
POINT-BASED COLOR BLEEDING WITH VOLUMES

A Thesis

Presented to

the Faculty of California Polytechnic State University

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Christopher Gibson

June 2011

© 2011

Christopher Gibson

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Point-Based Color Bleeding With Volumes

AUTHOR: Christopher Gibson

DATE SUBMITTED: June 2011

COMMITTEE CHAIR: Zoë Wood, Ph.D.

COMMITTEE MEMBER: Aaron Keen, Ph.D.

COMMITTEE MEMBER: Chris Lupo, Ph.D.

iii

Abstract

Point-Based Color Bleeding With Volumes

Christopher Gibson

The interaction of light in our world is immensely complex, but with mod-

ern computers and advanced rendering algorithms, we are beginning to reach

the point where photo-realistic renders are truly difficult to separate from real

photographs. Achieving realistic or believable global illumination in scenes with

participating media is exponentially more expensive compared to our traditional

polygonal methods. Light interacts with the particles of a volume, creating com-

plex radiance patterns.

In this thesis, we introduce an extension to the commonly used point-based

color bleeding (PCB) technique, implementing volume scatter contributions. With

the addition of this PCB algorithm extension, we are able to render fast, be-

lievable in- and out-scattering while building on existing data structures and

paradigms.

The proposed method achieves results comparable to that of existing Monte

Carlo integration methods, obtaining render speeds between 10 and 36 times

faster while keeping memory overhead under 5%.

iv

Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Graphics & Light . 1

1.2 Global Illumination . 1

1.3 Color Bleeding Techniques . 2

1.4 Our Contribution . 3

2 Background 5

2.1 Radiance . 5

2.2 BRDF and the BSSRDF . 7

2.3 Volume Lighting . 8

2.3.1 Absorption: . 9

2.3.2 Scatter Out: . 10

2.3.3 Transmittance: . 10

2.3.4 Phase Functions . 11

2.3.5 Scatter In . 11

2.4 Monte Carlo Integration . 13

3 Related Work 14

3.1 Global Illumination . 14

3.1.1 PCB . 14

3.1.2 Photon Mapping . 15

3.2 Volume Rendering . 16

v

3.2.1 Existing Work . 16

3.2.2 Multi-Resolution Volumes 18

3.2.3 Occlusion Techniques . 18

3.2.4 Volume Lighting . 19

4 PCB Extension Algorithm 20

4.1 Point Based Color Bleeding . 20

4.2 Extension Overview . 21

4.3 Sampling the Scene . 22

4.3.1 Surfel Sampling . 23

4.3.2 LVoxel Sampling . 24

4.4 Gathering Light . 24

4.4.1 Point-Cloud Ray Casting 24

4.4.2 Hemisphere Sampling . 25

4.5 Integrating Volume Data . 29

4.5.1 Data-Structure Modifications 29

4.5.2 Octree Traversal . 30

4.5.3 Acquiring Scatter-Out Contributions 30

4.5.4 Acquiring Scatter-In Contributions 31

4.6 Review . 34

5 Results 37

5.1 Environment . 38

5.2 Test Scene . 39

5.3 Data Comparison . 40

5.4 Analysis . 40

5.4.1 Memory . 40

5.4.2 Speed . 42

5.4.3 Scalability . 44

5.5 Known Limitations . 46

5.6 Conclusion . 47

6 Future Work 48

vi

Bibliography 51

vii

List of Tables

5.1 Sponza Scene With Stanford Bunny Volume Runtime 40

5.2 Sponza Scene With CT Head Volume Runtime 41

viii

List of Figures

1.1 A simple Cornell box scene with direct lighting only (left) and
the same scene showing single-bounce light interaction through a
global illumination algorithm (right.) 2

1.2 Bunny Scene comparison of the PCB extension (left) and tradi-
tional Monte Carlo results (right.) 4

2.1 Evaluation of radiance at a point on an opaque surface. Only the
hemisphere around the surface normal is considered. Incoming
radiance is measured and scaled by its solid angle. 6

2.2 Light scatter properties vary based on the participating media. . . 9

2.3 Visual representation of a phase function around a scatter point.
The area represents the distribution of the scattered light about a
sphere. 11

2.4 Comparison between a volume with (right) and without (left) in-
scattering contribution. 12

3.1 Global illumination example achieved via photon mapping. Source:
http://graphics.ucsd.edu/ henrik/papers/photon map/ 16

3.2 Volume renders from [10] showing CT scan volume data visualized
in three-dimensions, complete with realistic lighting. 17

4.1 An example of a point-cloud scene where the geometry had been
sampled, a disc representation replacing the geometry. The radii
of the discs in this image are reduced to better exemplify their
presence. 21

4.2 Rays are cast from a special camera during the surfel sample phase.
Each time the ray intersects with geometry a surfel is created. . . 23

ix

4.3 Basis vectors are generated based on the surface normal in order
to transform samples on a hemisphere to test surrounding radiance. 25

4.4 Gather rays are cast into the point-cloud, returning the estimated
radiance coming from a given direction. The radiance is then
scaled based on the solid angle of that sample cast (based on sam-
ple count.) . 27

4.5 Illustrates the octree traversal algorithm testing efficiency. Lighter
shades represent less tests, while darker shades represents the most.
Closer objects evaluate faster, and all data in the point-cloud be-
hind them are occluded. 31

4.6 Sample rays are cast during volume traversal, allowing for decent
estimates of lighting contribution at each point. 33

4.7 Stepping allows for estimation of the integral through the entire
volume. Shadow rays are cast intermittently to estimate the direct
lighting contribution. 33

5.1 Sponza Atrium mesh and Stanford bunny volume rendered using
the PCB Extension algorithm. 37

5.2 A test scene showing a light’s interaction with a volume changing
depending on the direction and position of the light. 38

5.3 Real-time visualization of the Sponza Atrium mesh in MeshLab. . 39

5.4 Bunny Scene comparison of the PCB extension (left) and tradi-
tional Monte Carlo results (right.) 42

5.5 CT Head scene comparison of the PCB extension (left) and tradi-
tional Monte Carlo results (right.) 43

5.6 Zoomed image showing PCB extension (left) and Monte Carlo
(right.) . 43

5.7 Zoomed image showing traditional PCB (left) and PCB with ex-
tension (right.) Note the visible color bleeding with our method. . 44

6.1 The Sponza Atrium with the Stanford volumetric bunny. In-/Out-
scattering is evident on the volume and on the surrounding atrium
walls. 53

6.2 Example of point-based color bleeding without the volume exten-
sion algorithm. 54

6.3 Example of a scene almost entirely in shadow, showing indirect
lighting in play. 54

x

6.4 Image exemplifying clear out-scattering from Stanford bunny vol-
ume. 55

6.5 Image exemplifying clear color bleeding next to the red wall in the
bunny’s shadow and correct transmittance through the bunny’s
hollow form. 55

6.6 The black occluding geometry in the center stops all but the light
to the left to enter below. 56

6.7 Illustrates how a light may act when placed within a hollow volu-
metric object. The bunny is shown as slightly brighter, scattering
light about the scene. 56

6.8 Shows how CT scan data can be used to visualize scanned ob-
jects like a human face. Subsurface scattering and transmittance
through thin materials is evident. 57

xi

Chapter 1

Introduction

1.1 Graphics & Light

At its core, computer graphics is the visualization of light and its interaction

in an abstract world, be this a simulation or a virtual world created by artists.

The ability to render scenes with realistic lighting is desirable for many enter-

tainment application settings such as film. Even in non-photo-realistic renders,

the interaction of light is of paramount importance.

