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Figure 1 - Simultaneous Experiments. A pseudo-colored hollow cloth bowl with three pinned vertices is simulated collapsing 

under the force of gravity. Each image depicts the same moment in time for the same mesh, with decreasing membrane and 

bending energy constants, from left to right. 

 

Abstract 

Realism has always been a goal in computer 

graphics. However, the algorithms involved in mimicking 

the physical world are often complex, abstract, and 

sensitive to changes in experimental parameters. We 

present an interface to a physically-based algorithm, a thin 

shell animation, which focuses on visualization, 

experimentation, and control. Through the use of dynamic 

surface coloring, abstract visual cues, robust user 

interaction, and full control over the algorithm parameters, 

our system facilitates experimentation and the process of 

discovery. The system is targeted at enhancing the user’s 

learning experience by clarifying interactions between 

various components of many physically-based animations.   

1             INTRODUCTION 

One of the driving goals in the field of computer 

graphics is to artificially mimic reality. While the ultimate 

purpose of the resulting imagery may vary from 

entertainment to scientific application, the underlying 

algorithms are all mathematically intensive. Graphics 

algorithms that are based on real phenomena, such as 

fluid dynamics, rigid body dynamics, and the transport of 

light, are known as physically-based models [1].  As 

technology advances, more complex physically-based 

algorithms continue to develop, and computer scientists 

wishing to design physically-based algorithms encounter 

an increasingly varied amount of scientific theory. In 

addition, many modern computer science students 

encounter only a limited selection of math courses in their 

curriculum [3], [6], [11].  

 

We present a model application designed to help 

the user understand the complex workings of a physically-

based algorithm and augment their learning experience 

with direct, visual interaction, through the use of dynamic 

coloring, abstract visual cues, mouse interaction, and full 

control over the algorithm parameters. The system 

encourages the exploration, discovery, and understanding 

of the mathematically intense concepts that underlie a 

physically-based algorithm. Our interface is specifically 

designed for interacting with a physically-based 

animation algorithm. These types of algorithms facilitate 

a natural graphical interface, because they mimic physical 

motion which can be observed and readily confirmed in 

the real world.  

 

The program we created to demonstrate our 

interface is called Interactive Thin Shells (ITS).  The 

underlying physically-based algorithm simulates the 

dynamics of thin shells, which are flexible structures that 

have a high ratio of width to thickness and have an initial 

three dimensional non-flat shape that affects its energetic 

reaction to change from that initial shape [9]. The ITS 

environment allows us to directly demonstrate how our 

interface can be used to investigate the properties of an 

algorithm and interact with it in an intuitive and 

educational manner.  

2             RELATED WORK 

The thin shell algorithm implementation in ITS 

is based on a standard physically-based animation model, 

described in detail in the work of Baraff and Witkin [1]. 

Our implementation of the physical system is based on a 

simplified constraint model based partially off of previous 

work of in the area of thin shells [9] and mass-spring 

cloth simulation [4]. Fundamentally, the ITS 

implementation is equivalent to a cloth animation model 

with some modifications that support non-planar initial 

configurations and the stiffer internal forces of thin shell 

materials.  



 

 

The ITS system also employs backward Euler 

step implicit integration to progress the simulation, as 

described by Baraff and Witkin [2]. The implicit method 

provides for numerical stability that is critical in this 

particular situation [1]. Thin shell materials typically 

exhibit very little deformation within the surface of the 

material itself, and require high resistance to these local 

changes. Because of this, our simulation will experience 

regions of high energy in response to deformation, where 

implicit differentiation allows for reasonably sized time 

steps [1]. Our particular implementation of the implicit 

method is based on the work of Dean Marci of the Intel 

Corporation [12], [13], [14]. 

 

The user interface of the ITS environment takes 

the attributes of the underlying physically-based 

animation model and provides a simple, intuitive interface 

that is designed for an individual who wishes to 

understand the capabilities and theoretical components of 

the model.  Similarly, Burgoon [5] demonstrated an 

interface to a thin shell simulation based on origami 

folding and the discrete shells model of Grinspun et al [9].  

In general, there is little previous research that addresses 

an interface design to physically-based animation, 

however, the field of computer-based scientific simulation 

provides another source of research.  

