
TERRAIN IMPOSTORS

A Thesis

Presented to

the Faculty of California Polytechnic State University

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

William Hess

December 2010

c© 2010

William Hess

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Terrain Impostors

AUTHOR: William Hess

DATE SUBMITTED: December 2010

COMMITTEE CHAIR: Zoë Wood, Ph.D.

COMMITTEE MEMBER: Chris Clark, Ph.D.

COMMITTEE MEMBER: John Clements, Ph.D.

iii

Abstract

Terrain Impostors

William Hess

Interactive software applications which need to render large terrain meshes

can suffer from slow frame rates if the geometry of the terrain is sufficiently

dense. However, the viewing angle to many distant features of the terrain does

not change rapidly with respect to time. If the movement of the viewing position

is limited to continuous motion and restrained to a known speed, many terrain

features may be rendered once in high detail and reused for several frames.

This thesis proposes a method to increase the rendering speed of large complex

terrains by splitting the terrain into contiguous chunks. If a given chunk is far

enough away from the camera and its viewing angle will not change quickly, it is

rendered into an image buffer. This buffer is then used to texture map a simplified

version of the terrain mesh. The simplified and textured mesh is rendered in

place of the original chunk of geometrically complex terrain. The simplified mesh

is used to approximate parallax effects as the viewing angle changes in small

increments. This technique is shown to as much as double the rendering speed

of large terrain meshes without reducing the quality of the final image.

iv

Contents

List of Figures vii

1 Introduction 1

1.1 Terminology . 3

1.1.1 Level of Detail . 3

1.1.2 Impostors . 4

1.2 Current Techniques . 5

1.3 Proposed Technique . 8

1.4 Justifications . 9

1.4.1 Static Content . 9

1.4.2 Camera Movement . 10

1.4.3 Video Memory . 10

2 Related Work 11

2.1 Mesh Simplification . 11

2.2 Limited Movement . 12

2.3 Image Based . 13

2.4 Hybrid Techniques . 14

3 Algorithm 16

3.1 Terrain Simplification . 17

3.2 View Frustum . 20

3.3 Impostor Allocation . 22

3.4 Texture Mapping . 24

3.5 Update Criteria . 25

v

3.5.1 Minimum Update Rate . 25

4 Implementation 28

4.1 Terrain Generation . 28

4.2 Cracks . 29

4.3 Atlas . 32

4.4 Foreground Blending . 34

5 Results 36

5.1 Considerations . 36

5.2 Testing Environment . 37

5.3 Performance . 38

5.4 Conclusion . 42

6 Extensions and Future Work 48

6.1 Silhouette Edge Extension . 48

6.2 Self Occluding Chunks . 49

6.3 Scene Models . 49

6.4 Shader Effects . 51

6.5 Large Chunks . 52

6.6 Out of Core Rendering . 52

Bibliography 54

vi

List of Figures

1.1 A large terrain in nature . 2

1.2 Tree meshes at four Levels of Detail 4

1.3 A tree mesh and its Impostor . 5

3.1 Image of simplified and high resolution chunks 17

3.2 Subroutine for validating an edge collapse 18

3.3 View frustum with labeled dimensions 20

3.4 View Frustum from Bounding Box 21

3.5 Calculation of Impostor Dimensions 23

3.6 Viewpoint movement relative to terrain 26

4.1 Images of cracking issues . 30

4.2 Diagram of Mesh Skirt . 31

4.3 Image of Impostor atlas . 33

4.4 Image of foreground fading . 34

5.1 Comparison of framerates at foreground distances 39

5.2 Comparison of foreground boundaries in the 4097 mesh 40

5.3 Table of standard deviation values for performance tests on 4097
mesh . 41

5.4 Comparison of full resolution mesh and Terrain Impostors 43

5.5 Difference image for scene rendering 44

5.6 Comparison of wireframe images 45

5.7 Comparison of images using 128 wide chunks 46

vii

6.1 Example of chunk self-occlusion 50

viii

Chapter 1

Introduction

Often in nature we can view vast landscapes where terrain in the distance is

many miles away. It is very desirable to be able to replicate these scenes in com-

puter graphics. In a scientific application it would be valuable to view a natural

landscape from a vantage point that would be impossible or impractical for a

human to occupy. In an entertainment application users may want to view vast

landscapes like those in nature, but created by artists. In both these applications

users would like to explore the terrain in a realistic, interactive way. In both

scientific and entertainment applications, the most common way of representing

these terrains is using heightfields: 2D arrays of elevation points.

While heightfields are a convenient way of representing a terrain, they have

severe scalability problems when converted into a triangle mesh. Parts of the

terrain that are near the viewpoint should be dense with information. Each

triangle of a terrain mesh close to the viewpoint corresponds to a significant

number of pixels on the screen. However, as the mesh becomes distant from the

viewpoint, the number of pixels that a triangle of the mesh represents is either

one or it does not affect the final image at all. Drawing many triangles which do

1

Figure 1.1: A large terrain in natrure.

not affect the final image severely hurts performance. In order to render an n by

m terrain mesh, 2 × (n − 1) × (m − 1) triangles must be drawn to the screen.

Terrain meshes have n×m space and time complexity requirements. This makes

large terrains very difficult to render interactively.

To be interactive, these applications need to be able to render terrain meshes

faster than 30 frames per second. When rendering rates become slower than 30fps

it is difficult to navigate and view the terrain mesh. The graphics hardware used

in chapter 5.3 was only able to render a 4079 by 4079 wide mesh consisting of

33,554,432 triangles at a rate of 12 frames per second. If a heightfield consists of

elevation points spaced one foot apart, a 4097 wide mesh represents an area of

just 0.6 square miles. In order to make viewing this size of terrain interactive, we

need to be able to maintain higher than 30 frames per second when rendering.

2

1.1 Terminology

There are two graphics techniques that are essential to Terrain Impostors.

The following sections explain these techniques and how they are used.

1.1.1 Level of Detail

When objects appear far away from the viewpoint in a scene, they occupy

very few pixels of the screen compared to when they are close. When this hap-

pens, many triangles in a complex mesh will not affect any pixels on the screen.

Rendering these triangles hurts performance without adding to the final image.

To address this, several versions of an object are created that consist of a differ-

ent number of triangles. The versions of the object with fewer triangles will not

appear as detailed when viewed up close, but are a suitable replacement for the

original object when viewed at a distance. This is called Level of Detail.

Level of Detail is a very popular technique for improving rendering speed. In

entertainment applications artists often manually create each of these Level of

Detail models. An alternative way of generating Level of Detail models is to use

a mesh simplification algorithm. Mesh simplification works by collapsing edges of

the original mesh and placing the resulting vertex in a position that reduces some

error metric. This error metric represents the disparity between the original, high

triangle count mesh and the simplified mesh. The resulting simplified mesh omits

some details of the original mesh but maintains the overall shape of the object.

3

Figure 1.2: This is a tree model at four different Levels of Detail.
The top left tree is the original mesh with a high triangle count. The
bottom right is the least detailed and only suitable for distant views.

1.1.2 Impostors

An alternative way to simplify distant objects is to use Impostors. If how

an object is viewed on the screen is not likely to change over time, it would be

advantageous to cache an image of the object and draw the image every frame in

place of the object. This is how Impostors work. A complex object is rendered

once into a texture. This texture is then applied to a billboard, a rectangle in

space which always faces the viewpoint. This reduces an object with any number

of triangles to an object with only two triangles. As the viewing angle to the

Impostor changes, the Impostor texture needs to be refreshed. If the Impostor

does not get refreshed the object looks distorted.

