Building Worlds: Bridging Imperative-First and
Object-Oriented Programming in CS1-CS2

Zoé Wood
Computer Science Department
California Polytechnic State University
1 Grand Avenue
San Luis Obispo, CA 93407 USA
zwood@calpoly.edu

ABSTRACT

When teaching introductory computing courses, we are of-
ten guilty of writing rudimentary programming assignments
— those meant to illustrate one simple language feature, com-
prised mostly of code that will never be used beyond the as-
signment. Admittedly, first-year computing students must
navigate a myriad of challenges, sometimes learning both
imperative and object-oriented programming, in addition to
mastering syntax, logic, debugging, and testing. To tackle
the difficulties of developing CS 1 and CS 2 courses that
engage students in learning while addressing the numerous
course objectives, we chose to challenge students to create
virtual worlds in one large comprehensive two-quarter long
programming project. Students were granted creative free-
dom within a framework that gradually introduces many
programming skills and that requires the mastery of object-
oriented programming and some engaging algorithms. We
present the curriculum, performance comparisons, and ob-
servations. Overall, we consider the experimental courses a
success that will have an impact on our department’s future
curricular offerings.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—computer science education

General Terms

Experimentation

Keywords

Introductory programming, object-oriented programming

1. INTRODUCTION

Creating meaningful learning experiences for students in
introductory computing courses is a challenge. Many stu-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

SIGCSE’15, March 04-07, 2015, Kansas City, MO, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2966-8/15/03 ...$15.00.
http://dx.doi.org/10.1145/2676723.2677249.

Aaron Keen
Computer Science Department
California Polytechnic State University
1 Grand Avenue
San Luis Obispo, CA 93407 USA
akeen@calpoly.edu

dents find themselves overwhelmed with simultaneously learn-
ing syntax, logic, program design, decomposition, debug-

ging, algorithms, testing, and object-oriented design (all of

which may be required in a first year assignment). In order

to address this overwhelming problem space, faculty often

rely on small programming assignments to introduce discrete

language or programming concepts one at a time. These

rudimentary assignments are problematic as they are of-

ten decoupled from real-world programming and real-world

problems, lessening student engagement and leading to con-

fusion about the true use of these language/design features.

This is especially true for object-oriented programming where
the design goals (and language features supporting these

goals) run almost directly orthogonal to the context of a

small, rudimentary program. In short, language support

for programming large systems is often unappreciated and

poorly motivated in small programs.

Beginning in 2010 our department tackled some of the
challenges of introducing students to computing via the use
of project-based contextualized learning in CS 0 [11]. Stu-
dents are introduced to computing via topics such as mobile
computing, video games, music, computational art, robotics,
and security. The success of these CS 0 offerings inspired us
to consider some of the core challenges we face in the sub-
sequent first-year courses (CS 1 and CS 2). Specifically, we
set out to design courses with high student engagement that
expose students to large “real-world” problems, that require
working on a larger-than-typical code base where each as-
signment’s code is dependent on a prior assignment, and
that require the creation of a project that truly illustrates
the benefits of object-oriented programming. We present
details of these courses in Section Bl

Our envisioned CS 1 and CS 2 courses (referenced from
here on as CS 1le;x and CS 2.4 to avoid confusion with the
prior CS 1 and CS 2) differ significantly from the existing
courses in our department. Details of existing courses are
provided here for context.

Our department’s CS 1 could be said to implement what
the Computing Curricula 2001 [1] terms an “imperative-first”
approach. Specifically, CS 1 focuses on programming skills
using primitive and structured data, expressions, condition-
als, loops, arrays, and (non-recursive) functions. Our de-
partment’s CS 1 uses C as the implementation language, but
without any required instruction on pointers (aside from in-
cidental uses inherent in C). Our department’s CS 2 covers
objects and object-oriented programming in Java including
classes, interfaces, polymorphism, and inheritance. CS 2 is

also tasked with introducing recursion, searching, sorting,
and linked lists. A typical instance of this course requires
that students implement very prescriptive assignments with
an emphasis on “how” the object-oriented language features
work in Java.