 

The general capabilities of the ITS environment 

are based on the work of Michael Rooks [15], who 

defines a set of requirements for general visual interactive 

simulation (VIS) software systems. VIS systems, as 

defined by Rooks, simulate real world physical 

phenomena as accurately and completely as possible.  In 

contrast, physically-based animation methods aim to 

achieve convincing visual realism without a requirement 

for accuracy.  However, the goals for VIS systems remain 

accurate as it is strongly based on experimentation. Rook 

describes a complete VIS system as one that facilities (1) 

Intervention, (2) Inspection, (3) Specification, and (4) 

Visualization [15]. The ITS environment satisfies each of 

these requirements by providing direct control of the 

meshes involved and procession of time (Intervention), 

access to and customization of all relevant material and 

simulation attributes (Inspection and Specification), and 

visual feedback of the resulting simulation and its effect 

on the dynamics of the thin shell model (Visualization). 

The ITS environment is designed such that a curious 

student or computer science practitioner is able to 

discover all aspects of the thin shell model, including its 

efficiency, capabilities, limitations, and resulting level of 

visual realism.  

3             THE ITS SYSTEM 

To allow the user to experiment with physically-

based animation, ITS provides an animation algorithm, 

user interaction with that animation system, visualization 

of animation parameters, and a playback system to store 

and repeat animations. The following section highlights 

these major features of the interface. For complete details 

about the entire system, see [16]. 

3.1          Animation algorithm 

To facilitate the experimental capabilities of the 

ITS interface, a number of animation features are 

included. The most important feature of the simulation is 

its dynamic material and global parameters. The ITS 

interface is able to, at any time in the simulation, allow 

modification of any of the thin shell membrane or 

bending parameters, as well as the time step size, gravity 

force, integration mode, and any environmental collision 

objects. This modification does not adversely affect the 

progress of the simulation, and ensures that users can 

experiment with many simultaneous parameters. Other 

features of the animation system include constraints on 

vertices, which can disable up to three degrees of freedom 

and the ability to switch between explicit and implicit 

integration modes without any errors in the simulation.  

To allow for a large number of varying thin shell shapes, 

the simulation is also able to load arbitrary mesh files.  In 

addition, to introduce a varied environment for the thin 

shell interactions, the system supports collisions between 

the thin shell and a sphere or cube objects. Figures 4 and 

6 illustrate collision objects and constrained vertices, 

respectively. 

 

The forces and constraints that act on the 

underlying physical system in ITS are a simplified version 

of the internal forces that are present in previous work on 

cloth and thin shells [2], [9]. The membrane, or in-plane 

forces in our algorithm are based on the length of edges 

between vertices and the bending force is a simplified 

form of the piecewise geometric bending energy in [2], 

[9]. This bending force simplification, which is based on a 

simple linear constraint across the shared edge of a pair of 

triangles, is similar to the bending forces of traditional 

mass-spring particle-based cloth models [4].  

 

The ITS environment supports adaptive time 

steps to help ensure stable and real-time interaction at all 

times. Upon each iteration of the simulation, rapid 

changes in position or velocity invoke an automatic 50% 

reduction in the time step size down to a fixed lower limit. 

If this divergent behavior continues, the simulation 

proceeds without reducing the time step, and notifies the 

ITS interface of the problem. However, if a stable 

iteration occurs, a lowered time step is subsequently 

increased incrementally, up to a user-defined upper 

bound. 



 

3.2         User interaction 

Live and paused interactions with the simulation 

are treated independently. When an animation is live, or 

playing, the user is able to select and move any vertex in 

any experiment using the mouse. The selected vertex is 

moved by a spring force between the projected mouse and 

vertex locations along a plane that is perpendicular to the 

camera and intersects the original vertex location. This 

movement method allows for smooth and natural 

interaction that is compatible with any camera rotations or 

translations (See Figure 6). To avoid numerical 

instability, the vertex of interest is not directly moved by 

the mouse. When an animation is paused, the user may 

click and select any vertex and choose to “pin” or “unpin” 

it. Pinning a vertex enforces a constraint with zero 

degrees of freedom on the vertex of interest, and 

unpinning a vertex releases any constraints. A pinned 

vertex cannot change velocity or position in the virtual 

world. As an example, the rear rim vertices of the bowl in 

Figure 1 have been pinned using this technique. The user 

is not allowed to move the positions of any vertices while 

the animation is paused, because this might introduce 

numerical instability caused by instantaneous changes in 

position. 

 

To allow useful comparative analysis, the ITS 

system supports simultaneous live or paused user 

interaction of multiple experiments in parallel, since all 

experiments share the same mesh structure. When a user 

performs a live or paused interaction with any of these 

common vertices, the ITS environment attaches 

simultaneous constraints and forces on all meshes. A 

screenshot of the process of synchronized experiment 

interaction is displayed in Figure 4.  