Impostors have become a less popular way of rendering complex objects at

a distance compared to Level of Detail models. One reason is that a separate

4

Figure 1.3: This is a tree model at four different Levels of Detail.
The top left tree is the original mesh with a high triangle count. The
bottom left is the least detailed and only suitable for distant views.

Impostor must be generated for every instance of the object visible in the scene.

A scene with 300 trees would require at worst 300 Impostor textures, since every

tree model might be viewed from a different distance, angle or have different

lighting. By comparison, Level of Detail requires only 4 meshes no matter how

many trees appear in the scene.

1.2 Current Techniques

Several techniques exist to make rendering terrain meshes more scalable, but

nearly all of them reduce the rendering quality of the original mesh in some way in

order to achieve high framerates. The most simple of these is to limit the distance

at which terrain can be viewed. Terrain features farther than a defined radius

from the viewpoint are not drawn to the screen. In order to view these terrain

features the viewpoint must be moved so that they fall within the viewing radius.

This is trivial to implement and limits the amount of geometry to be rendered

5

to a known maximum, guaranteeing constant frame rates. This technique is an

easy way to visualize heightfields for scientific data where the dataset is too large

to be drawn in its entirety with an acceptable frame rate.

A more complex approach is to use mesh simplification on the terrain mesh.

It is a common technique in computer graphics to create Level of Detail meshes

using mesh simplification. Level of Detail means that a coarse, simplified mesh

is used in place of the original, high-resolution mesh when the object appears far

away from the viewpoint. The justification for Level of Detail is that a coarse

mesh is not noticeably different from the original mesh when it is viewed at a

large distance. This technique can be applied to terrain meshes, but has several

unique problems.

For a model of a tree or a person, the simplified mesh can be easily used in

place of the original mesh because its geometry is disconnected from the scene

it is rendered in. All of the object’s geometry falls within a small bounding

volume. Therefore it is easy to replace a tree mesh completely when it becomes

sufficiently far from the viewpoint. Terrain meshes by comparison do not fall

into small bounding volumes and they are entirely connected. A terrain mesh

often spans the entire length of the scene. One might be tempted to split the

terrain into smaller chunks and simplify each of these individually, but this creates

gaps and discontinuities between high and low detail meshes. These gaps can

cause undesirable visual effects. Terrain mesh simplification therefore becomes a

difficult problem.

The common way of simplifying a terrain mesh is by collapsing edges incre-

mentally in real time as the viewpoint changes. Unfortunately if not done with

great care these edge collapses can be observed by the user. Peaks and valleys

in the terrain are noticeably smoothed out and the resulting coarse mesh often

6

lacks a significant amount of detail.

Another common technique for visualizing terrain meshes is to limit the move-

ment of the viewing position to within a known region. This allows application

designers to precompute backdrops that appear to have high detail, but cannot

be inspected closely because they fall outside of the region that constrains the

viewing position. Very large amounts of geometry can be represented with raster-

ized images or hand-crafted Level of Detail models. By constraining the viewing

position these models or images only need to be visually plausible for a small

range of viewing angles. The constrained region also places seams between high

and low detail meshes at fixed locations so that any gaps can be mended ahead

of time.

This technique is particularly useful and popular in entertainment applica-

tions. By defining which parts of the scene are always high detail and which

are always low detail, the entire scene can be loaded onto the graphics hard-

ware and need not be modified for the rest of the application. This has excellent

performance characteristics as well as provides high visual quality.

This technique, while very useful in certain applications, is not suitable for

scientific visualization and an increasing number of entertainment applications.

It is not practical to limit the viewing position to a small area in a scientific

visualization application and the data in these applications is gathered rather

than created by artists. In entertainment applications there is an increasing

demand for large terrains that are fully explorable. In these applications the

viewing position can no longer be constrained to a small region. The viewpoint

needs to be able to move anywhere within the terrain mesh.

7

1.3 Proposed Technique

This paper proposes a new technique that combines the high visual quality

of static backdrops with the full range of movement allowed by Level of Detail

techniques.

Similar to Level of Detail, this technique creates simplified versions of the

terrain mesh. Unlike the Level of Detail techniques however, this technique is

not concerned with maintaining consistent borders between chunks of simplified

terrain. Chunks of terrain can be simplified independently of each other and need

not be modified during runtime. This technique also uses very coarse meshes.

These meshes would be unacceptably coarse if used directly to represent the

terrain.

This technique also makes use of offscreen render buffers. In OpenGL these

buffers are called Frame Buffer Objects. The Frame Buffer Object and its DirectX

equivalent are supported on nearly all commodity graphics hardware sold at the

time of this writing. These offscreen buffers are used to render Impostors of

distant chunks of terrain in full detail. The renderings are saved for later use as

textures in multiple frames.

These Impostors are applied as textures to the coarse chunks of terrain. When

rendered from the original viewing position, the terrain appears almost no differ-

ent from the full resolution mesh (see figure 5.4 for an example). This would also

be the case if the offscreen buffer were applied to a flat piece of geometry called

a billboard. For a small viewing angle change the flat image is an acceptable

visual approximation of the high resolution mesh. If the viewing angle becomes

too great then the “flatness” of the image becomes apparent.

By applying the offscreen buffer to the coarse mesh, we achieve a much better

8

visual approximation of the terrain as the viewing angle changes. The coarse

mesh provides the parallax effect needed for larger viewing angle changes while

the offscreen buffer provides the rich visual detail of the full resolution mesh.

Parallax effect is the observation that parts of an object that are close to the

viewpoint move quickly relative to the camera when the viewpoint changes. For

example, when driving a car, the fence along the road seems to pass by very

quickly, houses behind the fence move by at a reasonable speed and hills in the

distance hardly seem to move at all. An Impostor that is projected onto a flat

surface has no parallax effect.

1.4 Justifications

There are several reasons for why this is an appropriate technique for both

scientific visualization as well as entertainment applications.

1.4.1 Static Content

Heightfield data in these applications is almost always static. In scientific

applications, data is usually gathered first and then visualized using the appli-

cation. In entertainment applications the heightfield represents a static terrain

which cannot be modified at runtime. Given these assumptions it should be ap-

propriate to render the meshes into an offscreen buffer and reuse the buffer as an

approximation over time.

9

1.4.2 Camera Movement

In both scientific and entertainment applications, the viewing position usually

moves in a continuous path or in small, well-defined increments. In addition, the

movement of the camera is usually limited to a maximum speed. For these

applications we can define an upper limit on the movement speed of the viewing

position. By limiting the movement speed, we can calculate a lower bound for

the time an Impostor can be reused. This lower bound allows us to guarantee

that we won’t need to refresh any given Impostor for at least that amount of

time.

1.4.3 Video Memory

In 1999 commodity graphics hardware had at most 32 megabytes of video

memory [1]. Also at the time 800 pixels by 600 pixels was the most common

resolution used on personal computers [14]. Since then video memory available

on commodity graphics hardware has increased to 2 gigabytes: a 64x increase

in just over 10 years. Over the same time the most common screen resolution

has increased to 1280x1024. This is only a 2.7x increase in the number of pixels

displayed.