1.2 Global Illumination

The effort to accurately evaluate the radiometric quantities within a virtual

scene, especially in non-real-time systems, may be referred to collectively as global

illumination [15]. In order to achieve greater realism, scenes must rely on more

than simple direct-lighting algorithms and move to more complex systems to

better evaluate light interaction (Figure 1.1.) This field of study has lent itself

1

to the breathtaking visual effects in movies, advertisements, television shows and

other artistic mediums. The line between real and fake is getting blurrier every

year as the lighting calculations become more and more exact. As we have pushed

the boundaries of our graphical capabilities, we also increase our computational

complexity exponentially.

Figure 1.1: A simple Cornell box scene with direct lighting only (left)
and the same scene showing single-bounce light interaction through a
global illumination algorithm (right.)

1.3 Color Bleeding Techniques

Great results have been achieved for lighting complex scenes using point based

color bleeding [2] algorithms, where a point-cloud representation of a scene’s di-

rect lighting is computed for the purpose of efficiently calculating a representation

of the scene’s radiometric properties surrounding any given point. Per H. Chris-

tensen’s color bleeding algorithm (or similar implementations) is already in place

in many production companies and used in many feature films.

These algorithms, however, tend to limit or omit entirely the lighting contri-

2

bution from volumetric data or participating media within the scenes. Due to

the highly complex nature of the domain, coupled with the computational com-

plexity involved therein, many algorithms choose to disregard this portion of the

lighting algorithm, often leaving the programmer or artist to fake the volume’s

contribution in other ways.

1.4 Our Contribution

This paper presents an algorithm to address this missing component in the

point based color bleeding algorithm. Specifically, we propose the addition of a

data representation tuned to volumes, light-voxel (or lvoxel) to address the need to

represent participating media to an existing global illumination algorithm which

leverages a point cloud representation of a scene. Over the course of this paper,

we will:

1. Discuss the surrounding subjects of light, volume rendering and global il-

lumination,

2. List and describe existing algorithms and related work,

3. Describe how our algorithm meets our requirements and

4. Analyze the results of our implementation.

Our method achieves results comparable to those produced with Monte Carlo

ray tracing but with drastically reduced run times, speeding up renders by a

factor of 10. Figure 1.2 clearly illustrates a close comparison of our algorithm

and Monte Carlo ray traced results.

3

Figure 1.2: Bunny Scene comparison of the PCB extension (left) and
traditional Monte Carlo results (right.)

4

Chapter 2

Background

The goal of the proposed method is to include volumetric representations

into a global illumination algorithm in a fast and coherent way. One of the

unique features of participating media is that they must be represented with

a more complex data-structure than solid geometric objects which are usually

polygonalized in most rendering processes. Light interacts with the particles of

a volume, creating complex radiance patterns (increasing the necessary compu-

tational complexity exponentially.) In particular the most fundamental concepts

are presented here, (based off of [12]).

2.1 Radiance

Irradiance is the change of flux (radiant power) over an area, denoted by

E = dΦ
dA

[13]. Another way to look at this problem involves the relationship

between the surface and surrounding radiometric quantities. Radiance helps us

evaluate how much power enters or leaves any given point. The definition of

radiance leaving a surface can be denoted L(p, w) given p is the point on a

5

N
dw

θ

Radiance

pdA

Figure 2.1: Evaluation of radiance at a point on an opaque surface.
Only the hemisphere around the surface normal is considered. Incom-
ing radiance is measured and scaled by its solid angle.

surface and w is the direction we are evaluating. The flux is projected upon the

area of the surface dA based on the solid angle dw, which gives us Figure 2.1 and

the following equation:

L =
d2Φ

dwdA⊥
(2.1)

Inversely, incoming radiance, or irradiance, is evaluated by the strength of

the light coming from any given direction w. This can be represented by the

following:

E =

∫
L(p← w)cosθdw. (2.2)

L(p → w) represents the radiance leaving point p and L(p ← w) represents

incoming radiance given a direction w. Note that radiance along a straight path

6

is invariant. For example:

L(x→ y) = L(y → x). (2.3)

Measuring the incoming radiance at any given point p in all directions is the

key to the graphics lighting equation, and a crucial element in how a rendered

scene looks and feels.

2.2 BRDF and the BSSRDF

The bidirectional reflectance distribution function (or BRDF) is a function

that gives us a formal method of describing the reflected radiance from a surface

based on incident radiance from another light source or emissive surface [12].

This simplification helps us with quick evaluations in scenes with simple light-

ing (such as point light sources) and other direct-lighting techniques. First, let

us consider the formalization of irradiance we discussed earlier by defining the

following equation:

dE (p, wi) = Li(p, wi)cosθidwi . (2.4)

Using Equation 2.4, can create a proportionality of light reflected from point

p towards outgoing direction wo due to incoming light from incident direction wi,

giving us the following equation:

fr(p, wo, wi) =
dLo(p, wo)

dE(p, wi)
. (2.5)

In traditional three-dimensional scene descriptions we are given a distribution

7

to replace Equation 2.5, allowing us to solve for Lo, our outgoing radiance. This

leaves us with:

Lo(p, wo) =

∫
S2

fr(p, wo, wi) Li(p, wi)cosθidw. (2.6)

Many materials such as skin, marble and plastic do not simply reflect the

incoming light energy, but also transmit it through the surface, a process called

subsurface scattering. Given the obvious shortfalls of the BRDF in this instance,

the BSSRDF (bidirectional scattering-surface reflectance distribution function)

takes into account a surface’s scatter properties. This generalized function de-

scribes the ratio of radiance from an incoming point and direction pi, wi to an

outgoing point and direction pi, wo. The following describes the new proportion-

ality created from the BSSRDF:

fr(po, wo, pi, wi) =
dLo(po, wo)

dE(pi, wi)
. (2.7)

If we were to use Equation 2.7, we would be able to iterate over every incoming

point and every incoming direction in order to evaluate the outgoing radiance at

an arbitrary point, turning a one-dimensional reflectance equation into a two-

dimensional scatter equation and significantly increasing its complexity.

2.3 Volume Lighting

The BSSRDF describes the complexities of light traveling and scattering

within complex surfaces similarly to that of volumes. Volumes follow very simi-

lar behaviors to opaque surfaces in terms of radiance, except on a particle-level.

Participating media like smoke or fog is made up of particles which cause the scat-

8

ter (i.e. clouds) and absorption/extinction (i.e. smoke,) behaviors that would be

extremely computationally expensive to model and simulate on any scale. There-

fore, such behaviors are modeled in terms of transmittance, emission, Scatter in

and Scatter out like in Figure 2.2. We are able to identify the probability that

light will be absorbed, scattered and/or transmitted through any point in a par-

ticipating medium by identifying their probability density functions, as described

in the following sections.

Incoming Light

Scatter Out

Scatter In

Emission

Figure 2.2: Light scatter properties vary based on the participating
media.

2.3.1 Absorption:

As light passes through a participating media, light will become absorbed

based on its absorption probability density σa. As stated earlier in Equation 2.3,

it is known that radiance along a straight path is invariant, which allows us to

estimate the amount of light absorbed or scattered given point p and direction w

with the following:

e−
∫ d
0 σa(p+tw ,w)dt , (2.8)

9

where σa represents the probability density that light will be absorbed over a

distance dt .

2.3.2 Scatter Out:

In addition to being absorbed by the medium, light can be scattered based

on a scatter probability density σs. As light is scattered and thus redirected, the

amount of energy passing through the density in direction w is reduced. We can

model the scatter equation through the following equation:

dLo(p, w) = −σs(p, w)Li(p,−w)dt. (2.9)

dLo represents the outgoing radiance given point p and direction w.

