
An Approach to Point Based Approximate Color
Bleeding With Volumes

Christopher J. Gibson? and Zoë J. Wood??

California Polytechnic State University

Abstract. Achieving realistic or believable global illumination in scenes
with participating media is expensive. Light interacts with the parti-
cles of a volume, creating complex radiance patterns. This paper in-
troduces an explicit extension to the commonly used point-based color
bleeding technique which allows fast, believable in- and out-scattering ef-
fects building on existing data structures and paradigms. The proposed
method achieves results comparable to that of existing Monte Carlo inte-
gration methods, that is realistic looking renders of scenes which include
volume data elements, obtaining render speeds between 10 and 36 times
faster while keeping memory overhead under 5%.

1 Introduction

The ability to render scenes with realistic lighting is desirable for many enter-
tainment application settings such as film. Great results have been achieved for
large scenes using point based color bleeding [1] algorithms. In their basic form,
these algorithms tend to limit or omit the lighting contribution from volumetric
data or participating media within the scenes. This paper presents an explicit
extension to the point-based color bleeding (PCB) algorithm and data represen-
tation tuned to volumes, light-voxel (or lvoxel) to address the need to represent
participating media which leverages a point cloud representation of a scene.

The proposed method achieves results comparable to those produced with
Monte Carlo ray tracing [2], that is, images that include color bleeding from
volume elements but with drastically reduced run times, speeding up renders by
around 10 to 36 times. Figure 3 illustrates a comparison of our algorithm and
Monte Carlo ray traced results.

1.1 Background

The goal of the proposed method is to include volumetric representations into
a global illumination algorithm in a fast and coherent way. One of the unique
features of participating media is that they must be represented with a more
complex data-structure than solid geometric objects which are usually polyg-
onalized in most rendering processes. Light interacts with the particles of a
? e-mail: cgibson@calpoly.edu

?? e-mail: zwood@calpoly.edu



2 Christopher J. Gibson and Zoë J. Wood

volume, creating complex radiance patterns (increasing the necessary computa-
tional complexity exponentially.) In particular the most fundamental concepts
are presented here, (based off of [3]).

In contrast to polygonal models, in volumes, as light passes through a par-
ticipating media, light will become absorbed based on its absorption proba-
bility density σa, scatter based on a scatter probability density σs or simply
pass through the volume. Both absorption and scatter-out involve the reduc-
tion of energy through a volume, lowering its transmittance. This can be com-
bined into the following representation: σt(p, w) = σa(p, w) + σs(p, w). Then,
integrating the transmittion of the volume over a ray gives us equation (1.1):
Tr(p→ p′) = e−

R d
0 σt(p+tw ,w)dt .

Additionally, in volumes, the probability that light may scatter from direc-
tion w to w′ is described using a distribution function or phase function, which
describes the angular distribution of light scattered by particles in a volume.
All tests in this paper were rendered using one of the simplest phase functions,
known as the isotropic or constant phase function which represents the BRDF
analog for participating media [4].

Finally, while σs may reduce the energy of a ray passing through a volume,
radiance from other rays may contribute to the original ray’s radiance, called
scatter-in. After we guarantee that the distribution is normalized, to make sure
that the phase function actually defines a proper probability distribution for a
particular direction, we can integrate the total radiance scatter based on the
normalized phase function phase(w → w′) over all directions w′ to get our total
scatter in a direction w: S (p, w) = Lve(p, w) + σs(p, w)

∫
S2 phase(p,−w′ →

w)Li(p, w′)dw′. The volume emission coefficient, Lve(p, w), is not discussed here.

2 Related Work

Global Illumination: Global illumination is an important problem in computer
graphics, with numerous successful algorithmic solutions, including, photon map-
ping [5], radiosity [6] and Monte Carlo sampling techniques for ray tracing [2].
The most closely related methods to this work are those that sample the scene
and use a two stage approach to model direct and indirect illumination. Of par-
ticular relevance is Point-Based Approximate Color Bleeding [1], which describes
the process of sampling the scene in order to create a point cloud representa-
tion, used to evaluate the incoming radiance surrounding a given point on a sur-
face. As recently as 2010, discussion of approximating volume scattering using
point clouds was mentioned in [7], but without algorithmic details, such as how
back-to-front or front-to-back rasterization would be achieved with the current
rasterization method (handled by our octree traversal method) or how scatter,
extinction and absorption would be managed within the volume representation
in the point cloud.