Though our department’s CS 1 builds a sufficiently solid
imperative foundation that supports learning to program in
Java, many students at the end of CS 2 are left unsure of the
need for or value of object-oriented features. In particular,
when early CS 2 assignments require the use of interfaces, it
is a challenge to properly motivate the reasons for their use.
When early CS 2 assignments do not require the use of in-
terfaces, it can be a challenge to motivate their introduction
later. Some students have questioned the value of object-
oriented programming as a whole since they feel they could
implement the assignment more directly in C; this is typi-
cally due to limited additional complexity in the prescrip-
tive assignments that focus on introducing object-oriented
features.

We sought to address these shortcomings by bridging the
transition from CS 1 to CS 2 with a single project that
spans these two courses. We offered one section of an ex-
perimental CS 1 (CS lex) during the Winter quarter 2014
and one section of an experimental CS 2 (CS 2¢) course
during the Spring quarter 2014, each with approximately
35 students. These sections were co-taught by the authors
during both quarters. The course-spanning project required
students to create their own virtual worlds with interacting
entities/characters. Students were allowed a great deal of
creativity in designing the theme, the environment, and the
behavior of their worlds and their worlds’ inhabitants. The
instructors provided high-level requirements that drove the
development of a larger program while gradually introducing
object-oriented features.

During this project, the students had to contend with
code dependencies between assignments, rewrite portions of
their program to address shortcomings in design decisions
(and, ultimately, to switch languages), test modules before
integrating them into the larger program, and implement
context-based graph searching algorithms (an extension in
scope beyond the searching of sequential structures required
in our department’s CS 1 and CS 2). These experiences
pushed student learning beyond the development of small
throw-away programs and contextualized the value and need
for more advanced language features and design methodolo-
gies.

2. RELATED WORK

There is a large body of work addressing the multitude of
challenges (including failure rates [5]) in introductory com-
puter science curricula, including context-based computing,
small courses and the use of labs early, making use of pair
programming, etc. |10 |8, |13} |7, 6]. Our department has
a strong commitment to introductory computing: the in-
troductory courses are kept relatively small with about 35
students per section, each section includes equal lab and lec-
ture time, and the department runs a free tutoring center.
Though these academic structures are beneficial, students in
introductory courses continue to fail at higher than accept-
able rates and there is a perceived mismatch between the
skills students gain in introductory courses and the skills
desired by upper-division instructors.

In order to address issues related to student failure rates,
dwindling enthusiasm, language battles, and upper-division
skill mismatch, we proposed the experimental course struc-
ture described in this paper. The work presented here is
strongly founded in the success of using context-based com-
puting in introductory computing courses |10, (8} |L1] and our
belief in the use of project-based learning 4], especially when
considering teaching the utility of object-oriented language
features. Additionally, we were inspired to allow students
to work in pairs for all major programming assignments, us-
ing a casual implementation of pair-programming [13]. Fi-
nally, our explorations into using Python as a first program-
ming language were influenced by various sources suggesting
Python as a positive starting language [14, |9].

Though our proposed context of a two-dimensional vir-
tual world to motivate learning object-oriented language fea-
tures may appear reminiscent of GridWorld |12, our work
was inspired independently. Moreover, our project requires
students to create their own worlds and to write all associ-
ated code from scratch. This structure provides a means for
students to experience the ramifications of non-ideal design
decisions and to appreciate the value of improved design in
addressing the shortcomings of earlier decisions.

3. OUR SOLUTION

To address the challenge of developing a CS 1 and CS 2
course sequence that engages students in learning while al-
lowing them to apply their learning to one large compre-
hensive programming project, we designed a two-quarter se-
quence focused on the construction of a virtual worlcﬂ Stu-
dents were granted creative freedom within the framework
of the required technology specifications.

Initially, the students were asked to design worlds that
met the following requirements:

e The world is confined to two dimensions.

e The world must contain multiple characters with dif-
ferent behavior. In particular, the first specification of
the world required the definition of:

— agatherer(s) that would move through the world
seeking a resource.