In 1999 the ratio of screen pixels to video memory was roughly 70 bytes per

pixel. In 2010 that ratio is now as much as 1.6 megabytes of video memory

available per pixel. This trend in memory size relative to screen resolution has

accommodated the high storage requirements of impostors. As video memory

per screen pixel increases, impostors should become more effective for real-time

rendering.

10

Chapter 2

Related Work

2.1 Mesh Simplification

Since mesh simplification is used for Level of Detail terrain meshes and is

also used in this paper, it is worth mentioning the common methods. Hoppe

demonstrates in [8] that an appropriate simplified mesh can be attained by only

collapsing edges of the original mesh. This is important for incremental Level of

Detail meshes so that a transition from a high resolution mesh to a low resolution

mesh can be described as a series of sequential edge collapses.

In ROAM [5] an incremental mesh simplification technique specifically for

terrain is introduced. This technique works by representing the terrain mesh as

a binary triangle tree. Any triangle within this data structure can be split or

merged to adjust the complexity of the geometry. A drawback to this technique

is that any triangle within the mesh cannot differ from its neighbors by more

than one level of triangulation. The splitting of one triangle to increase detail

may cause a chain reaction of splits. This prevents high detail triangulation from

11

being in close proximity to low detail parts of the mesh. Another drawback is

that all edges must fall on 45 degree increments with respect to the xz-plane.

This makes it very difficult to represent a terrain such as a steep cliff that falls

at a 30 degree angle on the xz-plane. A general technique such as [8] would be

able to represent such a mesh with only a few triangles while ROAM will require

high triangulation along the cliff’s edge.

2.2 Limited Movement

Several popular game engines make use of the technique of limited viewpoint

movement. A Skybox consists of a cube that surrounds the scene and does not

move relative to the camera position. This has the effect of appearing infinitely far

away from the observer. The cube normally appears as a hand-drawn sky texture.

This technique is still used to draw sky, which is appropriately approximated as

being infinitely far away. In older games the skybox was also used to draw far

away scenery, but because this scenery did not have any parallax effect Skyboxes

are now rarely used for anything but rendering sky.

Valve’s Source engine [16] makes use of a 3D Skybox. Level designers reserve

an unreachable part of the scene for the 3D Skybox. Within this unreachable area

the level designers create all of the geometry that falls outside the area the player

may move within. This geometry is created at a 1:16th scale so that very large

scenes can be created without needing to increase the capabilities of the game

engine. The effect is that the player of the game appears inside of an extremely

large and detailed scene. In the Frostbite Engine [2] a similar technique is used for

their very large terrains. The Frostbite engine claims a 32x32 kilometer viewable

area while only 2x2 kilometers are explorable.

12

2.3 Image Based

Impostors are a technique for replacing an object in a scene with a cached

rendering of that object. Impostors are usually applied to a flat surface which

always faces the viewpoint called a billboard. Impostors have the benefit of being

able to simplify an arbitrary amount of geometry and detail into a flat image

which can be reused for many frames. Impostors have a drawback of requiring

the rendered image to be stored as a texture. While impostors are easier for

graphics hardware to render, they require a significant amount of video memory.

Level of Detail meshes have generally been preferred to Impostors because only

one mesh needs to be saved in memory per type of object in the scene, while

Impostors require a separate texture for every instance of an object in the scene.

In [15] Impostors are used to represent buildings in an urban environment.

Distant structures in their scene are rendered into textures and the depth map of

the texture is analyzed to generate an appropriate low resolution mesh on which

to project the texture map. This mesh places appropriate vertices at places where

the depth map has large disparities in order to give a good parallax effect.

Layered Depth Images [7] also transforms a rendering of a scene in order to

use it for multiple different viewpoints. Two things make LDI different. First, the

scene is not simply rendered as a single 2D image. Instead of discarding occluded

pixels when a scene is rendered, pixels at multiple depths are saved. This allows

parts of the scene which would have been occluded from the original viewpoint

to be visible when the viewing angle is adjusted. The second difference is that

LDI uses a technique called Image Splatting to display the rendered image.

Image Splatting renders an image by treating every pixel of the image as a

separate piece of geometry. The depth of the pixel when it was drawn is used to

13

place the pixel in space. If the pixel appears closer to the viewpoint than it did

in the original rendering then its size is increased to occupy a larger part of the

screen. The result is a good visual approximation of a scene from small changes

in the viewpoint. The large increase in geometry used in Image Splatting makes

it unsuitable for real-time rendering.

2.4 Hybrid Techniques

Debevec’s technique for rendering architecture [4] uses a very similar tech-

nique for representing complex objects. In Debevec’s work, the objects are not

high resolution meshes but actual physical landmarks. Sparse photographs are

taken of these landmarks and projected onto coarse meshes that approximate the

landmark. At first a linear combination of the photographs based on the viewing

angle is used to texture the coarse mesh, but it is found to be an unsuitable ap-

proximation of the actual landmark because the photographs used are extremely

sparse. Stereo Correspondence is used to calculate a depth value for pixels in the

photographs and combined with Image Splatting recreate the high detail surfaces

of the landmarks.

In [3] a very similar technique to the one proposed is used. LOD-Sprite

rendering renders a flat image for the entire high-resolution terrain mesh from the

current viewpoint. This image is used to texture map a low resolution version of

the mesh for several frames until an error metric determines that the scene needs

to be redrawn. Polygons which were not fully visible when the high resolution

image was rendered are instead mapped with the original texture used in the

scene. While LOD-Sprite addresses the same basic idea of terrain Impostors,

it does not address many of the scalability concerns that are discussed in this

14

paper such as incremental updating using many smaller Impostors and blending

between foreground and background.

15

Chapter 3

Algorithm

The algorithm is composed of several parts. First, the desired terrain mesh

must be simplified in chunks and these chunks must meet several requirements in

order to be suitable for this technique. These requirements and the simplification

method used are explained in section 3.1. Next, a view frustum must be created in

order to render the chunk of terrain into an offscreen buffer. Section 3.2 explains

how that frustum is derived. Once we have a view frustum that encapsulates

the chunk we want to draw, we need to know how many pixels the Impostor

requires to accurately represent the terrain. Section 3.3 describes how to calculate

the Impostor dimensions. After the Impostor has been rendered into a texture,

we need to apply it onto the simplified mesh we generated earlier. Section 3.4

explains how the texture coordinates for the simplified mesh are calculated. Once

the program is running, Impostors will need to be redrawn. Section 3.5 explains

how to calculate an update criteria for each Impostor and how to define a lower

limit for the time an Impostor will be valid.

16

Figure 3.1: Wireframe images of both the simplified and high resolu-
tion chunk meshes are shown together.

3.1 Terrain Simplification

The mesh simplification algorithm used is very similar to that used in Pro-

gressive Meshes. Meshes are simplified by performing a series of edge collapses

until some criteria has been met. In Progressive Meshes an error metric is used to

determine when the mesh has been simplified enough. Instead, our chunk meshes

are simplified until they are composed of a fixed number of triangles. While this

may be slightly inefficient by assigning more triangles to chunks which may not

need them for a good approximation, every chunk is reduced to less than 1% of its

original triangle count. Forcing all chunks to be the same size makes framerates

more predictable as well. Future work may make better use of incorporating the

error metric to decide when to stop simplifying.