3.3         Visualization 

The ITS environment provides two visualization 

enhancements, dynamic force histogram coloring and a 

temporal cache, to complement and enhance real-time 

interaction with the physical model.  

 

3.3.1      Dynamic force histogram  

 

In the ITS environment, it is important that the 

user be able to visually distinguish between the various 

forces acting in the simulation, so that he or she may 

readily explore the effects of various types of interactions, 

and recognize changes in the resulting simulation. To this 

end, the user may choose to view color representations of 

the force values for the membrane, bend, or total forces 

for each vertex within the system. When any of these 

views are chosen, each vertex is colored according to a 

histogram with a discrete set of colors that vary in hue 

attributes, as pictured in Figures 2 and 3. This mapping 

from the large range of possible force values to a series of 

discrete colors ensures that resulting coloring model 

exhibits sufficient variations to be perceived by the 

human eye.  This is important for determining areas of 

interest and performing comparative analysis. The 

difference between a traditional histogram and the one in 

the ITS environment is its dynamic range and force-to-

color mapping capabilities, which are accomplished 

through compression and equalization algorithms, 

respectively. 

 

3.3.2       Histogram compression  

 

The histogram compression algorithm, outlined 

in Figure 2, attempts to analyze a histogram and adjust the 

upper and lower ranges so that the force values are 

distributed evenly. To distribute the values evenly, if the 

boundary segments contain more than twice as many 

values than the average number of values per segment the 

algorithm iteratively expands the range. Expansion occurs 

by widening the range boundaries to the average value in 

the edge range segments. Alternatively, if non-edge 

buckets in the histogram have more than twice the 

average number of values in each segment, the range is 

slowly compressed. The boundary value compression 

occurs in half segment increments.  

 

 
Figure 2 - The ITS histogram compression algorithm. 

 

Due to the fact that the compression algorithm 

analyzes only the resulting histogram table segments and 

their distributions during each iteration, our algorithm is 

simple and fast, but limited in precision. It does not 

necessarily converge on an ideal range size due to the 

heuristics used in expanding and contracting the range.  

As a result of this imprecision, there is a chance that the 

algorithm will oscillate the distribution of range values 

about an ideal location. To prevent this, boundary value 

adjustments are buffered and limited to 50 iterations.  

 

3.3.3       Histogram equalization  

 

Like the histogram compression algorithm, 

histogram equalization attempts to evenly distribute force 

values across the entire histogram, to allow for utilization 



 

of the full discretized color spectrum for comparative 

force analysis. However, this algorithm performs a 

nonlinear transform on force values based on the 

cumulative probability distribution of those values. The 

resulting color values reveal difference in range values, 

but the ranges are no longer of a uniform size, and 

comparisons across range segments in the same image 

cannot be made easily (See Figure 9).  

 

 
Figure 3 - Histogram equalization 

 

The histogram equalization algorithm is based on 

previous work in image processing, and the theory behind 

its continuous and discrete formations can be found 

elsewhere [8]. Figure 3 shows the discrete equation that is 

used in the ITS implementation of histogram equalization. 

In the equation, DA represents an arbitrary force value, DM 

is the number of color levels in the histogram, nk is the 

number of values at force value k or less, and N is the 

total number of force values in the data set. 

 

When requested, both the compression and 

equalization algorithms can analyze a single frame of 

force values or all frames and therefore all force values 

that have been recorded. The analysis of all past and 

present frame data results in a histogram that is optimized 

for an entire run of a simulation, and has the ability to 

show, on average, an adequate distribution of color for 

any given frame in the animation. In order to analyze all 

frames of force data, the temporal simulation cache is 

accessed. 

 

3.3.4       Temporal cache  

 

The ITS application stores a circular, fixed-size 

buffer of previous simulation data in a cache so that the 

user may navigate to a previous time step and analyze the 

state of the animation. A slider bar in the user interface 

controls the playback of the cache. The histogram-based 

force value pseudo-coloring feature may also be enabled 

when viewing the cache, so that previous force values can 

be observed and analyzed. The buffer keeps track of the 

locations of all vertices in the animation, as well as per-

vertex force values. In addition, the material parameter 

settings for each experiment are stored in this cache, as 

well the time step and gravity settings. In this way, the 

user is able to see the exact progression of the animation 

and determine the cause of various behaviors.  

 

 

Figure 4 - The ITS Graphical User Interface. The spheres 

and cube are obstacles with which the material can 

collide. 

4            RESULTS 

In this section, we will highlight some of the 

important features of the ITS environment that allow it to 

act as a truly free form experimental environment.  