— a generator(s) that would generate a resource
(in a location relative to the generator).

e The world must include consumable resources that are
generated and gathered.

Later extensions to the project required:

e Obstacles in the world that prevented or restricted
movement.

e Character transformations based on interactions with
the world, with a resource, or with another character.

e A world changing event affecting all elements of the
world within a given (geometric) range.

!Those interested can find materials for this curricu-
lum at http://users.csc.calpoly.edu/ akeen/courses/
cscl01x.

http://users.csc.calpoly.edu/~akeen/courses/csc101x
http://users.csc.calpoly.edu/~akeen/courses/csc101x

Although it was not necessary, we opted to require that
each world be displayed in 2D in order to give the students
improved visual feedback on the state of their world and to
allow for creative visual expression to enhance engagement.

In order to address the diverse curricular needs of CS 1ex
and CS 2, each quarter had a slightly divergent emphasis
and development environment.

e CS lex: The first course focused on programming skills
using primitive and structured data (via classes and
objects), expressions, conditionals, loops, lists, and
functions. This course used Python as the implementa-
tion language with worlds displayed using pygame |[3].

e CS 2.: The second course focused on object-oriented
programming with increased exposure to classes and
objects and an introduction to interfaces, polymor-
phism, and inheritance. This course also covered re-
cursion, searching, sorting, and the implementation of
linked lists. Due to our department’s requirement that
students entering CS 3 must know how to program in
Java, this course included a transition from Python
and pygame to Java with Processing [2].

Lecture material covered introductory programming and
project-relevant topics with students completing short re-
lated lab assignments each week and with the virtual world
project split into multiple major homework assignments.
Students were allowed to choose between working on these
major assignments in pairs or as individuals. Over the two
quarters of this experiment, the composition of pairs and
individual projects varied but at the end of CS 2. eleven
projects were completed by pairs and eight were completed
by individuals. Key assignments were as follows:

e CS lex, HW 1: Provide a description of the theme, en-
vironment, and characters in the virtual world. Define
data representations for some of the characters in the
virtual world.

This assignment introduced the entire virtual world
project by requiring students to describe the world
they intended to build. This assignment also intro-
duced students to programming and Python through
the implementation and testing of simple classes and
objects to represent characters in the world (as defined
by properties such as the x-/y-location, the number of
resources gathered, and the frequency at which a re-
source is generated). These two extremes provided a
creative context (the grand vision) in which to project
the introductory minutiae of defining simple data (the
characters).

e CS lex, HW 2: Build the basic structure to visualize
the world in 2D. Populate the world with characters
and implement movement for a subset of them.

This assignment required that a gatherer move toward
a resource and stop once the resource is reached. In
this context, the students were introduced to decision-
making, conditional logic, and looping. This assign-
ment also served to introduce pygame for displaying
the world.

e CS lex, HW 3: Increase the complexity of interac-
tions in the world, increase the visual complexity of
the world, and visualize reactions to interactions.

This assignment required support for primitive user-
interaction via pygame events (both mouse and key-
board) including a visual response to selection of re-
sources and movement of a gatherer to the nearest or
farthest resource (by choice). In addition, the visual
theme of the virtual world was improved through the
selection or creation of sprites.

e CS lex, HW 4: Build a program to allow a user to “cre-
ate” a specific instance of a world by placing entities
and background sprites using the mouse and keyboard
(including functionality to save and load worlds).

This assignment required the management of multiple
characters (objects) of varying types through the use
of lists and the 2D grid. This included the presenta-
tion of characters that could be placed over different
types of background tiles necessitating managing mul-
tiple objects in the same 2D world “cell”. This assign-
ment also emphasized data conversion in the form of
save files (conversion of an object to/from a string) and
movement of a “view window” in the world (conversion
of window coordinates to/from world coordinates).

e CS lex, HW 5: Bring the world to life by implementing
clock-based movement and animation. Some charac-
ters must transform (with a corresponding animation)
based on actions taken.