Two additional criteria are imposed on the mesh simplification. First, the

edges of the chunk must be maintained. This means that when viewed from

17

xEdge← v2.x mod chunkWidth

zEdge← v2.z mod chunkWidth

if xEdge 6= 0 and zEdge 6= 0 then

return true

else if xEdge = 0 and zEdge = 0 then

return false

else if xEdge = 0 then

return v1.x = v2.x

else

return v1.z = v2.z

end if

Figure 3.2: This is the routine to determine the validity of an edge
collapse from v2 onto v1. This check maintains the square shape of
simplified chunks of terrain.

above in an orthogonal projection, each chunk should maintain a square shape.

This prevents gaps from forming between chunks in the xz-plane. There may still

be discrepancies in the y-axis between chunks of terrain because each chunk is

simplified independently. Maintaining the edges allows gaps between chunks to

be more easily sealed using techniques mentioned in section 4.2.

To determine whether an edge collapse would disrupt the square shape of the

mesh, a subroutine is called and given the x and z values of each vertex and

returns a boolean value determining whether or not the edge collapse is valid. To

simplify our algorithm, there are only two possible outcomes of an edge collapse.

One vertex involved in the collapse must be collapsed onto the other. Given

two vertices v1 and v2 who occupy the same edge, the routine in figure 3.2 will

determine if collapsing v2 onto v1 is legal.

18

The routine is very simple. First we assign the value of v2.x and v2.z modulo

the chunk width to xEdge and zEdge respectively. If either of these values is

equal to 0 then v2 lies on a chunk boundary in the x or z direction. If v2 does not

fall on a border between chunks in either axis then it is ok to collapse. This is the

normal case for the algorithm. The second condition is true if v2 is on a border

in both directions, meaning it is one of the corners of the mesh. Collapsing a

corner onto another vertex is never a valid edge collapse. In the third case v2

falls on a boundary in the x direction, but is not a corner. If both v1 and v2 have

the same x value then they must fall on the same boundary. Note that v1 may

either be an edge vertex like v2 or it may be a corner. This allows collapses to

take place along the boundaries of meshes without disrupting the edge. The last

case is the only other possibility and performs a similar check to the third case

for the y value..

Another criteria for collapsing is that no triangle in the simplified mesh should

have a normal vector with a nonpositive y value. This implies that no two

triangles in the simplified mesh may overlap in the xz-plane. Combined with the

previous criteria we can say that any vertex from the original terrain mesh is

either included in the simplified mesh, corresponds to only one triangle in the y-

axis or falls on an edge between two triangles in the y-axis. Using this knowledge

it is easy to determine which points of the original mesh correspond to any given

triangle in the simplified mesh. This is useful for calculating the error of an edge

collapse.

19

Figure 3.3: A view frustum with labeled dimensions.

3.2 View Frustum

Once the high resolution terrain and its simplified chunks have been acquired,

Impostors can be generated. Rendering the chunk of terrain into an offscreen

buffer requires an appropriate view frustum and dimensions for the offscreen

buffer which correspond to the number of pixels the chunk occupies on the screen.

These values need to be recalculated every time an Impostor is rendered from a

different viewpoint.

A view frustum is a volume which defines where objects are drawn onto the

screen. The view frustum is defined by 6 planes. The top, bottom, left and right

planes define the edges of the screen or viewport. Each of these planes tapers

outward to achieve a perspective transformation. The view frustum contains a

larger part of the scene the farther it is from the viewpoint. The near and far

planes prevent objects from being drawn too close or too far from the viewpoint.

Since this part of the algorithm must be run in real-time and in small enough

increments that it can be calculated between frames, it is not practical to test

20

Terrain Center

Up

Down

Bounding Box

Near

Far

Viewpoint

Figure 3.4: A diagram of how a view frustum is tightly fitted to a
bounding box. The near, far, up and down values are labeled.

each vertex of the terrain mesh in order to find an appropriate view frustum.

For this reason an axis-aligned bounding cube is constructed with corners equal

to the corners of the terrain mesh whose y values have been replaced with the

minimum and maximum height values within the terrain. Each of these corners

is used to create the view frustum. The center of this bounding cube is also

calculated.

The view frustum can be constructed using 6 values. These values are near,

far, left, right, up and down. near and far define the distance from the view-

point to the near and far clipping planes. These values are calculated first by

constructing a plane which contains the viewpoint and has a normal vector paral-

lel to the direction from the viewpoint to the center value calculated earlier. The

distance between this plane and each of the 8 corners of the bounding volume

are calculated and the minimum and maximum values are saved as near and far

21

respectively.

In order to find left and right, each of the corners of the bounding box are

projected onto a plane. This plane is constructed so that the viewpoint and

the center of the bounding box lie within it, and is oriented so that it should

bisect our view frustum horizontally. Each projected point and the center is

translated so that the viewpoint is considered the origin. The cross product

between the center point and each of the translated points is calculated. The

points whose cross product is largest and smallest are saved as the leftmost and

rightmost points respectively. A similar procedure is followed to find the upmost

and rightmost points with the plane oriented so that it bisects the view frustum

vertically.

The leftmost, rightmost, upmost, downmost and center points are then pro-

jected onto the near clipping plane. This is a plane with a normal parallel with

the viewing direction and near distance away from the viewpoint. The distance

between the projected center point and each of the other projected points yields

the values for left, right, up and down. Using this data we can construct an ap-

propriate view frustum and orient it using the viewing position, center position

and up vector, which is simply a unit vector on the y-axis. The projection matrix

constructed by this frustum and orientation is saved for use in section 3.4.

3.3 Impostor Allocation

In addition to the view frustum, we also need to know how many pixels should

be allocated for each Impostor. To calculate the dimensions of the offscreen buffer

two more pieces of information are needed. The dimensions of the main viewport

for the application width and height and the field of view of the viewport fovy

22

β
α

β

Ipx

Fnear

Fright

Width / 2

Figure 3.5: This diagram shows the relationship between the view
frustum for the chunk of terrain and the view frustum for the main
application. These frustums can be compared to calculate an appro-
priate number of pixels for the Impostor. Ipx is the number of pixels
required for the right section of the view frustum.

and fovx.

In figure 3.5 α is fovx/2 and the number of pixels associated with α is the

width of the screen resolution divided by two. It is assumed that the view frustum

for the application’s viewport is symmetrical. Ipx is the number of required pixels

for the Impostor based on the right half of the view frustum. Fright and Fnear are

the values we calculated earlier to create the view frustum. Using the triangle on

the right we can derive the relationship in equation 3.1:

Ipx =
Width× tan β

2 tanα
(3.1)

Since α is a constant value, tanα is easily calculated. We can calculate a value

for tan β using the triangle on the left and the values from the view frustum.

23

Replacing these values we get equation 3.2:

Ipx =
Width× Fright

2Fnear × tan (fovx/2)
(3.2)

If we perform this calculation for Fright and Fleft and sum the number of pixels

calculated for each side of the frustum, we will have the required pixel dimensions

of our Impostor. Combining the equations for Fright and Fleft and repeating the

process for Fup and Fdown, we get equations 3.3 and 3.4:

Iwidth =
Width× (Fright + Fleft)

2Fnear × tan (fovx/2)
(3.3)

Iheight =
Height× (Fup + Fdown)

2Fnear × tan (fovy/2)
(3.4)

Where Iwidth and Iheight are the dimensions of the Impostor.