4.1          User interface overview 

The main ITS user interface is displayed in 

Figure 4. In this screenshot, a user is interacting with four 

simultaneous experiments with varying strengths of 

membrane and bending forces, and has histogram force 

coloring enabled. Regions A-G contain buttons for user 

interaction’s described in the previous section.  For 

specific details see [16].  Region G highlights the visual 

representation of the force histogram, as discussed in 

Section 3. At the bottom, region H outlines the group of 

controls that allow the user to play back cached animation 

data, and select any frame of interest for further analysis. 

Finally, region I marks the visual cues for the current 

adaptive time step status. Each of these bars represents the 

size of the current time step for each experiment on 

screen, in relation to the targeted time step indicated in 

the global preferences panel on the right side of the 

screen.  

4.2         Animation features 

As expected, the explicit mode requires an 

extremely small adaptive time step, on the order of 

0.00001 seconds, 1/100
th

 the size of the implicit mode 

time step, in order to keep the animation stable.  Figure 5 

demonstrates a set of simultaneous experiments with 

varying membrane (kb) constants and bending force (km) 

constants. From left to right, kb = km = 100000, 12500, 
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1562, and 195, respectively. Each displayed frame of the 

experiment is shown at the same moment in time, and 

demonstrates varying reactions to collisions or pinned 

vertex constraints.  

 

 
 

Figure 5 - Two mesh experiments: A falling half sphere 

impacting an invisible cube and a ring, pinned at a single 

point, shown at the same moment in time, with decreasing 

membrane and bending force constants. 

 

 
Figure 6 - Live user interaction. The blue control points 

resting on the plane represent vertices constrained in one 

dimension. 

4.3          User interaction 

The screenshots in Figures 1 and 6 demonstrate 

the paused and live interaction modes, respectively. The 

hollow bowl in Figure 1 has three rim vertices pinned, 

while the rest of the mesh is left to succumb to gravity. 

Each displayed mesh has a varying level of bending force, 

and is shown at the same moment in time. From left to 

right, the bending force constants, kb,, are 100000, 12500, 

8000, and 2000, respectively. As is expected, the bowl 

loses its structural rigidity when its bending force is 

reduced. Figure 6 demonstrates live user interaction using 

a spring force. Here, the user has selected the vertex 

colored by a red control point, and is dragging the cursor 

towards the blue control point, which represents the target 

constraint location. In addition, force coloring is enabled, 

revealing the redder regions of high force. The arrow in 

the screenshot shows the direction of force. 

4.4         Visualization 

In the screenshot in Figure 7, a hollow cylinder 

lies flat on the floor, and its surface is colored according 

to the histogram coloring scheme. Force vectors are also 

visible on its surface, which augment the coloring by 

indicating the direction of the force currently being 

viewed.   

 

 
 

Figure 7 - Visible force vectors and force-based vertex 

pseudo-coloring 

 

 
 

Figure 8 - The progression of forces in four dropped 

cylinders with varying internal force contributions. 

 

Similarly, Figure 8 shows the progression of 

force coloring at various frames of an animation. In this 

example, four simultaneous experiments with a mesh 

cylinder of varying membrane and bend constants are 

analyzed, with membrane forces only enabled in the 

upper left, upper right, and lower left frame, and total 

forces rendered in the lower right frame. The final frame 

demonstrates the membrane energies canceling out the 

gravitational force on the top of the cylinder, and residual 



 

vibration between the floor boundary and the bottom of 

the cylinder introducing a small amount of force on the 

lower side of the object.  

 

The histogram compression and equalization 

algorithms are displayed in Figure 9. The plane mesh in 

this screenshot has its upper left vertex pinned. Initially, 

the force histogram distribution is insufficient for 

revealing the force variations on the mesh at this stage in 

the animation. In the middle frame, the histogram 

compression algorithm has altered the range as much as it 

could while maintaining fixed size range segments. In this 

state, the image has a larger contrast and the variations in 

the forces across the upper region of the mesh are more 

apparent, but much of the lower region shows very little 

visual variation. In the rightmost frame of this figure, the 

equalization algorithm properly distributes the force 

values across the histogram, at the expense of fixed color 

range segment sizes. In this final stage, the force 

variations are very visible, but judgments about their 

relative force intensities would be inaccurate, due the 

nonlinear force value mapping.  

 

 
 

Figure 9 - Histogram compression and equalization. The 

original histogram range (left), the compressed range 

(middle), and the compressed and equalized range (right). 