This assignment completed the first phase of the two-
quarter virtual world project with a “live” world in
which characters move through the world to take ac-
tions (e.g., gather or deposit resources). This required
triggering actions based on a timer, preventing move-
ment of characters through obstacles (with some naive
effort to bypass obstacles), and changing the state of
the world (creating and/or removing entities) during
execution.

Though it was infeasible to force students completing CS 1ex
to continue with CS 24, of the eleven students in CS 1¢x that
did not continue on to CS 2, none continued on to any
CS 2. The majority of these students were “non-majors”
that are not required to take CS 1 or CS 2.

While we did have control over registration priority for
CS 2, enrollment demands necessitated adding ten stu-
dents to CS 2¢, that had not taken CS 1ey. These ten stu-
dents had completed traditional non-objects CS 1 courses
(using C). To support these new students and to aid any
continuing CS 1e, students that did not complete their as-
signments perfectly, we offered the opportunity to start fresh
with an instructor provided world implementation (approx-
imately 1700 lines of code). Five projects were continued
from the students’ own original code, eleven projects used
the instructor provided code, and three projects started with
the instructor code but modified it to fit their own world.
Major assignments in CS 2, included:

e CS 2., HW 1: Refactor the code to group functional-
ity for each character/class into methods. Justify this
factoring in a written design document.

This assignment required moving the reasonable as-
sociated behavior for each character (and other class)
from stand-alone functions (as used in CS lex) to meth-
ods. Through this assignment students were intro-
duced to objects with behavior, extending their notion
of a data-holding object from CS 1.

e CS 2o, HW 2: Improve character movement within
the world.

This assignment required improving character move-
ment by replacing the naive search from CS 1le¢x with
the A* (A-star) search algorithm. The implementation
of A* for this assignment required students to consider
the representation of the search space in order to se-
lect neighbors, the representation and manipulation of
open and closed sets, and how to reinitiate a search
(the world remains active, so a character will move
again). This assignment also introduced recursion for
reconstructing the shortest path.

e CS 2., HW 3: Refactor the world code to use inheri-
tance for the world entities.

In many cases, the movement of stand-alone functions
to methods in HW 1 involved duplication of code. In
some cases, the duplicated code contained an “instance
of” check to determine the action to take. This as-
signment introduced the concept of inheritance and
required that students refactor duplicate code into a
parent class while specializing behavior in subclasses.

o CS 2., HW 4: Convert the world project from Python
with pygame to Java with Processing.

This assignment introduced Java through a code re-
write. The Python (with pygame) implementation had
to be converted to Java (with Processing). Of par-
ticular note, this rewrite required that students con-
tend with type annotations, access modifiers, inter-
faces, checked exceptions, generics, and support for
lists in Java’s API.

e CS 2., HW 5: Integrate a ‘world changing’ event into
the world.

This assignment required the implementation of a trig-
gered event that starts at a specified location and that
has some local extent. Furthermore, the assignment
required that the event be visualized by changing the
images of the associated grid elements and that the
event affect different characters differently (creating
both a change in the physical appearance of the char-
acters along with a change in the behavior of one of
the character types).

In addition to submitting these assignments, students were
required (twice each quarter) to demonstrate their world
and code in front of the instructors and their classmates.
These class code reviews provided an excellent opportunity
for students to share their solutions and discuss their design
decisions.

An important note about this experimental course is that
it was a break from the traditional CS 1 and CS 2 for our
department in many ways. We used different programming
languages, different assignments, and a different lecturing
style. Both authors worked collaboratively on all aspects
of the course: co-designing lab and homework assignments,
co-writing exams (lab and lecture), and sharing lecturing
(trading-off approximately weekly or by topic). Each in-
structor attended every lecture and genuinely co-taught the
course.