2.3.3 Transmittance:

Both Equation (2.8) and Equation (2.9) involve the reduction of energy through

a volume, reducing how much energy passes through (also known as its transmit-

tance.) The two can be combined into the following overarching representation:

σt(p, w) = σa(p, w) + σs(p, w). (2.10)

Equation 2.10 gives us transmittance (σt) at point p and direction w. Using

this representation, we can integrate over a ray passing through the volume in

order to evaluate the resulting radiance transmittion:

Tr(p→ p′) = e−
∫ d
0 σ(p+tw ,w)dt . (2.11)

10

2.3.4 Phase Functions

Incoming
Light

Light Scatter
Distribution

Figure 2.3: Visual representation of a phase function around a scatter
point. The area represents the distribution of the scattered light about
a sphere.

When dealing with particles in volumes that may scatter light, a distribution

function or phase function describes the angular distribution of light scattered,

described as phase(w → w′). The probability that light may scatter from direc-

tion w to w′ is described using this function. This distribution is visualized in

Figure 2.3. All tests in this paper were rendered using one of the simplest phase

functions, known as the isotropic or constant phase function which represents the

BRDF analog for participating media [1].

2.3.5 Scatter In

Although σs may contribute to light being scattered out (and reduce the en-

ergy of a ray passing through the volume,) radiance from other rays (scattered

by their respective phase functions as seen in Figure 2.3) may contribute to the

original ray’s radiance. This allows for radiance emitted from surrounding partici-

11

pating media and geometry to contribute to the light we are sampling through the

volume, as exemplified in Figure 2.4. Before we can integrate incoming radiance,

we must guarentee that the phase function represents a normalized distribution,

where the following constraint must hold true:

∫
S2
phase(w → w′)dw′ = 1. (2.12)

This normalization forces the phase function to accurately define the proba-

bility distribution for a particular direction. Given a summation of all outgoing

radiance along every direction w′, we should be left with the total incoming ra-

diance from direction w.

Figure 2.4: Comparison between a volume with (right) and without
(left) in-scattering contribution.

Finally, assuming conditions are met for Equation 2.12, we can integrate the

total radiance scatter based on the normalized phase function phase(w → w′)

over all directions w′ to get our total scatter in a direction w:

S (p, w) = Lve(p, w) + σs(p, w)

∫
S2
phase(p,−w′ → w)Li(p, w

′)dw′. (2.13)

Lve(p, w) represents the emission coefficient of a volume and is not discussed

in this paper.

12

When we integrate over the domain of the sphere in Equation 2.13, we are

essentially testing for the incoming light in every direction, testing how much

light from that incoming direction scatters towards our ray, and accumulate that

light until we have all of the light contributing to this particular ray.

2.4 Monte Carlo Integration

Monte Carlo methods have many applications in estimating complex systems

through the use of random numbers and sampling schemes. One of the most

useful technique is Monte Carlo integration, which estimates the integral of an

arbitrary function through sampling discrete values defined over a specified do-

main [13]. For this reason, Monte Carlo has become integral in the field of

computer graphics, where it may manifest itself in evaluating incoming radiance

over a surface, estimating light scatter, or randomly sampling area lights in order

to get soft shadows.

Many of the elements listed above can be (and are) estimated using this

technique. In order to get good results, however, many hundreds of samples

may be necessary. The cost of sampling using this method may still be cost-

prohibitive, at which point the problem lies in the sample method itself, not how

the samples are used or generated.

13

Chapter 3

Related Work

3.1 Global Illumination

Global illumination is an important field of study in computer graphics that

numerous successful algorithms including photon mapping [6], radiosity [4] and

Monte Carlo sampling techniques [18] try to mitigate or overcome in a reason-

able time-frame. Most commonly implemented methods are those that sample

the scene and use a two phase approach (sample and gather) to model direct illu-

mination and indirect illumination. The gather stage included in most algorithms

is built to be more efficient or lower resolution than the scene being rendered,

which helps reduce the lighting computation cost.

3.1.1 PCB

Of particular relevance to this field is the work done in Point-Based Approx-

imate Color Bleeding developed by Per Christensen [2]. With this method, a

subset of the scene geometry is thoroughly sampled, creating a point cloud rep-

14

resentation of the direct lighting at each sample, which is then used to evaluate

the incoming radiance surrounding a given point on a surface.

As recently as 2010, discussion of approximating volume scattering using point

clouds has been discussed [3], however no specifics have been offered to how

back-to-front or front-to-back rasterization would be achieved with the current

rasterization method (handled by our octree traversal method) or how scatter,

extinction and absorption would be managed within the three-dimensional vol-

ume representation inside the point cloud.

3.1.2 Photon Mapping

Another closely related area of study includes photon mapping, a method

that attempts to simulate light scatter and absorption properties of participating

media, which has shown promise in the past. In [7], Jensen describes a process

where photons participate and become stored inside the volume itself for later

gathers during volume integration. These photons are able to simulate scatter,

absorption and passing through material (both geometric and volumetric.)

While this technique is shown to work, it primarily focuses on caustic effects

in volumes and the generated photon map. Our storage method does not require

data to be stored in the volume itself (as would be the case in photon mapping,)

but in a separate, more lightweight data-structure better suited for out-of-core

rendering.

15

Figure 3.1: Global illumination example achieved via photon mapping.
Source: http://graphics.ucsd.edu/˜henrik/papers/photon map/

3.2 Volume Rendering

This paper is focused on the lighting and rendering of scenes which contain

volume data. A number of approaches have been developed in order to represent

volume data through computer visualizations or renders [8],[10].

3.2.1 Existing Work

Some of the first proposed volume rendering and shading techniques are de-

scribed in [10]. Before the time of the paper’s creation, many of the accepted

methods of volume visualization involved generating polygonal representations of

the volumes by sampling the opacities and comparing them to a selected isovalue

to determine whether or not the voxel is designated as “inside” the volume or

“outside.” A polygonal mesh is then constructed based on this differentiating

boundary. Unfortunately, the algorithm defined above fell prey to spurious sur-

16

faces and holes caused by a limited sample range (since the polygonal method

suffered from having to make a binary decision. Either a ray intersected the

volume or it did not.)

In response to this, Levoy proposed a process of testing against two arrays

(one with opacities and one with colors) that represent the voxel data-structure.

If a voxel was intersected, the algorithm would interpolate its color and opacity

to those surrounding it based on the nature of the intersection. This allowed for

transparent volumes, and also allowed for opacities to be separated from voxel

color, allowing for some important pre-processing to be done on the data such

as volume classification, where the opacity of a volume is determined on an iso-

range. This in turn allowed the renderer to focus attention to specific densities

in scans (useful for medical imaging.)

Figure 3.2: Volume renders from [10] showing CT scan volume data
visualized in three-dimensions, complete with realistic lighting.

17

3.2.2 Multi-Resolution Volumes

Because of the complexity of volume data (both through data representa-

tion and computation,) volume rendering algorithms often implement efficient

multi-resolution data representation [16]. [11] describes a hierarchical method of

managing a volume data set in order to remove unnecessary “Empty” cells and to

reduce the amount of intersection tests done on voxels (or “Cells”, as the higher

level nodes are referred to.) This algorithm introduced the use of octrees as an

efficient means of dividing and containing the volume data.

Our algorithm implements a sparse octree data-structure for both the volumes

in the scene and the point-cloud used for the indirect lighting equation.