3.4 Texture Mapping

By saving the projection matrix for later use, we can derive appropriate tex-

ture coordinates for each vertex of the simplified mesh. By applying the projec-

tion matrix to a vertex, we get a value in the range [-1, 1] for the x and y values.

These values correspond to where the vertex would appear in screen space using

the view frustum we derived earlier. If we translate these values to [0, 1], the x

and y values become appropriate s and t values. s and t can be used as texture

coordinates for each vertex of the mesh. If the simplified terrain mesh is viewed

from angles near to the angle the Impostor was rendered from, it should look

very similar to the original mesh.

24

3.5 Update Criteria

As the viewing position moves, it is important to redraw the offscreen buffers.

Some of the Impostors may be more inaccurate than others and should be redrawn

sooner. We can roughly quantify how inaccurate every terrain Impostor is by

comparing the current viewing angle to the viewing angle when the Impostor

was rendered. An easy way to calculate this value is to compute the dot product

between two unit vectors. The first unit vector points from the center of the chunk

of terrain to the viewpoint when the Impostor was generated, and the second unit

vector points from the center of the chunk of terrain to the current viewpoint. In

this situation -1 would be the most inaccurate while 1 would indicate it does not

need to be upated at all.

For very large Impostors this may be a poor criteria. The viewpoint can move

towards the center of a large Impostor until it is very close. The error would still

be minimal even though the edges of the Impostor may be very distorted. For

this reason it would be advantageous to do this calculation for each corner of

a bounding box surrounding the chunk of terrain and use the maximum value.

This would prevent such a situation since the viewpoint cannot move towards

all corners of the box at once and each corner represents the maximum possible

error of any section of the terrain represented by the Impostor.

3.5.1 Minimum Update Rate

It is also important to guarantee that we will not need to redraw Impostors

at a rate higher than our minimum frame rate of 30 fps. If we need to update

our Impostors at a rate greater than 30 frames per second then the technique will

be counterproductive because of the overhead required to render to an offscreen

25

M

D

α

Terrain

Viewpoint

Figure 3.6: This diagram shows the relationship between the move-
ment of the viewpoint and the viewing angle of an object viewed at
distance. α is the largest appropriate viewing angle for the object. D
is the distance from the viewpoint to the object. M is the shortest
distance the viewpoint must travel in order to exceed a viewing angle
of α.

buffer. If we define a maximum viewing angle α at which any piece of terrain

Impostor is a good approximation of the original mesh, we can combine that with

the speed of the viewing position S to obtain a rate at which the chunk of terrain

must be redrawn that will always maintain a good visual approximation.

Let us define D to be the distance from the original viewing position to the

chunk of terrain. If α is the largest appropriate viewing angle for the chunk

of terrain then let M be the distance the viewpoint must travel to cause the

viewing angle to become greater than α. This relationship is illustrated in figure

3.6. From figure 3.6 we can derive equation 3.5:

sinα =
M

D
(3.5)

26

We can substitute M for S × t where S is the maximum speed of the view-

point and t is the time required for the viewing angle to become greater than α.

Substituting and rearranging equation 3.5 gives us equation 3.6:

t =
D sinα

S
(3.6)

We can substitute D, α and S with values from our application to determine

the smallest amount of time that a single rendering of a chunk of terrain can be

reused for. As an example, if we set D to be 1000 units, S to be 50 units per

second and α to be 5 degrees, then we obtain a value of 1.74 seconds for t.

If our application is normally rendered at 60 frames per second, 1.74 seconds

becomes a minimum of 104 frames that the chunk can be reused for. By redrawing

the chunk of terrain at least once every 104 frames we can guarantee that the

terrain will always maintain a good approximation of the original high resolution

mesh.

If we apply this equation to many chunks of terrain that are distributed

around the viewpoint, we see that most chunks will not approach this minimum

refresh rate. Since the terrain chunks are spread uniformly across the xz-plane

the viewing angle will change at a much slower rate for some chunks (particularly

those the viewing position is moving towards or away from). In addition, the

viewing position may not always be moving at its maximum speed or in a uniform

direction. All of these factors increase the time for which a chunk of terrain can

maintain a good approximation without needing to be redrawn.

27

Chapter 4

Implementation

The implementation of this technique involves several practical and perfor-

mance concerns. Section 4.1 explains how the terrain meshes which are used in

this paper were generated. Section 4.2 explains how cracks between chunks were

mended to appear as one contiguous terrain. Allocating Impostors individually

was found to perform badly. Section 4.3 explains how Impostor textures are

packed into one large texture atlas. Not only do chunks need to be mended to-

gether, but parts of the foreground which are drawn in full resolution need to be

transitioned into Impostors. Section 4.4 explains how this transition is achieved.

4.1 Terrain Generation

First a suitable terrain mesh is needed for rendering. For this implementation,

techniques from [13] were used to generate and erode large heightmaps. This

terrain generation technique was chosen because it creates distinct terrain features

that protrude from the mesh. These features are useful for demonstrating the

characteristics of terrain Impostors.

28

4.2 Cracks

Since terrain meshes are large, contiguous meshes, one of the first concerns

that needs to be addressed in this technique is the ability to conceal cracks

between chunks. There are two forms of cracking that can appear. The first is a

result of the mesh simplification algorithm and the second is from the pixelation

of Impostors.

By making mesh simplification easy and simplifying each chunk of terrain

independently, significant gaps can appear between neighboring geometry. To

the user, these gaps would be very obvious and undesirable. To prevent this from

happening, a “skirt” is added to each chunk.

A skirt is a set of polygons added to the edge of the chunk of terrain that

extend its geometry downwards. This skirt fills any gaps between neighboring

simplified meshes. The effect of the skirt is that in the gaps where no geometry

was visible, there is now a face which can be mapped with the appropriate pixels

from the farther away Impostor.

Sometimes the opposite effect happens, where the closer simplified mesh fails

to cover all of the pixels in its Impostor. To prevent this from happening, a

second skirt is added, but this time it is very small, points upwards and faces

inwards towards the center of the chunk of terrain. This is useful for situations

where the simplified mesh is too low around its edges, preventing pixels from the

Impostor from being displayed on the screen. This skirt is small enough that it

is does not cause a noticeable parallax effect on the terrain.

Another form of crack occurs due to the pixelation of Impostors. If an Im-

postor for a chunk of terrain includes only geometry from that chunk, it creates

ragged, pixelated edges where the terrain suddenly ends. The ragged edges of

29

Figure 4.1: Here the same section of terrain is shown with different
types of cracking. Top: the geometry is rendered without any skirt
triangles and gaps are present between adjacent meshes. Middle: Pix-
elations are present in the edges of the Impostors due to only rendering
the geometry associated with the individual chunk. Bottom: In this
scene both seaming techniques are used and no cracks are visible.

30

Lower Skirt

Upper Skirt

Figure 4.2: The bold line represents the edge of a simplified terrain
mesh viewed from the side. The upper mesh skirt is created by adding
triangles to each of these edges that rise vertically a small number of
units from the original mesh. The lower skirt is created by dropping
triangles down to a set minimum value for the entire chunk.

31

neighboring Impostors create seams that are visible by the user. To prevent this

from happening not only is the individual chunk’s geometry rendered to create

the Impostor, but each of the 8 chunks surrounding it are rendered as well. Most

of the geometry of these chunks is clipped out by preventing all but a small border

of terrain around the chunk to be drawn in the Impostor. Enough neighboring

geometry is kept near the edges so that the pixelation and ragged edges are no

longer present.

