an in-depth user study did not occur. A final

system did not get released until approximately two weeks prior to the end

of the project, leaving little time to conduct in-depth user testing.

8. Isosurface Transparencty
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In their current state, the isosurfaces are being rendered at 100

9. Optimizations

Storing the A−1 matrix required to construct the radial basis functions

would reduce the amount of processing time required to build the visual-

izations.
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Appendix A

External Libraries

Several open source libraries were used to assist in the construction of the

application. These libraries include Qt, LIBMATIO, and Newmat. Qt, a cross-

platform application and UI framework, is used for its windowing system and

built-in compatability with openGL. LIBMATIO, a MATLAB library, is used to

parse the MATLAB version 5 MAT-files containing the formatted mission data.

Newmat, a matrix library, is used during the construction of the radial basis

functions used in scattered data interpolation.

A.1 Qt Version 4.5.3

Qt is a cross-platform application and UI framework [36]. It is a comprehen-

sive C++ framework for rapid development of cross-platform GUI applications.
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A.2 LIBMATIO Version 1.33

The data collected by the glider is converted to a standard format by the

Rutgers University COOL Center operating out of New Jersey. The formatted

data is exported as a MATLAB Version 5 MAT-file [40].

In MATLAB Version 5, a MAT-file is made up of a 128-byte header followed

by one or more data elements. Each data element is composed of an 8-byte tag

followed by the data in the element. The tag specifies the number of bytes in

the data element and how these bytes should be interpreted; that is, should the

bytes be read as 16-bit values, 32-bit values, floating point values or some other

data type. By using tags, the Version 5 MAT-file format provides quick access to

individual data elements within a MAT-file. You can move through a MAT-file

by finding a tag and then skipping ahead the specified number of bytes until

the next tag [24]. Figure A.1 provides a graphical representation of the mat-file

format.

LIBMATIO Version 1.33 is an open source library that provides an API for

parsing MATLAB Version 5 MAT-files. It provides all of the necessary data

structures and functions to extract the formatted mission data from the Mat-file

generated by the COOL Center citeLIBMATIO.

A.3 Newmat

Newmat is a C++ library that is intended for scientists and engineers who

need to manipulate a variety of types of matrices using standard matrix oper-

ations. Emphasis is on the kind of operations needed in statistical calculations

such as least squares, linear equation solve and eigenvalues [31].
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Figure A.1: This figure shows the graphical representation of the MAT-
LAB Version 5 mat-file format.
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Newmat is utilized during the construction of the radial basis functions used

for scattered data interpolation. Construction of the radial basis functions require

that a system of N linear equations be solved to generate values for the weight and

polynomial coefficients. Specifically, it requires the inversion and multiplication

of large matrices.
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