3.2.3 Occlusion Techniques

Another method to accelerate volume rendering involves estimating what

nodes in a volume octree are definitely occluded based on surrounding node den-

sities. [5] describes building a two-dimensional occlusion map and filling it in over

a series of iterations, removing occluded nodes from being tested each iteration.

This method has been shown to drastically increase rendering performance by

removing as much as 30% per iteration.

Based on many existing volume rendering algorithms, our implementation

takes advantage of a multi-resolution, view-independent octree data-structure in

order to handle a large amount of complex lighting and volume data. We then

use this very same octree representation to evaluate occluded regions, skipping

scene data occluded by opaque geometry cached in the data-structure in the form

of surfels.

18

3.2.4 Volume Lighting

As our computational power has improved, we have been able to tackle prob-

lems in lighting that we could not have overcome in the past. [9] builds upon

Levoy’s volume rendering method by implementing shadowing by sending shadow

rays toward each light for each sample within the volume in order to estimate the

amount of extinction between the point and the light. Indirect lighting is also

employed (though only forward-scattering due to the incremental nature of their

algorithm.)

[19] attempts to handle multiple-scattering and volume shadows in scenes that

sport mixed polygonal and volumetric data. The paper describes light scatter

representations similar to Equations 2.8, 2.9, 2.10, where light is able to scatter

in and out from the sampling ray. The algorithm then handles volume shad-

ows caused by polygonal mesh data by constructing a series of shadow buffers,

evaluating the volume shadow as a texture at each slice.

While our volume lighting equation takes into account volume scatter prop-

erties, we do not evaluate shadows in a separate pass. Instead, our algorithm

not only evaluates transmittance between arbitrary sample points and the scene

lights (giving us believable direct lighting), but we simulate scatter in properties

by casting Monte Carlo samples out into our point-cloud to evaluate scene and

volume radiance. Additionally, our point cloud is not constrained by our traversal

method, so all forms of scatter are supported. Finally, the algorithm described

also does not handle scatter out contributions to the scene, where the volume

data may contribute to the rest of the scene’s lighting.

19

Chapter 4

PCB Extension Algorithm

We present an algorithm which is an extension to the point cloud techniques

described in [14] and [2], specifically building off the point-based color bleeding

(PCB) technique by Christensen. The modifications involve evaluating light scat-

ter and absorption properties at discrete points in the volume and adding them

to the point cloud. Using a front-to-back traversal method, we can correctly and

quickly approximate the light-volume representation’s contribution to a scene’s

indirect lighting evaluation.

4.1 Point Based Color Bleeding

In general, the color-bleeding algorithm subdivide the world into small repre-

sentational segments, called surfels in [2], which are stored in a large point cloud,

representing the scene (See Figure 4.1.) Surfels are used to model direct illumi-

nation, and are then used in a later phase to compute indirect lighting and color

bleeding in an efficient manner. This method is split up into three stages:

20

Figure 4.1: An example of a point-cloud scene where the geometry
had been sampled, a disc representation replacing the geometry. The
radii of the discs in this image are reduced to better exemplify their
presence.

1. Sample the scene and save a discrete representation of the surfaces along

with direct lighting in a point cloud

2. Perform normal ray tracing on the scene geometry

3. Replace ambient estimates with a gather stage, sampling the scene around

a point to gather the indirect lighting component

The goal of our proposed method is to include volumetric representations into

a global illumination algorithm in a fast and coherent way similar to how surfels

are represented in the point cloud.

4.2 Extension Overview

In the existing algorithms [2], surfels represent opaque materials within the

point cloud. Thus to incorporate a representation of volumetric data, an addi-

tional data representation was necessary to handle the scatter and absorption

properties of participating media. In general, our data representation closely fol-

21

lows the model of surfels, in that we choose to sample the volume at discrete

locations and store a finite representation of the lighting at those discrete lo-

cations, but with modifications to handle the special attributes of lighting in

transparent media. In keeping with the naming conventions established, we call

our discrete sampling of lighting elements for a volume: lvoxels.

As a quick review, our algorithm must do the following:

1. Sample the scene geometry and store the direct lighting (or relevant lighting

properties) within an acceleration structure for fast evaluation

2. Sample the participating media and evaluate scatter, absorption and direct

lighting at each discrete point

3. Identify points of interest during regular ray casts using scene geometry

4. Orient a set of hemispherical samples along the normals of ray cast surfaces

and cast the rays into the point-cloud

5. Model the scatter-out and scatter-in properties of volumetric lighting during

the indirect lighting gather stage.

4.3 Sampling the Scene

The goal of this stage of the algorithm is to sample the scene geometry (in-

cluding the volume) and store the direct lighting in a finite data representation

to be used later for global illumination lighting effects. As all of our finite data

represents the direct lighting of some small portion of a surface or element in a

three-dimensional scene, we refer to the union of all finite lighting samples as a

“point cloud”. This point cloud is stored in an octree representation for efficient

22

access to all data elements, surfels and lvoxels. Surfels differ from lvoxels only in

that surfels represent a flat, solid geometry while lvoxels represent a transparent,

volumetric medium. Both have radii and position so both can be placed within

the same point cloud.

Normal-Aligned
Surfels

Sampler Field
of View

Sampler
Rays

Figure 4.2: Rays are cast from a special camera during the surfel
sample phase. Each time the ray intersects with geometry a surfel is
created.

4.3.1 Surfel Sampling

We sample the opaque geometry in surfels, which are computed using an

abstract sampling camera with a field of view slightly larger then the current

viewing frustum, with a sampling rate two times that of the desired pixel reso-

lution. Rays are cast from the sampling camera and intersections with geometry

mark sample points as seen in Figure 4.2, giving the scene a view-dependent,

thorough sample set.

23

4.3.2 LVoxel Sampling

Lvoxels are generated by marching over the entire domain of the volume by a

specific, preset interval, sampling scatter and absorption coefficients in order to

get an average throughout the area an lvoxel will occupy. Typically this involves

eight to sixteen absorption and scatter samples per lvoxel. These values, as well

as the radius of the lvoxels, may differ depending on the complexity and raw

resolution of the volume.

Caching the direct light contribution at each lvoxel by testing the transmit-

tance using Equation (2.11) to each light source saves us from re-computing light

calculations during sampling in sections 4.5.3 and 4.5.4 [17].

4.4 Gathering Light

4.4.1 Point-Cloud Ray Casting

Next, our algorithm uses a gather stage similar to the one in PCB, which

calculates the irradiance at a point on a surface, given the radiance of the scene

around it. Unlike PCB, which uses a software rasterization method, we chose

to evaluate irradiance by ray casting into the point-cloud around a hemisphere

oriented along the surface’s normal. The decision to cast out of a hemisphere

rather than using a software rasterization technique as was adopted in previous

PCB implementations was made to simplify the tests which compare traditional

Monte Carlo sampling methods to the extended PCB algorithm, but also to

simplify evaluation of the transparent lvoxels within the octree.

24

Transformed
Basis Vectors

World Basis
Vectors

Transformed
Sample Rays

Figure 4.3: Basis vectors are generated based on the surface normal
in order to transform samples on a hemisphere to test surrounding
radiance.