4.5         Thin shell model weaknesses 

Due to the visualization and control features of 

ITS, we easily and directly observed a weaknesses in our 

thin shell model. As mentioned in Section 3, the bending 

forces in our physical model are simple linear constraints 

across the shared edge of two triangles. Given a rest 

condition in which the angle between a pair of triangles is 

close to 180 degrees, any bending that occurs will not be 

resisted strongly until the bending angle has extended far 

from that nearly flat configuration. This occurs because 

the linear bending constraints are nearly parallel to the 

pair of triangles, and imbue little force along the normal 

of each of the triangles until a large amount of 

deformation occurs. The weakness in this approximation 

is readily observable within ITS as structural weakness in 

certain meshes, such as the cylinder mesh in Figure 8. 

Even with extremely high bending force constants, the 

cylinder deforms easily during collision or user-initiated 

interaction, due to the nearly parallel angles between each 

adjacent polygons in the mesh. 

The ITS interface also reveals another inherent 

weakness which stems from the discrete nature of the 

animation. This weakness is not unique to our 

implementation, but extends to any physically-based 

animation model that relies on a discrete geometric 

formulation of an object.  The weakness is illustrated in 

Figure 10, where a v-beam is constrained on an entire side 

and left to hang under the force of gravity. Both corners 

of the beam should exhibit symmetric force distributions 

but they do not due to the discrete triangulation of the 

mesh.  This structure results in one corner vertex that has 

three membrane constraints to neighboring vertices, as 

seen on the right frame of Figure 10, while the other 

corner vertex in the left frame has connections with two 

neighboring membrane constraints and a single, weaker 

bending constraint across to the neighboring triangle. 

Therefore, the inherent discrete geometry of the model 

prevents it from accurately mimicking the symmetric 

forces that would have resulted from a similar real world 

experiment with a thin shell material in a similar 

configuration.  

 
Figure 10 - Unrealistic Forces. Two panels (left, right) 

show bending force views of two sides of the same 

experiment on a v-beam with pinned vertices. The forces 

are asymmetric due to the underlying triangulation of the 

mesh. The black lines indicate triangle edges. 

4.6          User feedback 

The ITS interface was tested by several expert 

researchers working in the field of physical simulation 

from two different research labs.  Users reported that the 

open, experimental framework encouraged them to play 

with simulation parameters, which they found to be 

valuable. In particular, they found the side-by-side 

experiments with varying parameters and the temporal 

cache play-back features to be useful when exploring a 

simulation [10], [17].  A thorough user study is left for 

future work. 

5             CONCLUSIONS AND FUTURE WORK 

The Interactive Thin Shells application provides 

an experimentally-focused, open, informative and very 

accessible interface to a physically-based animation 

algorithm. The careful research of Michael Rooks resulted 

in specific system requirements and framework for VIS 

applications [15].  These specifications served as a basic 

guide for the construction of our system. Ultimately, by 



 

providing features that allow for thorough intervention, 

inspection, user-driven specification, and visualization of 

the underlying physical model, we satisfied each of the 

VIS requirements in multiple ways, so that the user has a 

large variety of useful visualization and interaction 

mechanisms available at all times.  

 

The ITS visual feedback worked so well, it 

allowed us to identify weaknesses in the chosen thin shell 

model. While the bending angle constraint simplification 

was known to be imperfect, the subtle behavior of weak 

bending forces at extremely obtuse angles and their 

results on the animation as a whole were only obvious 

after carefully exploring simultaneous experiments on 

multiple meshes while varying specific parameters. In 

addition, the force coloring patterns in specific pinned 

mesh configurations were another clear indicator that our 

simplistic bending force was not a completely adequate 

model in many cases. The additional discovery of 

asymmetric forces due to the triangulation of the mesh 

was another phenomenon that was found only after use of 

the ITS interface. In this case, the histogram compression 

algorithm was essential in allowing us to perceive the 

force asymmetry in the v-beam mesh in Figure 10. Due to 

the fact that many physically-based animations utilize 

discrete representations, such as triangles meshes, the 

ability to discover and analyze the flaws in these 

approximations is an extremely valuable feature of the 

ITS interface, and further exhibits the usefulness of the 

tool in situations outside of thin shell animation. 

 

Future work includes improving the force 

coloring scheme by implementing a form of intelligent 

surface shading that does not excessively obscure the 

force coloring, yet preserves the surface shading.  To 

make the ITS program widely available, ideally, its 

visualization and analysis components could be 

generalized into an API for a large assortment of 

mathematically intensive animation models.  
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