Other closely related work includes attempts at simulating light scatter and
absorption properties of participating media through existing photon mapping
techniques, which have shown promise in the past. Jensen in [8] describes a



Point Based Color Bleeding With Volumes 3

process where photons participate and become stored inside the volume itself for
later gathers during volume integration. While this technique is shown to work,
it primarily focuses on caustic effects in volumes and the generated photon map.
Our storage method does not require data to be stored in the volume, but in a
separate, more lightweight data-structure better suited for out-of-core rendering.

Volume Rendering: This paper is focused on the rendering of scenes which con-
tain volume data. A number of approaches have been developed in order to
render volume data [9][10]. Volume data representations often include an ef-
ficient multi-resolution data representation [11][12]. When dealing with multi-
resolution volume octree datastructures, removing occluded nodes from being
tested can drastically increase performance [13]. Our algorithm takes advantage
of a multi-resolution, view-independant octree datastructure in order to handle
a large amount of complex lighting and volume data, skipping material occluded
by opaque geometry cached in the data-structure in the form of surfels. Al-
though the idea of using these techniques in volumes is not new, utilizing them
to guarentee correct volume integration in the point cloud used in PCB is.

3 Algorithm

We present an algorithm which is an extension to the point cloud techniques
described in [14] and [1], specifically building off the point-based color bleeding
technique by Christensen. The modifications involve evaluating light scatter and
absorption properties at discrete points in the volume and adding them to the
point cloud. Using a front-to-back traversal method, we can correctly and quickly
approximate the light-volume representation’s contribution to a scene’s indirect
lighting evaluation.

In general, PCB methods subdivide the world into small representational
segments, called surfels [1], which are stored in a large point cloud, representing
the scene. Surfels are used to model direct illumination, and are then used in a
later phase to compute indirect lighting and color bleeding in an efficient manner.

The goal of our method is to include volumetric representations into PCB
methods in a fast and coherent way while keeping memory overhead and compu-
tational complexity to a minimum. In the existing algorithm [1], surfels represent
opaque materials within the point cloud, thus to incorporate a representation of
volumetric data, an additional data representation was necessary to handle the
scatter and absorption properties of participating media. Our data representa-
tion closely follows the model of surfels, in that we choose to sample the volume
at discrete locations and store a finite representation of the lighting at those dis-
crete locations, but with modifications to handle the special attributes of lighting
in transparent media. In keeping with the naming conventions established, we
call our discrete sampling of lighting elements for a volume: lvoxels.

In general, our algorithm must 1) sample the scene geometry (including the
volume) and store the direct lighting (or relevant lighting properties) 2) gather
indirect lighting and 3) model the scatter-out and scatter-in properties of volu-
metric lighting.



4 Christopher J. Gibson and Zoë J. Wood

3.1 Sampling the Scene

The goal of this stage of the algorithm is to sample the scene geometry (including
the volume) and store the direct lighting in a finite data representation to be used
later for global illumination lighting effects. As all of our finite data represents
the direct lighting of some small portion of a surface or element in a three-
dimensional scene, we refer to the union of all finite lighting samples as a “point
cloud”. This point cloud is stored in an octree representation for efficient access
to all data elements, surfels and lvoxels. Surfels differ from lvoxels only in that
surfels represent a flat, solid geometry while lvoxels represent a transparent,
volumetric medium. Both have radii and position so both can be placed within
the same point cloud.

We sample the opaque geometry as surfels, which are computed using a per-
spective viewing volume slightly larger then the current viewing frustum, with
a sampling rate two times that of the desired pixel resolution. Rays are cast
from this logical camera just as we would ray trace a normal scene, with surfels
generated where those rays intersect with the scene. Lvoxels are generated by
marching over the entire domain of the volume by a specific, preset interval, sam-
pling scatter and absorption coefficients in order to get an average throughout
the area an lvoxel will occupy. Typically this involves eight to sixteen absorption
and scatter samples per lvoxel. These values, as well as the radius of the lvoxels,
may differ depending on the complexity and raw resolution of the volume. In
our tests, one lvoxel for every 23 − 43 voxels achieved good results.