4.4.2 Hemisphere Sampling

In order to approximate the integral of incoming light at point p on the surface,

we sample across a hemisphere oriented along the surface’s normal N at p as seen

in Figure 4.3. This process is broken down into two distinct steps:

1. The rays must sample across a hemisphere in an equally distributed fashion

in order to gain an acceptable sampling of the surrounding radiance

2. Each sample ray must then be transformed based on the intersection sur-

face’s normal

It is necessary to consider the sampling method just as important as the

evaluation of those samples. Generating purely random rays leads to clumping

25

and high levels of noise, so a stratified sampling method was chosen, subdividing

the sample space equally into a two-dimensional grid and jittering within the

grid. This helps us avoid clumping issues, and guarantees an even distribution

over the entire domain. In order to map this two dimensional domain over our

hemisphere, we chose the following mapping code (converted from a function over

spherical coordinates):

1 Vec3 sampleToHCoord (float us , float ts) {

2 const float r = sqrt (1 . − us) ;

3 const float theta = 2 * PI * ts ;

4 const float x = r * cosf (theta) ;

5 const float y = r * sinf (theta) ;

6 return Vec3 (x , y , sqrt (us)) ;

7 }

Note that sqrt(us) represents the Z value of the hemispherical sample (with

the normal naturally placed down the Z plane.) sqrt(1. − us) represents the

radius and ts covers the theta (or angle around the normal of the hemisphere.)

In order to force a regular distribution over this mapping equation, we chose

to employ a common sampling technique over us and ts, whose domains both

ranged from 0.0 to 1.0. We implemented a form of stratified stochastic sampling,

which involves subdividing the domains into smaller sub-domains and randomly

sampling within each sub-domain. The major benefit to stratified stochastic

sampling is the promise that the random samples are separated in their own sub-

domains and are thus less likely to clump, giving us a better overall sampling

over each domain.

26

Surfels

Surface
Normal

Gather
Rays

Tested
Hemisphere

Figure 4.4: Gather rays are cast into the point-cloud, returning the
estimated radiance coming from a given direction. The radiance is
then scaled based on the solid angle of that sample cast (based on
sample count.)

In Section 4.5, we will employ a similar technique for sampling over volumes,

but instead of sampling over hemispheres, we will sample over the domain of a

sphere. Therefore, the only necessary change is to our mapping function. We

remap us to span from a range from -1.0 to 1.0, taking into account both hemi-

spheres of the sphere. The rest of the mapping function is basically the same:

1 inline Vec3 sampleToSCoord (float us , float ts) {

2 const float z = 1 . f − 2 . f * us ;

3 const float r = sqrt (max (0 . f , 1 . f − z * z)) ;

4 const float phi = 2 . f * PI * ts ;

5 const float x = r * cos (phi) ;

6 const float y = r * sin (phi) ;

7 return Vec3 (x , y , z) ;

27

8 }

Now that we have an equally distributed set of rays over the hemisphere, we

must orient all of them by the normal of the intersected surface. We do this by

creating an orthonormal basis matrix using the normal as our projected Z axis.

This matrix is saved for later when we apply the matrix to the sample rays.

1 void orient (Vec3 normal) {

2 Vec3 up = Vec3 (0 , 1 , 0) ;

3 Vec3 w = normal ;

4 Vec3 u ;

5 Vec3 v ;

6 w . norm () ;

7 if (w . y () >= 0.9995 | | w . y () <= −0.995) {

8 u = Vec3 (1 , 0 , 0) ;

9 v = Vec3 (0 , 0 , 1) ;

10 }else{

11 up . cross (w , &u) ;

12 u . norm () ;

13 w . cross (u , &v) ;

14 }

15

16 MyMat m = MyMat (u . x () , v . x () , w . x () , 0 ,

17 u . y () , v . y () , w . y () , 0 ,

18 u . z () , v . z () , w . z () , 0 ,

19 0 , 0 , 0 , 1) ;

20 }

28

Each sample cast out from p evaluates L(p ← w) (as shown in Figure 4.4,)

which is then multiplied by the scalar w ·N in order to represent cosθ. In order

to obtain good results, 128-256 samples are typically necessary to combat noise

caused by the samples. The resulting irradiance from the weighted sum of the

samples is normalized by multiplying the normalization factor for the given phase

function.

4.5 Integrating Volume Data

In order for lvoxels to contribute meaningfully to our scene during the light

gather stage, we must make some architectural modifications to the algorithm in

order to handle 1) more than one sample type in our octree and 2) the ability to

handle non-opaque samples. Both of these required simple changes in the octree

data-structure as well as modification of the traversal algorithm used.

4.5.1 Data-Structure Modifications

Modifications to the previously mentioned irradiance sampling technique in

order to allow scatter-out effects with volumes are few. The biggest changes are

to the point cloud octree and its traversal. Specifically, when computing lighting,

we must account for the fact that when an element of the point cloud is hit, it

may be transparent. In the standard algorithm, absorption and transmittance

would not be taken into account and the traversal would stop at the first lvoxel

encountered.

Therefore, our algorithm must fulfill the following requirements: 1) The algo-

rithm must ensure that the lvoxels are placed in the same octree data-structure

29

as the surfels, 2) Our algorithm must keep track of the current Transmittance

in order to determine the contribution of all samples encountered and 3) We

must traverse the leaf nodes of the scene from front-to-back in order to integrate

transparent sample contributions correctly.

4.5.2 Octree Traversal

In order to properly evaluate transparent and opaque surfaces within the point

cloud, we made changes to node-level octree traversal. Each branch traverses its

children from closest to farthest, guaranteeing that closer leaf nodes are evaluated

first. Leaf nodes then use the pre-evaluated scatter (σs) and absorption (σt)

coefficients for each lvoxel to appropriately alter the sample ray’s transmittance,

and continue with the traversal, with each hit contributing to the final resulting

radiance value. Once a surfel is hit, there is no need to continue traversing the

octree as seen in Figure 4.5.

4.5.3 Acquiring Scatter-Out Contributions

Once the changes to the point-cloud data-structure have been made, we are

able to 1) ensure correct evaluation of the transparent surfaces through front-

to-back octree traversal and 2) stop evaluating leaf nodes once we have hit an

opaque surfel, reducing the overall sample count. Now that lvoxels are supported,

we simply sample the scene as we have with regular PCB. The modified traversal

algorithm already takes care of transmittance through any transparent media so

no further changes are necessary.

30

Figure 4.5: Illustrates the octree traversal algorithm testing efficiency.
Lighter shades represent less tests, while darker shades represents the
most. Closer objects evaluate faster, and all data in the point-cloud
behind them are occluded.

4.5.4 Acquiring Scatter-In Contributions

After adding lvoxels to our octree structure and evaluation algorithm, the only

modifications necessary for scatter-in are within the volume rendering equation.

As an overview, volume integration will step through the volume, at each point

it will:

1. Update the current transmittance by the scatter and absorption terms at

the given point

2. Cast shadow rays to estimate the direct light (and in cases of non-uniform

scatter, apply a phase function)

3. Sample scatter contribution by sending rays out into the point cloud

4. Add direct illumination contribution and indirect illumination to the cur-

rent incoming radiance

31

In order to model lighting for a volume, in-scattering requires integrating over

all directions (over the domain of the surrounding sphere.) Casting Monte Carlo

sample rays through the volume and into the scene would be computationally

expensive, specifically because we would be almost guaranteed to integrate over

the volume at every sample. Instead, for each sample we send out rays into the

point cloud, iterating through a much less dense dataset like in Figure 4.6. This

dataset represents the volume and the surrounding polygonal geometry, giving

us the indirect lighting component from both simultaneously.

This method helps us replace expensive S(p, w) evaluations with traversals

into the octree. The two main differences between sampling scattered light within

a volume and evaluating the irradiance on a surface are 1) the distribution func-

tion, which is based on the volume’s phase function, and 2) the samples are

distributed over a sphere rather than a hemisphere.