4.3 Atlas

Unfortunately, allocating and deleting offscreen buffers every frame is ex-

tremely expensive on current hardware and causes very low framerates. To avoid

this problem, one large offscreen buffer is allocated at the beginning of the ap-

plication and used as a texture atlas [11][9]. By combining all of the offscreen

buffers into one large texture atlas, the buffer size allocated for each chunk of ter-

rain cannot be changed independently. This requires a new scheme for changing

Impostor size for all chunks at once.

To re-allocate the number of pixels assigned to each Impostor, each chunk

of terrain creates a view frustum and calculates the desired dimensions for its

Impostor. The Impostor sizes are sorted by height and packed into the texture

atlas using the First-Fit Decreasing Height algorithm [6]. Fortunately, Impostors

are rectangular in shape and similarly sized so packing them somewhat efficiently

is a quick process. This calculation is fast enough to be performed in the time

between frames of the application and causes no stalls. If for larger scenes this

allocation takes longer than one frame to calculate, the calculation can be per-

formed asynchronously in a separate thread.

32

Figure 4.3: Impostor viewports are packed into one large texture which
is allocated at the start of the application.

When Impostors are assigned new locations in the texture atlas, the pixels

they are assigned will not contain appropriate renderings. Since not all Impostors

can be regenerated in one frame, a second texture atlas is required. Each chunk

of terrain is allocated a space for an Impostor in both texture atlases. One of the

texture atlases will be more out of date than the other. When a new Impostor

is rendered for a chunk of terrain it changes its texture mapping from the out of

date atlas to the newer atlas.

Once all the Impostors in the newer atlas have been rendered the out of date

atlas can be re-allocated. When new assignments have been made for the texture

atlas Impostors can begin to be rendered in their new locations. The new atlas

becomes out of date and the out of date atlas is cleared and becomes the new

one.

33

Figure 4.4: The textured foreground geometry is faded into the back-
ground Impostor-based geometry which has been rendered as a wire-
frame for this image.

4.4 Foreground Blending

Terrain in the foreground, especially chunks the viewpoint lies within, should

not generate Impostors. Not only will they need to be redrawn more often, but

they will also require much more texture space in our atlas. This means that

some terrain is drawn as Impostors while other parts of terrain are drawn in the

usual way at high resolution. This requires a seamless way of blending between

the foreground (regular terrain meshes) and the background (Impostors).

Blending between the foreground and background is achieved with a simple

linear alpha channel fade. At an inner radius around the viewpoint, startFade,

the alpha channel of the foreground terrain begins to drop from 1 (opaque) to-

wards 0. The foreground becomes completely transparent at the outer radius,

endFade. Any chunks of terrain which lie outside this radius are drawn only as

34

Impostors. Each chunk of terrain is tested against the radius using its bounding

box.

To render the scene, first all Impostors are rendered with a depth value that

is offset to be deeper than normal, but accurate relative to all other Impostors.

Impostors which fall completely within the startFade radius are not drawn. Fore-

ground chunks of terrain are then drawn over the Impostors. Since the Impostors

have been drawn with a deeper than normal depth value, the foreground cannot

be occluded by the Impostors, but the foreground will properly occlude itself.

This was found to perform better than clearing the depth buffer after drawing

the Impostors.

Since the Impostors so closely represent the high resolution chunks of terrain,

the fade between foreground and background is not obvious, even when aware of

it and attempting to notice the effect.

35

Chapter 5

Results

In order to judge the fitness of this technique it was necessary to compare

rendering speeds using various terrain meshes and parameters.

5.1 Considerations

There are issues with the current implementation that impact the performance

results. These issues are non-essential to the technique.

First, two entire texture atlases occupy video memory while only half of the

allocated texture atlas space is ever in very active use. A better scheme for

resizing Impostors over time may make better utilization of this memory and

allow the technique to be used on machines with lower amounts of video memory.

The second performance concern involves the storage of the original mesh

data. In the implementation the entire high-resolution terrain mesh is stored in

video memory. Combined with the texture atlas, this further increases the need

for large video memory. A scheme for keeping in memory only those parts of

36

the original mesh which are needed for the foreground or for updating Impostors

would greatly reduce the required video memory needed to use this technique.

Given these two issues, texture atlas size had to be reduced to allow all re-

quired geometry data to be stored in video memory for the larger meshes. This

reduces the visual quality of the Impostors during the tests.

5.2 Testing Environment

All performance tests were run on a machine with an Nvidia GeForce 260GTX

video card with 768 megabytes of video memory. Four terrain meshes were gener-

ated for testing this technique. Each terrain mesh is square shaped and increasing

in size. The smallest heightfield consists of 1025 squared height values. Its mesh

contains 2,097,152 triangles. Each mesh increases in width by 1024 values. The

fourth mesh is generated from a heightfield of 4097 squared values and has a mesh

consisting of 33,554,432 triangles. Two simplified versions of each terrain were

generated. One version used chunks that were 64 units wide while the other used

128 unit wide chunks. Chunks consist of 157 triangles on average including the

skirts and 85 triangles without. The triangle count of the completely simplified

version of the 4097 wide mesh with 64 wide chunks is 643,072.

To measure the performance of the technique, the number of milliseconds

required to draw each frame is recorded for 10,000 consecutive frames. These

frame times are later used to compute an average number of frames per second

for each of the experiments.

Since Impostors need only be updated when the viewpoint moves a great

enough distance, testing requires that the viewpoint be in motion for the tests.

37

While frame times were gathered, the viewpoint was set to move in a circular

pattern around the terrain. This viewpoint movement covers nearly the entire

width of the terrain so that terrain features must have Impostors generated for

many possible viewing angles. The viewpoint also has a fixed movement speed

of 80 units per second.

5.3 Performance

Figure 5.1 shows general performance results for each of the four terrain

meshes used. The framerates for full represent rendering the full terrain mesh

with no overhead for rendering Impostors. Each of the other plots show the

framerate results of using this technique at varying foreground fading distances

and chunk sizes. The first number is the foreground rendering boundary and

the second number is the width of the simplified chunks used. By increasing the

foreground distance there are less Impostors in the scene, but the full resolution

mesh must be used in their place. The Impostors which are removed are also the

ones that would need to be updated more often since they are closest to the view-

point. As the terrain meshes become larger, pushing the foreground boundary

back farther results in slightly higher framerates. Pushing the foreground dis-

tance back as far as possible increases visual quality by not only rendering more

of the high resolution mesh, but by allocating more space in the texture atlas to

each individual Impostor since the largest Impostors are no longer present.

The 128 wide chunk tests had excellent rendering speeds. The larger chunks

were able to increase the rendering speed of the scene by as much as 7.6 times.

However, chunks near the viewpoint had much more obvious rendering artifacts

due to self-occlusion of Impostors. When the large chunks were viewed from a

38

Figure 5.1: Adjusting the radius at which the foreground ends can
affect time required to render the scene. For smaller meshes a close
foreground boundary yields better results, but in larger meshes a larger
foreground boundary is equal or slightly faster. Inf represents render-
ing the scene using no Impostors.

large distance, this self-occlusion was not as obvious. The 128 wide chunks are too

coarse for close viewing but provide a very large performance boost for the larger

terrain meshes where most chunks are far away from the viewpoint. Section 6.5

explains a possible extension to this implementation that would combine the good

approximation of 64 wide chunks close to the viewpoint and the high performance

increase of using larger chunks far away from the viewpoint.