Caching the direct light contribution at each lvoxel by testing the trans-
mittance (equation 1.1) to each light source saves us from re-computing light
calculations during sampling in sections 3.3 and 3.4 [15].

3.2 Gathering Light

Next, our algorithm uses a gather stage similar to the one in PCB, which cal-
culates the irradiance at a point on a surface, given the radiance of the scene
around it. Unlike PCB, which uses a software rasterization method, we chose
to evaluate irradiance by raycasting into the point-cloud around a hemisphere
oriented along the surface’s normal. This decision was made to simplify the tests
which compare traditional Monte Carlo sampling methods to the extended PCB
algorithm, but also to simplify evaluation of the transparent lvoxels.

In order to approximate the integral of incoming light at point p on the
surface, we sample across a hemisphere oriented along the surface’s normal N at
p. Each sample cast out from p evaluates L(p← w) which is then multiplied by
w ·N in order to represent cosθ. In order to obtain good results, 128-256 samples
are typically necessary to combat noise caused by the samples. How radiance and
transmittance are handled with lvoxels will be explained in the next section.

3.3 Adding Scatter-Out

Modifications to the previously mentioned irradiance sampling technique for
scatter-out effects with volumes are few. The most significant changes are to



Point Based Color Bleeding With Volumes 5

the point cloud octree and its traversal. Specifically, when computing lighting,
we must account for the fact that when an element of the point cloud is hit, it
may be transparent. In the standard algorithm, absorption and transmittance
would not be taken into account and the traversal would stop at the first lvoxel
encountered.

In order to properly evaluate transparent and opaque surfaces within the
point cloud, we made changes to node-level octree traversal. Each branch tra-
verses its children from closest to farthest, guaranteeing that closer leaf nodes
are evaluated first. Leaf nodes then use the pre-evaluated scatter (σs) and ab-
sorption (σt) coefficients for each lvoxel to appropriately alter the sample ray’s
transmittance, and continue with the traversal, with each hit contributing to the
final resulting radiance value. Once a surfel is hit, there is no need to continue
traversing the octree.

In addition to traversing the tree front-to-back, we also keep track of the
incoming radiance and current transmittance. Both of these values are modified
according to the equations described in Section 1.1 taking into account each
lvoxel’s scatter and absorption coefficients.

3.4 Adding Scatter-In

After adding lvoxels to our octree structure and evaluation algorithm, the only
modifications necessary for scatter-in are to the volume rendering equation. Re-
call that to model lighting for a volume, in-scattering requires integrating over
all directions. Casting Monte Carlo sample rays through the volume and into
the scene would be computationally expensive. Instead, for each sample we send
out rays into the point cloud, iterating through a much sparser dataset. This
helps us replace expensive S(p, w) evaluations with traversals into the octree.
The two main differences between sampling scattered light within a volume and
evaluating the irradiance on a surface are 1) the distribution function, which is
based on the volume’s phase function, and 2) the samples are distributed over a
sphere rather than a hemisphere. Each of these samples gather light as described
in Section 3.2.

4 Results

Our algorithm is able to achieve realistic lighting effects for scenes that include
volumetric elements using our lvoxel representation with a point-based color
bleeding approach to global illumination. All test cases were run on a commodity-
class Intel i5 3 GHz machine with 4 Gb of RAM. Because of the disparity between
academic-level versus production-class ray tracer implementations, we tested
and compared our results against a naive implementation of Monte Carlo global
illumination not using the point cloud representation. We then compared the
resulting images and render times of each. Our algorithm is able to achieve a
very small image difference and an increase in render time efficiency.



6 Christopher J. Gibson and Zoë J. Wood

Fig. 1. CT Head scene comparison of the PCB extension (left) and traditional Monte
Carlo results (right.)

(a)

(b)

Fig. 2. (a) Zoomed image showing traditional PCB (left) and PCB with extension
(right.) and (b) Zoomed image showing PCB extension (left) and Monte Carlo (right.)