Table 1: CS 1 Traditional vs Experimental scores
CS1 CS 1ex

30 Overall 31 Overall

28 Computing* 23 Computing*
mean | std. dev. [mean | std. dev.

Midterms
Exam 1
Overall 80.9% 14.6 82.5% 13.4
Computing* | 80.4% 14.8 87.2% 9.0
Exam 2
Overall 76.9% 15.5 75.1% 23.3

Computing* | 76.5% 16.0 83.2% 16.4
Lab Exam
Overall 82.0% 17.7 82.1% 23.3
Computing* | 81.3% 18.0 86.2% 22.2
Final Exam
Overall 79.7% 14.2 77.4% 17.4
Computing* | 79.1% 14.4 82.9% 12.7

4. PERFORMANCE COMPARISONS

In measuring the success of our experimental CS lex and
CS 2.x courses we consider both student outcomes and the
participating faculty’s perspectives.

For student outcomes, we compare student success in the
experimental section versus the traditional CS 1 and CS 2
courses taught during the same quarters. At this time we
do not have statistics on the long-term contribution to stu-
dent success (in subsequent courses), but can report positive
outcomes for each comparative section.

We compare the performance in the CS 1ex course against
a traditional CS 1 course taught by one of the authors during
the same quarter. The same midterms, lab exams, and fi-
nal exam were used in each course, but with each adapted to
the appropriate syntax for the course (C in CS 1 and Python
in CS 1ex). Table [1f lists each section’s scores for students
that took the final exam, broken down into the ‘Overall’
class and the ‘Computing*’ students, which includes com-
puter science, software engineering, computer engineering,
and ‘liberal arts and engineering studies’ (LAES) majors
(these are the majors that typically continue on to CS 2).
When comparing all students (‘Overall’) in each course, the
CS 1ex students performed slightly better or just barely be-
low their their traditional CS 1 counterparts in all assess-
ments.

It is worth noting that the experimental section student
population included an uncommonly high number of non-
computing majors. The creative theme attracted ten non-
computing and non-engineering majors (including students
from art, business, political science, and agriculture) out of
a total student population of 36 students, while in the tradi-
tional class the vast majority of students were computing or
engineering majors. When comparing computing and engi-
neering majors between the two sections(designated ‘Com-
puting*’ in Table7 the students in the experimental section
did better in all categories.

For student outcomes in CS 2¢x, we can only compare the
experimental section against traditional sections taught by
faculty members other than the authors. In addition, due
to the more divergent material in the experimental CS 2
course (with its heavy emphasis on path-finding algorithms

and object-oriented design/refactoring from an existing large
code base), the material between the CS 2 variants was more
diverse. However, the same final exam was used across ex-
perimental and traditional sections with the exception of
two questions out of twelve (20 points out the the 95 total
points). For the experimental section the average on the
final exam was 80.8%, while two other traditional section
final exam averages were 79.6% and 83%. Comparing the
total number of students enrolled in the CS 2 sections (ex-
perimental versus traditional), 82% of the students in the
experimental section received a passing grade, while 86%
of the students from the two traditional sections received
passing grades.

In total, the performance comparisons indicate that the
students in the experimental section performed on par with
their counterparts in the traditional sections. We feel stu-
dents in the experimental sections had additional gains doc-
umented below.

5. OBSERVATIONS AND IMPRESSIONS

When reflecting on the CS 1ex and CS 24« experiment, the
participating faculty perceived some very clear positive out-
comes. Perhaps the clearest outcome for both faculty was
an increased appreciation for the use of Python as an in-
troductory programming language. Using Python in CS 1
drastically reduced the amount of lab and office hour time
that instructors spent explaining strange and obscure pro-
gram errors so common with C in an introductory course.
We will not repeat all of the advantages here, as many are
well-documented |14} |9], but, for example, beginning with
Python instills some simple good programming practices
from the outset, such as initializing variables before use.

Moreover, the transition from Python to Java in CS 2
provided a means to bootstrap object-oriented concepts in a
manner that is not easily replicated when transitioning from
C to Java. In particular, since CS 1lex introduced objects as
aggregates of data, we could begin CS 2., with a discus-
sion of adding behavior to objects (still in Python) with-
out any concern for the syntactic and semantic overhead of
access modifiers and static data/methods. Continuing in
Python, the introduction of inheritance was simplified by
the omission of access modifiers and their interaction with
inheritance and by the omission of the distinctions (in Java)
between extending a class and implementing interfaces. In
addition, each modification (e.g., the refactoring of a func-
tion into methods or joining a set of classes at a parent
through inheritance) could be made and tested iteratively
since the function-based aspects of the code continue to work
in Python. After this experience, students found these con-
cepts (objects with behavior, inheritance, polymorphism)
more readily understandable in Java and showed greater ap-
preciation for the use and value of interfaces.