These scatter samples are distributed throughout the volume marching pro-

cess typically taken while rendering volumes as seen in Figure 4.7. More specifi-

cally, a single spherical sampler is kept throughout the integration of the volume

over the ray. This sampler keeps track of eight sub-samplers, each given a portion

of the overall spherical domain. For each sample step, one of the eight subsamples

is randomly chosen to generate sixteen rays to cast into the scene. The overall

effect is an eventual distribution of rays over the sphere across four to eight sam-

ple steps. We found that the sample steps were small enough that the difference

in location was minuscule. These sample points then gather from the point cloud

like traditional sample rays.

32

LVoxels

Participating
Media

Sample
Rays

Figure 4.6: Sample rays are cast during volume traversal, allowing for
decent estimates of lighting contribution at each point.

Shadow
Samplers

Volume Sample
Steps

Figure 4.7: Stepping allows for estimation of the integral through the
entire volume. Shadow rays are cast intermittently to estimate the
direct lighting contribution.

33

4.6 Review

The following is a detailed recap of the steps described above:

Step 1: We build a logical sampling camera and pull it back behind our reg-

ular view camera (how far depends on the scene geometry.) The viewing angle

is increased (in our tests, a viewing angle of 60◦ was ideal) and sampled at two

times the resolution of the image. These samples, generated from the sampling

camera, are cast out into the scene and intersect with the polygonal geometry

(Figure 4.2.) At each intersection point, a surfel is generated. The created sur-

fel’s radius is dependent on the sample resolution. Each surfel is placed inside of

an octree which constitutes the acceleration structure for the point cloud.

Step 2: We iterate over the domain of the participating media (or, more specif-

ically, the bounding box surrounding the volume like in Figure 4.7), stepping over

a three dimensional grid with a stepping distance based on the complexity of the

volume. At each point, we generate an lvoxel, a sphere with a radius large enough

to cover the stepping distance. In order to approximate the scatter, absorption

and lighting contributions for each lvoxel, we sample a number of voxels (between

16 and 32) within the area the lvoxel resides and average the values for each.

Step 3: After the scene data has been properly sampled, we use our view

camera to cast out rays for the normal ray cast. Each ray represents a pixel

in the image, and the resulting lighting contribution will be placed as the pixel

value after the ray returns. If the ray intersects geometry, we create a hemisphere

sampler which generally generates between 128 and 256 rays (Figure: 4.3) and

orient the rays to the intersected surface’s normal (Figure: 4.4.)

34

Step 4: The sample rays will traverse the octree in a closest-to-farthest fash-

ion. An overall transmittance value will be initialized starting with a default of

full transmittance. As the ray steps through octree leaf nodes, the ray is tested

against any lvoxels within each node, adding to the gathered light and modify-

ing the transmittance according to the scatter and absorption properties of each

lvoxel. Once a surfel is hit, the returning irradiance is multiplied by the transmit-

tance and the light contribution is totaled up. Each sample ray is cosine-weighted

by its angle from the surface normal and scaled by a distance attenuation factor,

each ray computed with the following equation:

Lsample = (Kvolume + Tr ∗ Kamb

atten ∗ t2
) (N · w) (4.1)

Where Lsample represents the outgoing light from a given sample. Kvolume

is the final evaluation of all incoming light from lvoxel scatter-in and scatter-

out, while Tr is the end-transmittance when the ray hits a surfel. Kamb is the

irradiance coming from the surfel that the ray hits (or black if it misses all surfels.)

Attenuation is applied to the irradiance by dividing by the distance squared (or

t2) with an attenuation factor atten to modify its effect. The resulting radiance

is then weighed by N ∗w, which represents the cosine weight between the surface

normal N and the sample direction w. After summing up all of the samples in

Equation 4.1, we are left with the following equation to return the final ray color:

Lfinal = Kdiffuse +
LiTot

Nsamples

(4.2)

Where Kdiffuse represents the direct lighting component for the intersect

point, LiTot is the summation of the Nsamples samples cast into the scene.

35

Step 5: If the ray tracing rays step through a volume, samples are cast out

at every sample step (Figure: 4.6.) All samples across a stepping ray share the

same spherical sampler, sampling approximately 16 rays per sample step. Each

step will not guarantee a full distribution over the sphere, but over four to eight

samples, a full distribution should be reached. We have found that this approxi-

mation is adequate and that no noticeable difference was seen compared to other

heavier sampling methods that attempted full sample distribution for every sam-

ple step.

Step 6: After casting rays into the scene and evaluating the radiance at each

intersection (Equation: 4.2), the radiance values are returned as the final color

values. These values are gamma-corrected and converted from floating point

integers into clamped integer values between 0 and 255 in order to fit the Targa

image format.

36

Chapter 5

Results

This section will discuss the testing environment and test scenario used to

compare traditional Monte Carlo gather methods with the results that we were

able to achieve using our PCB Extension algorithm.

Figure 5.1: Sponza Atrium mesh and Stanford bunny volume rendered
using the PCB Extension algorithm.

37

Figure 5.2: A test scene showing a light’s interaction with a volume
changing depending on the direction and position of the light.

5.1 Environment

Our algorithm is able to achieve realistic lighting effects for scenes that in-

clude volumetric elements using our lvoxel representation with a point-based color

bleeding approach to global illumination. The following test cases were run on

a commodity-class Intel i5 3 GHz machine with 16 Gb of RAM. Because of the

disparity between academic-level versus production-class ray tracer implemen-

tations, we tested and compared our results against a naive implementation of

Monte Carlo global illumination not using the point cloud representation. We

then compared the resulting images and the time it took to render each. Our

algorithm is able to achieve a small difference between images and an increase in

efficiency measured in time to render.

We parallelized our ray tracer by cutting the image into vertical slices for each

38

thread to compute simultaneously with the help of OpenMP, which showed us a

four times speedup across the board.

5.2 Test Scene

Figure 5.3: Real-time visualization of the Sponza Atrium mesh in
MeshLab.

The scene tested involved a 60,000 triangle Sponza Atrium including only

vertex and normal information for simplicity. The CT scan data of the Stan-

ford Bunny was used in order to test scatter in/out contributions by complex

participating media. Figure 1.2 shows the bunny and Sponza Atrium showing

traditional Monte Carlo scattering. At first glance these two images are very sim-

ilar, however there are a number of small artifacts present in the image rendered

with the point cloud representation, and the indirect lighting is slightly darker

overall. A closer look at the two results exemplifies the great similarity between

the two images, as shown in Figure 5.6.

Every test rendered a 640x480 image with 128 light samples per ray.

39

Scene Render Time (s) Image Delta Memory Overhead
643 resolution volume

Monte Carlo w/o PCB 3229 sec NONE NONE
Traditional PCB 348 sec 5.8% 466.3 MB (4.780%)
Extended PCB 433 sec 2.1% 466.7 MB (4.786%)

1283 resolution volume
Monte Carlo w/o PCB 3297 sec NONE NONE
Traditional PCB 348 sec 5.6% 466.3 MB (4.780%)
Extended PCB 402 sec 2.4% 467.5 MB (4.783%)

5123 resolution volume
Monte Carlo w/o PCB 3674 sec NONE NONE
Traditional PCB 348 sec 9.6% 466.3 MB (4.780%)
Extended PCB 417 sec 3.8% 466.4 MB (4.785%)

Table 5.1: Sponza Scene With Stanford Bunny Volume Runtime

5.3 Data Comparison

5.4 Analysis

Our analysis involves comparing 1) the overall render time 2) the perceived

image delta between the images and 3) the memory overhead used by the point-

cloud data. Two volume sets were sampled at differing resolutions (as seen in

Tables 5.1 and 5.2.)