Point Based Color Bleeding With Volumes 7

The scene tested involved a 60,000 triangle Sponza Atrium model including
only vertex and normal information for simplicity. CT scan datasets of a human
head and the Stanford Bunny were used in order to test scatter in/out contribu-
tions involving complex participating media. Both Figures 3 and 1 show the CT
data in Sponza Atrium rendered with traditional Monte Carlo scattering and
our extended PCB. These resulting renders are very similar, and a closer look in
Figure 2(b), exemplifies the great similarity between the two images. However,
there are some small artifacts present in the image rendered with the point cloud
representation, and the indirect lighting is slightly darker overall. Further results
that show proper color bleeding can be seen in Figure 4. Close up comparison
of traditional PCB versus extended PCB is shown in Figure 2(b).

Table 1. Data for the Sponza Scene with the two different CT datasets.

Scene: CT Bunny in Sponza Render Time (s) Image Delta Memory Overhead

643 resolution volume

Monte Carlo w/o PCB 3229 sec NONE NONE
Traditional PCB 348 sec 5.8% 466.3 MB (4.780%)
Extended PCB 433 sec 2.1% 466.7 MB (4.786%)

1283 resolution volume

Monte Carlo w/o PCB 3297 sec NONE NONE
Traditional PCB 348 sec 5.6% 466.3 MB (4.780%)
Extended PCB 402 sec 2.4% 467.5 MB (4.783%)

5123 resolution volume

Monte Carlo w/o PCB 3674 sec NONE NONE
Traditional PCB 348 sec 9.6% 466.3 MB (4.780%)
Extended PCB 417 sec 3.8% 466.4 MB (4.785%)

Scene:CT head in Sponza Render Time (s) Image Delta Memory Overhead

643 resolution volume

Monte Carlo w/o PCB 10150 sec NONE NONE
Traditional PCB 348 sec 14.2% 466.3 MB (4.780%)
Extended PCB 756 sec 3.7% 468.0 MB (4.800%)

1283 resolution volume

Monte Carlo w/o PCB 15811 sec NONE NONE
Traditional PCB 348 sec 14.4% 466.3 MB (4.780%)
Extended PCB 755 sec 4.2% 467.3 MB (4.790%)

2563 resolution volume

Monte Carlo w/o PCB 31373 sec NONE NONE
Traditional PCB 348 sec 14.2% 466.3 MB (4.780%)
Extended PCB 864 sec 4.3% 467.1 MB (4.790%)

4.1 Data Comparison

Table 1 shows render times, image differences and memory overhead for the CT
scan datasets in the Sponza Atrium with varying sized volumes and for three



8 Christopher J. Gibson and Zoë J. Wood

different rendering methods: Monte Carlo without PCB, traditional PCB and
finally our extended PCB algorithm.

Fig. 3. Bunny Scene comparison of the PCB extension (left) and traditional Monte
Carlo results (right.)

Memory: When using traditional PCB, the real benefit to its surfel representa-
tion is shown in more complex scenes. In the Sponza Atrium, the scene generated
over 2.5 million surfels for a 60,000 triangle scene. Adding volume data to the
scene does not add an objectionable amount of data to the point cloud (see Ta-
ble 1), but for scenes with large volumes the costs could quickly add up without
some form of multi-resolution light caching. In this regard, adding yet another
representation of the volumes may be expensive, but not prohibitively so. Addi-
tionally, larger scenes would benefit from this representation, as the point cloud
would be significantly simpler than the entire scene and can be moved to another
system for out-of-core evaluation.

Speed: Even without volume integration, Monte Carlo integration without a
lighting representation like PCB is prohibitively slow for even the simplest
scenes. Adding a point cloud representation gave us an impressive speedup.
That speedup was compounded even more when volume scattering was added
into the tests, showing a speedup upwards of 36 times that of the Monte Carlo
renders. Compared to traditional PCB runs, we found the increase in overall
runtime to be well worth the improvements to the renders we achieved. Even on
sparse octrees without volumes, our front to back octree traversal operates at
an efficiency of O log n for each node traversal while skipping nodes occluded by
surfels, leading to an average performance increase of over 18%.