Even in the 4097 wide mesh there is a limit at which extending the foreground

boundary maintains a high framerate. Figure 5.6 shows that past 1000 units away

from the viewpoint, extending the foreground boundary decreases the framerate

when using 64 unit wide chunks. This shows that in any application using this

39

Figure 5.2: The behavior of framerates as the foreground boundary is
extended. Approximately the same framerate is maintained until 1000
units away from the camera when the inefficiency of rendering the full
mesh begins to lower the framerate.

technique, finding an appropriate value for the boundary is critical to balancing

speed and rendering quality.

It is interesting to note that for the 1025 wide mesh, using a foreground

boundary of 600 and chunk sizes of 64 the framerate actually decreased. At this

distance, nearly all of the full resolution mesh must be drawn every frame in addi-

tion to the overhead of having to set up and render Impostors in the scene. This

would indicate that being able to cut out large sections of the terrain’s geome-

try is an important factor to being able to overcome the overhead of rendering

Impostors.

40

Foreground
Distance

Chunk Width Average FPS FPS at one Standard
Deviation

Full N/A 12.6922711 12.60956096
200 64 19.34585674 17.25031183
400 64 19.09715595 15.79657353
600 64 19.17327814 15.54628143
200 128 97.01818182 77.82946639
400 128 93.64908504 80.67043284
600 128 59.26606048 52.84394585

Figure 5.3: This table shows the average frames per second for each
test as well as the drop in FPS at one standard deviation away from
the average. These results are all from the test of the 4097 wide mesh.

These results show that there is clearly a significant performance decrease

when many Impostors must be drawn every frame. With a fixed chunk size, the

number of Impostors we must render in our implementation as the terrain size

grows is still relative to the square of the size of the scene. Section 6.5 discusses

a technique for reducing the number of Impostors and can possibly overcome

this overhead and make the number of Impostors which must be rendered very

scalable.

It is also important to consider not only the average framerate. If the ap-

plication suddenly drops to a very low framerate intermittently, that can ruin

the interactivity of the applicaiton even though average framerates are very high.

To verify that this is not the case, the standard deviation as well as minimum

framerates have been calculated for several of the performance tests on the 4097

wide terrain mesh and are shown in Figure 5.3.

Figure 5.3 shows that the standard deviation does increase when using Terrain

Impostors, but the framerates at one standard deviation from the average are not

so far from the averages that the drop in framerate should be very noticeable.

This increase in standard deviation could be reduced even further by updating a

41

constant number impostors every frame rather than simply updating those that

exceed our error threshold.

5.4 Conclusion

A few years ago, this technique would not have been feasible. Commodity

graphics hardware did not have nearly the abundance of fast memory that it has

now. In addition, OpenGL Frame Buffer Objects have made rendering into a

texture effective for real-time applications. Combining these advances in hard-

ware has allowed the implementation to successfully render large terrain meshes

faster than a simple geometry-only implementation.

What makes this technique different from Level of Detail approaches is that

the quality of the scene does not need to be sacrificed in order to obtain high

framerates. As long as enough video memory is available, these large terrains can

be rendered quickly with little or no loss in visual quality. With the improvements

suggested in section 6.6, this technique may also even reduce the overall video

memory requirements for rendering a scene by making the space requirements of

elements in the scene proportional to their size in screen space rather than the

complexity of their geometry.

It is also important to note that this technique is not mutually exclusive

with Level of Detail. While current Level of Detail implementations often visibly

reduce the quality of distant parts of the scene, Level of Detail can be used in

such a way that there is very little loss in quality but significant improvements

in speed. Any improvements to the efficiency of rendering the underlying high-

quality terrain will only improve the performance of using Terrain Impostors.

42

Figure 5.4: Top: The 2049 mesh rendered using the original terrain
mesh. Bottom: The 2049 mesh rendered from the same position using
Terrain Impostors.

43

Figure 5.5: This is an inverted difference image showing the pixel
differences between the original rendering of the scene in figure 5.4
and the same scene rendered using Terrain Impostors.

44

Figure 5.6: Top: The wireframe for the full resolution terrain mesh.
Bottom: The wireframe for terrain Impostors using 64 wide chunks.
Foreground chunks are drawn in high resolution while background
chunks use simplified meshes.

45

Figure 5.7: Top: A scene rendered using a full resolution mesh. Mid-
dle: The same scene rendered using 128 wide chunks. Bottom: An
inverted difference image comparing the pixel difference between the
two renderings. The larger chunk size exaggerates the self-occluding
chunk problem for nearby terrain.

46

The significance of this implementation is to show that this technique can

be used to render geometry faster than using the full mesh every frame. The

overhead of rendering into a texture is low enough that this method of rendering

scenes should be seriously considered over pure Level of Detail techniques. With

the extensions mentioned in Chapter 6, real scalability may be possible and we

may begin to see much larger scenes and datasets used in interactive applications.

47

Chapter 6

Extensions and Future Work

Several extensions to Terrain Impostors were considered during implementa-

tion but could not be completed. Sections 6.1, 6.2 and 6.3 explain techniques

which could be applied to increase the visual quality of Terrain Impostors. Sec-

tion 6.5 describes a way to make Terrain Impostors more scalable. Section 6.6

explains how Terrain Impostors could be used to render terrains meshes which

are much larger than video and even main memory.

6.1 Silhouette Edge Extension

While seams between chunks of terrain extend geometry to make sure all

pixels from the Impostor are drawn to the scene, there is another source of lost

pixels. A silhouette edge on the simplified terrain mesh may cut off pixels from

the Impostor. The current Implementation makes no attempt to recover these

lost pixels. This causes a very subtle change by only a few pixels between the

full resolution model and the Impostor as it is viewed in the implementation.

48

To remedy this problem, additional faces can be extended from silhouette

edges of the simplified mesh to “catch” the extra pixels that are missing. This or

another possible technique for recovering these missing pixels from the Impostor

would be a valuable future improvement.

6.2 Self Occluding Chunks

Occasionally a single chunk of terrain can occlude itself in such a way that

when the occluded part of the simplified mesh is revealed as the viewpoint moves,

the Impostor becomes a poor representation of the original mesh. A peak in a

chunk of terrain can appear to leave a “shadow” of itself on the terrain behind

it. This is a limitation of using Impostors.

To overcome this problem, a single chunk of terrain can be split into two or

more Impostors. The same view frustum can be used to render both Impostors,

except that the near and far clipping planes of each can be adjusted so that

the chunk is split at a point that reveals as much as possible of the occluded

terrain in one Impostor and uses the occluding part of the terrain in the other.

The simplified mesh could either be rendered twice using each Impostor or each

triangle of the simplified mesh can be textured using a different Impostor.

6.3 Scene Models

The implementation does not use any decorative meshes like trees, grass or

bushes, but these are clearly a desirable part of terrain meshes in entertainment

applications. In level of detail techniques, detail meshes often disappear from

the terrain very noticeably at a defined radius. Grass and bushes can be raster-

49

Figure 6.1: Top: A section of terrain rendered normally. Bottom: A
terrain Impostor viewed from the side. The hill’s imagery is repeated
on the terrain behind it. This is the result of a chunk occluding part
of its own terrain.