Another aspect of the experimental offering that we found
to be very effective was the use of a large, cohesive project
in CS 2. The large virtual world programming project re-
quiring complex interacting objects with some shared and
divergent behavior (benefiting from polymorphism and in-
heritance), made the introduction of many of the object-
oriented topics more natural and immediately useful to stu-
dents. The 2D world context provided a great stage for
students to apply searching/pathing algorithms; the intro-
duction of these algorithms improved student engagement
leading to many in-class discussions and outside research

into and coding of variants of the pathing algorithms. Even
students that struggled with this topic continued to be en-
gaged and to work hard on these projects in order to ac-
complish their goal of moving their gatherer to a resource
along a “good” path. For some, this led to continued work
on tuning their pathing during later assignments when the
emphasis was no longer on pathing.

Some of the general observations we came away from this
experience with are as follows. In the experimental sections,
it was a positive experience for faculty and students:

e to include project appropriate pathing algorithms in
CS 2. (specifically depth first search and A*).

e to have assignments that built on prior assignments
(students were more accountable for their code and
had to “stick with it” to get their program to work).

e torewrite a large Python code base in Java. This activ-
ity required a level of precision and code understanding
that previously used rudimentary assignments did not
require.

e to use object-oriented language features in the context
of a relatively large code base to implement the virtual
world.

In addition, we strongly suspect that the students in our
experimental section have a better understanding of the
need for and value of object-oriented language features and
object-oriented programming in Java than they would have
after completing our traditional CS 2 (though our CS 2
students were not exposed to as much of the Java API).
We intend to do longitudinal tracking for these students in
CS 3 to evaluate their performance compared to students in
traditional sections.

The aspect of the experimental section that was most
challenging for students (reflected in their verbal comments
on the class) was requiring two different programming lan-
guages in one quarter (during CS 2x). However, each stu-
dent had a diverse reaction to the two very different lan-
guages they needed to use throughout this two-quarter long
project. At the end of CS 2. we asked students to ex-
press their preference for Python or Java (including the op-
tion of saying they liked both). Twelve students commented
that they enjoyed Java while eighteen said that they did not
like Java or that they preferred Python. Student comments
about the languages included opinions such as: “I hate shov-
ing everything into classes”, “I don’t like types”, “I like the
freedom of Python”, “Java had a great IDE”, and “I liked
the constraints and structure in Java”. This varied opinion
of the two languages is a positive indicator that exposing
introductory students to various languages allows them to
find the programming tools that best match either the spe-
cific problem they are solving or, when given a choice, that
best match their own computational thinking style.

The one aspect of the experimental sections that did not
go as well as predicted was the very open-ended nature of
the projects at the beginning of CS ley. We found that
during the first few weeks of CS lex, when students were
designing their worlds but had fairly limited programming
experience, they struggled a bit with understanding what
they needed to do and what they could accomplish. For
future offerings of this sequence, we strongly feel that pro-
viding more structured assignments while introducing world
designing and building would be beneficial in CS 1.

Figure 1: Example world visualizations developed during CS 1., and CS 2.: base world provided post-
CS 1ex(left); a world with knights gathering diamonds (middle); a world featuring witches gathering potion

ingredients (right).

Similarly, the one aspect of the experimental sections that
was disappointing for the participating faculty was the fact
that allowing students the creative freedom to design their
own worlds was less important to the students than ex-
pected. Gauging student interest based on those who con-
tinued with some version of their own world in CS 2, only
42% of the students were committed to designing their own
individualized creative world. This commitment to an in-
dividualized world did vary by student ranging from those
that clearly made little effort to find a set of visually cohesive
sprites to those that took the time to create their own set of
sprites. Some examples of virtuals worlds are shown in Fig-
ure These examples include a world where knights seek
diamonds and a world where witches gather potions. A par-
ticularly notable student-designed world modeled molecules
joining together to create more complex structures.