5.4.1 Memory

In all tests, the memory overhead for PCB and PCBEX was much smaller

than that of the scene it represented. When using traditional PCB, the real

benefit to its surfel representation is shown in more complex scenes. In the

Sponza Atrium, the scene generated over 2.5 million surfels for a 60,000 triangle

scene. Adding volume data to the scene does not add a notable amount of data to

40

Scene Render Time (s) Image Delta Memory Overhead
643 resolution volume

Monte Carlo w/o PCB 10150 sec NONE NONE
Traditional PCB 348 sec 14.2% 466.3 MB (4.780%)
Extended PCB 756 sec 3.7% 468.0 MB (4.800%)

1283 resolution volume
Monte Carlo w/o PCB 15811 sec NONE NONE
Traditional PCB 348 sec 14.4% 466.3 MB (4.780%)
Extended PCB 755 sec 4.2% 467.3 MB (4.790%)

2563 resolution volume
Monte Carlo w/o PCB 31373 sec NONE NONE
Traditional PCB 348 sec 14.2% 466.3 MB (4.780%)
Extended PCB 864 sec 4.3% 467.1 MB (4.790%)

Table 5.2: Sponza Scene With CT Head Volume Runtime

the point cloud, but for scenes with large volumes the costs could quickly add up

without some form of multi-resolution light caching. In this regard, adding yet

another representation of the volumes may be expensive, but not prohibitively so.

Additionally, larger scenes would benefit from this representation, as it would be

significantly simpler than the entire scene and can be moved to another system

for out-of-core evaluation.

Comparing Tables 5.1 and 5.2 shows a significant discrepancy of run time and

memory overhead for all tests. This is mostly due to the fact that the CT head

model is entirely solid, whereas the Stanford bunny volume has significant empty

space inside and outside that the volume integrators could take advantage of.

Complex volumes, like that of the CT head scan, are where this algorithm really

shines, with a total speedup factor of over thirty-six times that of the traditional

Monte Carlo render. This was also where the lvoxel data structure was the most

expensive, however that amount was still small (in the range of 2 to 3MB.)

41

5.4.2 Speed

Even when disregarding volume integration, Monte Carlo integration with-

out a lighting representation like PCB is prohibitively slow for even the simplest

scenes. Adding a point cloud representation gave us a surprising speedup. That

speedup was pronounced when volume scattering was added into the tests, show-

ing run-times on the order of magnitudes shorter than the Monte Carlo renders.

Even on sparse octrees without volumes, our front to back octree traversal

method operates at an efficiency of O log n for each node traversal while skipping

nodes occluded by surfels, leading to an average performance increase of over

18%.

Image Quality

Figure 5.4: Bunny Scene comparison of the PCB extension (left) and
traditional Monte Carlo results (right.)

Figures 5.4 and 5.5 show a comparison between Monte Carlo and PCBEX

render results. In order to objectively compare the image results, we used a per-

42

Figure 5.5: CT Head scene comparison of the PCB extension (left)
and traditional Monte Carlo results (right.)

ceptual image difference program called pdiff and ran the pair of images through

in order to identify how close the two images were to each other. The results are

shown in tables 5.1 and 5.2, which ranged from 2.1% and 4.3%.

Figure 5.6: Zoomed image showing PCB extension (left) and Monte
Carlo (right.)

Figure 5.7 compares the non-PCB Monte Carlo image with that of the tra-

ditional PCB renders, showing the clear lack of proper in-/out-scattering. With

the extended algorithm, however, the scenes look nearly identical.

We noticed a dramatic jump in image difference between the 1283 resolution

43

Figure 5.7: Zoomed image showing traditional PCB (left) and PCB
with extension (right.) Note the visible color bleeding with our
method.

bunny model and the 5123 resolution model. We believe that, because we used

the same surfel sizes for all volume resolutions, that this discrepancy was caused

by the complexity of the bunny volume. Because the voxels were smaller, there is

more room for error using larger lvoxels. In real-world application we assume that

lvoxels of much smaller size would be sampled and used in renders to mitigate

this problem.

We would like to note that there are a number of small artifacts in the PCB

renders due to imprecision and incorrect surfel collisions. It is important to note

that, as past papers will attest, such issues are easily overcome and our artifacts

are more due to implementation and time constraints than limits on the algorithm

itself.

5.4.3 Scalability

The usefulness of the point cloud representation depends heavily on the cost

of sampling the octree versus sampling the original scene geometry. In our paper

we assume that the cost of traversing the octree in a front-to-back order and

sampling the point cloud is more efficient than sampling the polygonal meshes

and integrating through the volumes. Simpler scenes (such as the Cornell box)

44

would only benefit from this algorithm given a complex or large volume to sample

inside.

Though we can compare and contrast specific sections of our algorithm to

that of traditional Monte Carlo, the overall worst case run time is hard to eval-

uate. Consider, first, the difficulty in evaluating overall scene complexity, which

depends heavily on the acceleration structure being used (and all of the complex-

ity that entails.) We know for certain that the initial child lookup within our

octree will give us a complexity of nlog(n). Subsequent traversal of leaf nodes

would be significantly less due to the recursive nature of our algorithm.

We can estimate the total cost by multiplying the tests required for each leaf

node by the total leaf nodes the ray will hit within an octree. With that in mind,

a theoretical worst case scene would involve a lot of close geometry (resulting in

a deeply subdivided octree) and a camera orientation that would guarantee that

most of the rays pass through most octree nodes.

Using the point cloud to sample radiance in our test scenes showed a clear

improvement over Monte Carlo sampling the original geometry. With other com-

panies like DreamWorks Animation and Disney employing the point-based color

bleeding algorithm, it is clear they have found the point cloud representations to

have faster evaluation times than the full scene geometry in production. With

the assumption that the point cloud does not get more complex than the scene

it is sampling, we can safely guess that we will see similar speedups.

45

5.5 Known Limitations

One problem we identified is that the algorithm assumes that there are no

transparent polygonal surfaces in the scene. Only completely opaque surfels

are considered in our algorithm, and transparent polygonal surfaces would still

return, not going further into the point cloud. In fact, our surfel representation

does not even have any notion of transparency.

We did not compare other volume integration/in-scattering acceleration struc-

tures which may have been a better suited comparison than that of strict integra-

tion of the participating media. Other BSSRDF algorithms will follow a method

similar to ours, creating nodes within the volume (or polygonal mesh) which

approximate irradiance at each point. These nodes allow for faster lookup of

scatter lighting contribution within the object, allowing their algorithm to essen-

tially skip proper volume integration (which is one of the most costly parts of the

full Monte Carlo rendering algorithm.)

Because our volume phase function was isotropic (evaluating equal scatter in

all directions,) we only had to keep track of one irradiance value in each lvoxel.

In a more complex system, we would use a better representation of the radiance

scattering (perhaps through a spherical harmonic representation) which would

push up the size of each lvoxel considerably. This may cause the lvoxel point

cloud to become more memory-intensive, but we do not foresee this as being

excessively expensive.

46

5.6 Conclusion

In this paper, we discussed the necessity for proper global illumination ap-

proximations in renders, listed a number of algorithms that have attempted to

do this but have fallen short specifically in volume scatter contributions, and

presented an extension to the PCB algorithm by [2] which handles both scatter-

in and scatter-out contributions. The addition of the lvoxel paradigm to the

already successful point-based color bleeding algorithm is shown to be a cost ef-

fective method of approximating and evaluating complex scatter functions based

on participating media. We obtained render speeds up to 36 times faster than

that of pure Monte Carlo renders with a memory overhead between 2 to 5 MB

with an image difference of less than 5% across all tests.