50

ized into the Impostor like any other part of the terrain and viewed later with

no additional overhead. The parallax of small meshes should be appropriately

approximated by the same simplified mesh that is used for the terrain. If these

meshes increase the height of the horizon of terrain meshes then implementing

the silhouette edge extension mentioned in section 6.1 would become even more

important.

Larger meshes are more difficult and probably should not be rasterized into

the terrain Impostors. Level of detail techniques can be used for large meshes

and rendered along with Impostors without difficulty. The simplified meshes still

output a coarse depth value. If fine grained depth values are needed, the depth

map of the Impostor can be saved and used to output more correct depth values.

6.4 Shader Effects

One drawback of using Impostors is that how lighting affects an object can

only be changed as often as its Impostor is redrawn. Very slow lighting changes

such as the movement of the sun through the sky may still be acceptable with

the slow, incremental updates of Impostors. If dynamic lighting is desired then it

may be possible to store a normal buffer in addition to saving the color and depth

for every pixel in the Impostor. The color, depth, normal and other desired values

can be combined to calculate the lighting equation for every pixel per frame. This

would be a similar technique to that used in Deferred Shading [12].

Another possible shader effect would be to use parallax mapping [10] on each

of the terrain Impostors. This would have superior parallax effect to the coarse

grained parallax from the simplified meshes used in this technique. Parallax

mapping would also reduce the amount of geometry in the scene but may hurt

51

performance by putting more calculations in the fragment shader.

6.5 Large Chunks

As terrain is rendered farther away from the viewpoint, even coarse chunks

might only occupy only a few pixels on the screen. When large chunks were used

close to the viewpoint, there were very noticeable visual artifacts. Ideally we

would like to use the small chunks close to the viewpoint and the larger chunks

far away. To make this technique truly scalable, chunk sizes need to increase so

that Impostors always occupy a significant number of screen pixels.

A single Impostor which represents a significant portion of terrain may not

be able to be updated completely in a single frame. To accommodate this, each

smaller chunk of terrain within a group can be rendered individually into the

Impostor. If the depth is saved between renderings or the chunks are drawn in

decreasing depth order, large Impostors can be constructed incrementally and

not interrupt the framerate of the application.

6.6 Out of Core Rendering

One of the most compelling reasons for using Impostors for terrain is that the

high resolution mesh for any given Impostor does not need to be in video or main

memory while it is being used. If chunks of terrain with update requirements in

the order of minutes exist in our scene, it is possible to load terrain into video

memory, create an Impostor and then free its memory or use it for another section

of terrain.

52

Combined with techniques for rendering large hierarchies of chunks mentioned

in section 6.5, this would allow datasets larger than the memory available on the

machine to be viewed accurately and at interactive framerates. This would be

very valuable for scientific applications involving very large datasets.

53

Bibliography

[1] Nvidia graphics cards. http://nvidiagraphicscards.com/.

[2] J. Andersson and DICE. Frostbite: Rendering ar-

chitecture and real-time procedural shading and tex-

turing techniques. http://developer.amd.com/assets/

Andersson-Tatarchuk-FrostbiteRenderingArchitecture(GDC07_AMD_

Session).pdf, 2007.

[3] B. Chen, J. Edward, and S. Ii. Lod-sprite technique for accelerated terrain

rendering. In ISBN 0-7803-5897-X. Held in, pages 291–298, 1999.

[4] P. Debevec. Modeling and rendering architecture from photographs, 1999.

[5] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and

M. B. Mineev-Weinstein. Roaming terrain: Real-time optimally adapting

meshes, 1997.

[6] J. E. G. Coffman, M. R. Garey, D. S. Johnson, and R. E. Tarjan. Performance

bounds for level-oriented two-dimensional packing algorithms. SIAM Journal

on Computing, 9(4):808–826, 1980.

[7] S. J. Gortler, L. wei He, and M. F. Cohen. Layered depth images, 1997.

[8] H. Hoppe. Progressive meshes, 1996.

54

http://nvidiagraphicscards.com/
http://developer.amd.com/assets/Andersson-Tatarchuk-FrostbiteRenderingArchitecture(GDC07_AMD_Session).pdf
http://developer.amd.com/assets/Andersson-Tatarchuk-FrostbiteRenderingArchitecture(GDC07_AMD_Session).pdf
http://developer.amd.com/assets/Andersson-Tatarchuk-FrostbiteRenderingArchitecture(GDC07_AMD_Session).pdf

[9] T. Igarashi and D. Cosgrove. Adaptive unwrapping for interactive texture

painting. In Proceedings of the 2001 symposium on Interactive 3D graphics,

I3D ’01, pages 209–216, New York, NY, USA, 2001. ACM.

[10] T. Kaneko, T. Takahei, M. Inami, N. Kawakami, Y. Yanagida, T. Maeda,

and S. Tachi. Detailed shape representation with parallax mapping. In In

Proceedings of the ICAT 2001, pages 205–208, 2001.

[11] J. Maillot, H. Yahia, and A. Verroust. Interactive texture mapping. In Pro-

ceedings of the 20th annual conference on Computer graphics and interactive

techniques, SIGGRAPH ’93, pages 27–34, New York, NY, USA, 1993. ACM.

[12] Nvidia Corporation. Deferred shading. http://http.download.nvidia.

com/developer/presentations/2004/6800_Leagues/6800_Leagues_

Deferred_Shading.pdf, 2004.

[13] J. Olsen. Realtime procedural terrain generation. http://oddlabs.com/

download/terrain_generation.pdf, 2004.

[14] Refsnes Data. Browser display statistics. http://www.w3schools.com/

browsers/browsers_display.asp.

[15] F. Sillion, G. Drettakis, and B. Bodelet. Efficient impostor manipulation for

real-time visualization of urban scenery, 1997.

[16] Valve Developer Community. 3d skybox. http://developer.

valvesoftware.com/wiki/3D_Skybox.

55

http://http.download.nvidia.com/developer/presentations/2004/6800_Leagues/6800_Leagues_Deferred_Shading.pdf
http://http.download.nvidia.com/developer/presentations/2004/6800_Leagues/6800_Leagues_Deferred_Shading.pdf
http://http.download.nvidia.com/developer/presentations/2004/6800_Leagues/6800_Leagues_Deferred_Shading.pdf
http://oddlabs.com/download/terrain_generation.pdf
http://oddlabs.com/download/terrain_generation.pdf
http://www.w3schools.com/browsers/browsers_display.asp
http://www.w3schools.com/browsers/browsers_display.asp
http://developer.valvesoftware.com/wiki/3D_Skybox
http://developer.valvesoftware.com/wiki/3D_Skybox

	List of Figures
	Introduction
	Terminology
	Level of Detail
	Impostors

	Current Techniques
	Proposed Technique
	Justifications
	Static Content
	Camera Movement
	Video Memory

	Related Work
	Mesh Simplification
	Limited Movement
	Image Based
	Hybrid Techniques

	Algorithm
	Terrain Simplification
	View Frustum
	Impostor Allocation
	Texture Mapping
	Update Criteria
	Minimum Update Rate

	Implementation
	Terrain Generation
	Cracks
	Atlas
	Foreground Blending

	Results
	Considerations
	Testing Environment
	Performance
	Conclusion

	Extensions and Future Work
	Silhouette Edge Extension
	Self Occluding Chunks
	Scene Models
	Shader Effects
	Large Chunks
	Out of Core Rendering

	Bibliography