6. CONCLUSIONS

Overall, we consider the experimental courses a success
that will have an impact on our department’s future curric-
ular offerings. Very few aspects did not work as well as pre-
dicted while other aspects like language and context-based
object-oriented projects were very strong wins. One strong
outcome from this experiment is the department voting to
change the programming language used in CS 1 from C to
Python in all sections. Longer term curricular outcomes
include examining the use of a quarter-long project-based
curriculum in CS 2 and an examination of the topics and
sequence of topics in CS 2 and CS 3.

The experience, in and of itself, of co-teaching this course
is worth commenting on. The process was very rewarding
but not without its challenges in terms of the overhead in
communication and variation in teaching style. As univer-
sity professors we so often are alone in our classrooms and do
not need to share the stage. The process of seeing another
faculty member teach a co-designed lesson is incredibly re-
warding — providing insight into methodology for explaining
certain concepts and insight into general classroom and lec-
turing style. This experience encouraged one of the instruc-
tors, with a typically reserved teaching style, to experiment
with different forms of in-lecture interaction.

7. REFERENCES

[1] Computing curricula 2001. J. Educ. Resour. Comput.,
1(3es), Sept. 2001.

[2] Processing— http:\\www.processing.org, 2014.

[3] pygame— http:\\www.pygame.org, 2014.

[4] M. Barg, A. Fekete, T. Greening, O. Holl, J. Kay,

H. Kingston, and K. Crawford. Problem-based
learning for foundation computer science courses.
Computer Science Education, 10:109-128, 2000.

[5] J. Bennedsen and M. E. Caspersen. Failure rates in
introductory programming. SIGCSE Bull. 39, pages
32-36, 2007.

[6] K. E. Boyer, R. S. Dwight, C. S. Miller, C. D.
Raubenheimer, M. F. Stallmann, and M. A. Vouk. A
case for smaller class size with integrated lab for
introductory computer science. In Proceedings of the
38th SIGCSE Technical Symposium on Computer
Science Education, SIGCSE 07, pages 341-345, New
York, NY, USA, 2007. ACM.

[7] J. P. Cohoon and L. A. Tychonievich. Analysis of a
CS1 approach for attracting diverse and inexperienced
students to computing majors. In Proceedings of the
42Nd ACM Technical Symposium on Computer
Science Education, SIGCSE ’11, pages 165-170, New
York, NY, USA, 2011. ACM.

[8] Z. Dodds, R. Libeskind-Hadas, C. Alvarado, and
G. Kuenning. Evaluating a breadth-first CS 1 for
scientists. In ACM SIGCSE Bulletin, volume 40, pages
266—270. ACM, 2008.

[9] M. H. Goldwasser and D. Letscher. Teaching an
object-oriented CS1 — with python. SIGCSE Bull.,
40(3):42-46, June 2008.

[10] M. Guzdial. Does contextualized computing education
help? ACM Inroads, 1(4):4-6, Dec. 2010.

[11] M. Haungs, C. Clark, J. Clements, and D. Janzen.
Improving first-year success and retention through
interest-based CSO courses. In Proceedings of the ACM
Technical Symposium on Computer Science Education,
2012.

[12] C. Horstmann. Gridworld—
http:\ \horstmann.com\gridworld, 2008.

[13] N. Nagappan, L. Williams, M. Ferzli, E. Wiebe,

K. Yang, C. Miller, and S. Balik. Improving the CS1
experience with pair programming. SIGCSE Bull.,
35(1):359-362, Jan. 2003.

[14] A. Radenski. “Python first”: A lab-based digital
introduction to computer science. SIGCSE Bull.,
38(3):197-201, June 2006.

	Introduction
	Related Work
	Our Solution
	Performance Comparisons
	Observations and Impressions
	Conclusions
	References