Computer graphics, be it photo-realistic or artistically leaning, relies heavily

on the paradigms established in the physics of light in the real world. Global

illumination is just one of many areas of focus trying to better represent that

light and its complex interactions in the abstract worlds we choose to bring to

screen. One can only imagine the leaps and bounds that computer graphics

is destined to experience in the following years, but inevitably the obstacles boil

down to the same subset of problems. How to manipulate light and, by extension,

color in order to make the viewer experience a story or emotion.

47

Chapter 6

Future Work

As mentioned in Christensen’s point based color bleeding article, surfels can

be modified to “gather” light recursively from their position in the point cloud,

allowing for simulated multi-bounce lighting. This would require only a small

change to the current algorithm, and would apply to volumes as well to allow

very realistic scatter approximations in participating media.

In our tests, all participating media scatters light equally in all directions.

This is rarely the case, as volumes tend to have unique scatter functions. We

can simulate more complex surface scattering functions by creating spherical

harmonic representations of the radiance at any specific point in the volume.

Our current implementation supports such an approach, but remains untested.

Typical implementations of the PCB algorithm include rougher estimations

(usually in the form of a series of spherical harmonic coefficients) at higher levels

in the octree, to be evaluated depending on that node’s solid angle to our sample

point. Due to time constraints, we did not implement full multi-resolution repre-

48

sentations of each node. Including LVoxel data in that representation would be

a trivial process.

As mentioned in Section 5.5, we do not handle transparent objects in our

algorithm. This would likely involve a minor change to volume integration to

include transparent surfels as well.

Our ray tracer runs a number of threads to split the image into multiple parts

in order to achieve simple parallelism. Before the threads are created, however,

we generate surfels and lvoxels sequentially. Due to the nature of our octree

implementation, we cannot add elements and still be thread safe, but this would

not be a large obstacle. Scenes like the sponza atrium would run a number of

times faster if we were to parallelize our implementation more effectively.

Although for our purposes ray casting the scene to sample for surfels worked

well, it is most certainly not an optimal algorithm. Sampling the scene in a

more geometry- aware fashion would lead to fewer samples and better results.

Subdividing the scene into smaller polygons and sampling the scene (say, one

or two surfels per micro-polygon) would increase our coverage while decreasing

unnecessary overlap. We found that the simpler approach worked best for us,

given our time frame, however it can most certainly be improved.

Because the color-bleeding effect in PCB focuses primarily on the point-cloud

data, we are offered a unique opportunity to consider offloading the entire octree

structure out-of-core in order to outsource the (still computationally complex)

algorithm onto other machines, if not to on-board GPUs. Taking advantage of a

graphics processor’s fast math and hardware rasterization would allow for much

49

faster indirect-lighting evaluations.

50

Bibliography

[1] Eva Cerezo, Frederic Perez, Xavier Pueyo, Francisco J. Seron, and Francois

X. Sillion. A survey on participating media rendering techniques. 21:303–

328, 2005.

[2] Per H. Christensen. Point-based approximate color bleeding. 2008.

[3] Per H. Christensen. Point-based global illumination for movie production.

SIGGRAPH ’10, 2010.

[4] Julie Dorsey. Radiosity and global illumination. The Visual Computer,

11:397–398, 1995.

[5] S Guthe and W Strasser. Advanced techniques for hhigh-quality multi-

resolution volume rendering. 28:51–58, 2004.

[6] Henrik Wann Jensen. Realistic Image Synthesis Using Photon Mapping. A.

K. Peters, Ltd., Natick, MA, USA, 2009.

[7] Henrik Wann Jensen and Per H. Christensen. Efficient simulation of light

transport in scences with participating media using photon maps. In Pro-

ceedings of the 25th annual conference on Computer graphics and interactive

techniques, SIGGRAPH ’98, pages 311–320. ACM, 1998.

51

[8] James T. Kajiya and Brian P. Von Herzen. Ray tracing volume densities,

1984.

[9] Joe Kniss, Charles Hansen, Peter Shirley, and Allen Mcpherson. A model

for volume lighting and modeling. IEEE Transactions on Visualization and

Computer Graphics, 9:150–162, 2003.

[10] Marc Levoy. Display of surfaces from volume data, 1988.

[11] Marc Levoy. Efficient ray tracing of volume data. ACM Transactions on

Graphics, 9:245–261, 1990.

[12] Greg Humphreys Matt Pharr. Physically Based Rendering: From Theory to

Implementation. Morgan Kaufmann, 2 edition, 2010.

[13] Philippe Bekaert Philip Dutre, Kavita Bala. Advanced Global Illumination.

A K Peters, 2006.

[14] Eric Tabellion and Arnauld Lamorlette. An approximate global illumination

system for computer generated films. 23:469–476, 2004.

[15] James M. Van Verth and Lars M. Bishop. Essential Mathematics for Games

and Interactive Applications. Morgan Kaufmann, Burlington, MA, USA,

2008.

[16] Rdiger Westermann. A multiresolution framework for volume rendering. In

SYMPOSIUM ON VOLUME VISUALIZATION, pages 51–58. ACM Press,

1994.

[17] Magnus Wrenninge and Nafees Bin Zafar. Volumetric methods in visual

effects. 2010.

52

[18] R Xu and S.N Pattanaik. A Novel Monte Carlo Noise Reduction Operator,

volume 25. Computer Graphics and Applications, IEEE, 2005.

[19] Caixia Zhang and et al. light propagation for mixed polygonal and volumetric

data, 2005.

Image Results

Figure 6.1: The Sponza Atrium with the Stanford volumetric bunny.
In-/Out-scattering is evident on the volume and on the surrounding
atrium walls.

53

Figure 6.2: Example of point-based color bleeding without the volume
extension algorithm.

Figure 6.3: Example of a scene almost entirely in shadow, showing
indirect lighting in play.

54

Figure 6.4: Image exemplifying clear out-scattering from Stanford
bunny volume.

Figure 6.5: Image exemplifying clear color bleeding next to the red wall
in the bunny’s shadow and correct transmittance through the bunny’s
hollow form.

55

Figure 6.6: The black occluding geometry in the center stops all but
the light to the left to enter below.

Figure 6.7: Illustrates how a light may act when placed within a hollow
volumetric object. The bunny is shown as slightly brighter, scattering
light about the scene.

56

Figure 6.8: Shows how CT scan data can be used to visualize scanned
objects like a human face. Subsurface scattering and transmittance
through thin materials is evident.

57

	List of Tables
	List of Figures
	Introduction
	Graphics & Light
	Global Illumination
	Color Bleeding Techniques
	Our Contribution

	Background
	Radiance
	BRDF and the BSSRDF
	Volume Lighting
	Absorption:
	Scatter Out:
	Transmittance:
	Phase Functions
	Scatter In

	Monte Carlo Integration

	Related Work
	Global Illumination
	PCB
	Photon Mapping

	Volume Rendering
	Existing Work
	Multi-Resolution Volumes
	Occlusion Techniques
	Volume Lighting

	PCB Extension Algorithm
	Point Based Color Bleeding
	Extension Overview
	Sampling the Scene
	Surfel Sampling
	LVoxel Sampling

	Gathering Light
	Point-Cloud Ray Casting
	Hemisphere Sampling

	Integrating Volume Data
	Data-Structure Modifications
	Octree Traversal
	Acquiring Scatter-Out Contributions
	Acquiring Scatter-In Contributions

	Review

	Results
	Environment
	Test Scene
	Data Comparison
	Analysis
	Memory
	Speed
	Scalability

	Known Limitations
	Conclusion

	Future Work
	Bibliography