Point Based Color Bleeding With Volumes 9

Image Quality: To objectively compare rendering results, we used a percep-
tual image difference program called pdiff to identify how close any two renders
matched. The results, which ranged from 2.1% and 4.3%, are shown in Table 1.
Figure 2(a) compares the non-PCB Monte Carlo image with that of the tradi-
tional PCB renders, showing the clear lack of proper in-/out-scattering. With
the extended algorithm, however, the results are comparable.

4.2 Conclusion

We have presented an extension to the PCB algorithm by [1] which handles both
scatter-in and scatter-out contributions. The addition of the lvoxel paradigm
to the already successful point-based color bleeding algorithm is shown to be a
cost effective method of approximating and evaluating complex scatter functions
based on participating media. We obtained render speeds up to 36 times faster
than that of pure Monte Carlo renders with a memory overhead between 2 to 5
MB with an image difference of less than 5% across all tests.

For more information on this subject, please refer to [16].

Fig. 4. Additional examples of clear color bleeding using our algorithm

4.3 Future Work

In our tests, we focused on isotropic phase functions in our volumes, while many
volumes could have unique scatter functions. We could simulate more complex
surface scattering functions by creating spherical harmonic representations of
the radiance at any specific point in the volume. Another fruitful addition to
our current method would be including rougher estimations, usually in the form
of a series of spherical harmonic coefficients, at higher levels in the octree, to be



10 Christopher J. Gibson and Zoë J. Wood

evaluated depending on that node’s solid angle to a sample point (often present
in traditional PCB algorithms). Finally, as mentioned by Christensen [1], surfels
can be modified to “gather” light recursively from their position in the point
cloud, allowing for simulated multi-bounce lighting. This would require only a
small change to the current algorithm, and would apply to volumes as well to
allow very realistic scatter approximations in participating media.

Acknowledgements

A special thanks to Patrick Kelly from DreamWorks Animations for his consis-
tent help and support. Our brainstorming sessions were invaluable, and always
left me full of new ideas as well as helping me hone the subject for this project.

References

1. Christensen, P.H.: Point-based approximate color bleeding. (2008)
2. Robert L. Cook, T.P., Carpenter, L.: Distributed ray tracing. In: Proceedings

of the 11th annual conference on Computer graphics and interactive techniques.
SIGGRAPH ’84, ACM (1984) 165174

3. Matt Pharr, G.H.: Physically Based Rendering: From Theory to Implementation.
2 edn. Morgan Kaufmann (2010)

4. Cerezo, E., Perez, F., Pueyo, X., Seron, F.J., X. Sillion, F.: A survey on partici-
pating media rendering techniques. 21 (2005) 303–328

5. Jensen, H.W.: Realistic Image Synthesis Using Photon Mapping. A. K. Peters,
Ltd., Natick, MA, USA (2009)

6. Dorsey, J.: Radiosity and global illumination. The Visual Computer 11 (1995)
397–398 10.1007/BF01909880.

7. Christensen, P.H.: Point-based global illumination for movie production. SIG-
GRAPH ’10 (2010)

8. Jensen, H.W., Christensen, P.H.: Efficient simulation of light transport in scenes
with participating media using photon maps. In: Proceedings of the 25th an-
nual conference on Computer graphics and interactive techniques. SIGGRAPH
’98, ACM (1998) 311–320

9. Levoy, M.: Display of surfaces from volume data (1988)
10. Kajiya, J.T., Herzen, B.P.V.: Ray tracing volume densities (1984)
11. Westermann, R.: A multiresolution framework for volume rendering. In: SYMPO-

SIUM ON VOLUME VISUALIZATION, ACM Press (1994) 51–58
12. Levoy, M.: Efficient ray tracing of volume data. ACM Transactions on Graphics

9 (1990) 245–261
13. Guthe, S., Strasser, W.: Advanced techniques for high-quality multi-resolution

volume rendering. 28 (2004) 51–58
14. Tabellion, E., Lamorlette, A.: An approximate global illumination system for

computer generated films. 23 (2004) 469–476
15. Wrenninge, M., Bin Zafar, N.: Volumetric methods in visual effects. (2010)
16. Gibson, C., Wood, Z.: Point based color bleeding with volumes.

Technical report, California Polytechnic State University (2011)
http://digitalcommons.calpoly.edu/theses/533.


