

Interactive Thin Shells – A Model Interface for the Analysis of Physically-based Animation

James Skorupski

Computer Science Dept.

UC Santa Cruz

Santa Cruz, CA, USA

jskorups@cs.ucsc.edu

Zoë Wood

Computer Science Dept.

Cal Poly, San Luis Obispo

San Luis Obispo, CA, USA

zwood@csc.calpoly.edu

Alex Pang

Computer Science Dept.

UC Santa Cruz

Santa Cruz, CA, USA

pang@cse.ucsc.edu

Figure 1 - Simultaneous Experiments. A pseudo-colored hollow cloth bowl with three pinned vertices is simulated collapsing

under the force of gravity. Each image depicts the same moment in time for the same mesh, with decreasing membrane and

bending energy constants, from left to right.

Abstract

Realism has always been a goal in computer

graphics. However, the algorithms involved in mimicking

the physical world are often complex, abstract, and

sensitive to changes in experimental parameters. We

present an interface to a physically-based algorithm, a thin

shell animation, which focuses on visualization,

experimentation, and control. Through the use of dynamic

surface coloring, abstract visual cues, robust user

interaction, and full control over the algorithm parameters,

our system facilitates experimentation and the process of

discovery. The system is targeted at enhancing the user’s

learning experience by clarifying interactions between

various components of many physically-based animations.

1 INTRODUCTION

One of the driving goals in the field of computer

graphics is to artificially mimic reality. While the ultimate

purpose of the resulting imagery may vary from

entertainment to scientific application, the underlying

algorithms are all mathematically intensive. Graphics

algorithms that are based on real phenomena, such as

fluid dynamics, rigid body dynamics, and the transport of

light, are known as physically-based models [1]. As

technology advances, more complex physically-based

algorithms continue to develop, and computer scientists

wishing to design physically-based algorithms encounter

an increasingly varied amount of scientific theory. In

addition, many modern computer science students

encounter only a limited selection of math courses in their

curriculum [3], [6], [11].

We present a model application designed to help

the user understand the complex workings of a physically-

based algorithm and augment their learning experience

with direct, visual interaction, through the use of dynamic

coloring, abstract visual cues, mouse interaction, and full

control over the algorithm parameters. The system

encourages the exploration, discovery, and understanding

of the mathematically intense concepts that underlie a

physically-based algorithm. Our interface is specifically

designed for interacting with a physically-based

animation algorithm. These types of algorithms facilitate

a natural graphical interface, because they mimic physical

motion which can be observed and readily confirmed in

the real world.

The program we created to demonstrate our

interface is called Interactive Thin Shells (ITS). The

underlying physically-based algorithm simulates the

dynamics of thin shells, which are flexible structures that

have a high ratio of width to thickness and have an initial

three dimensional non-flat shape that affects its energetic

reaction to change from that initial shape [9]. The ITS

environment allows us to directly demonstrate how our

interface can be used to investigate the properties of an

algorithm and interact with it in an intuitive and

educational manner.

2 RELATED WORK

The thin shell algorithm implementation in ITS

is based on a standard physically-based animation model,

described in detail in the work of Baraff and Witkin [1].

Our implementation of the physical system is based on a

simplified constraint model based partially off of previous

work of in the area of thin shells [9] and mass-spring

cloth simulation [4]. Fundamentally, the ITS

implementation is equivalent to a cloth animation model

with some modifications that support non-planar initial

configurations and the stiffer internal forces of thin shell

materials.

The ITS system also employs backward Euler

step implicit integration to progress the simulation, as

described by Baraff and Witkin [2]. The implicit method

provides for numerical stability that is critical in this

particular situation [1]. Thin shell materials typically

exhibit very little deformation within the surface of the

material itself, and require high resistance to these local

changes. Because of this, our simulation will experience

regions of high energy in response to deformation, where

implicit differentiation allows for reasonably sized time

steps [1]. Our particular implementation of the implicit

method is based on the work of Dean Marci of the Intel

Corporation [12], [13], [14].

The user interface of the ITS environment takes

the attributes of the underlying physically-based

animation model and provides a simple, intuitive interface

that is designed for an individual who wishes to

understand the capabilities and theoretical components of

the model. Similarly, Burgoon [5] demonstrated an

interface to a thin shell simulation based on origami

folding and the discrete shells model of Grinspun et al [9].

In general, there is little previous research that addresses

an interface design to physically-based animation,

however, the field of computer-based scientific simulation

provides another source of research.

The general capabilities of the ITS environment

are based on the work of Michael Rooks [15], who

defines a set of requirements for general visual interactive

simulation (VIS) software systems. VIS systems, as

defined by Rooks, simulate real world physical

phenomena as accurately and completely as possible. In

contrast, physically-based animation methods aim to

achieve convincing visual realism without a requirement

for accuracy. However, the goals for VIS systems remain

accurate as it is strongly based on experimentation. Rook

describes a complete VIS system as one that facilities (1)

Intervention, (2) Inspection, (3) Specification, and (4)

Visualization [15]. The ITS environment satisfies each of

these requirements by providing direct control of the

meshes involved and procession of time (Intervention),

access to and customization of all relevant material and

simulation attributes (Inspection and Specification), and

visual feedback of the resulting simulation and its effect

on the dynamics of the thin shell model (Visualization).

The ITS environment is designed such that a curious

student or computer science practitioner is able to

discover all aspects of the thin shell model, including its

efficiency, capabilities, limitations, and resulting level of

visual realism.

3 THE ITS SYSTEM

To allow the user to experiment with physically-

based animation, ITS provides an animation algorithm,

user interaction with that animation system, visualization

of animation parameters, and a playback system to store

and repeat animations. The following section highlights

these major features of the interface. For complete details

about the entire system, see [16].

3.1 Animation algorithm

To facilitate the experimental capabilities of the

ITS interface, a number of animation features are

included. The most important feature of the simulation is

its dynamic material and global parameters. The ITS

interface is able to, at any time in the simulation, allow

modification of any of the thin shell membrane or

bending parameters, as well as the time step size, gravity

force, integration mode, and any environmental collision

objects. This modification does not adversely affect the

progress of the simulation, and ensures that users can

experiment with many simultaneous parameters. Other

features of the animation system include constraints on

vertices, which can disable up to three degrees of freedom

and the ability to switch between explicit and implicit

integration modes without any errors in the simulation.

To allow for a large number of varying thin shell shapes,

the simulation is also able to load arbitrary mesh files. In

addition, to introduce a varied environment for the thin

shell interactions, the system supports collisions between

the thin shell and a sphere or cube objects. Figures 4 and

6 illustrate collision objects and constrained vertices,

respectively.

The forces and constraints that act on the

underlying physical system in ITS are a simplified version

of the internal forces that are present in previous work on

cloth and thin shells [2], [9]. The membrane, or in-plane

forces in our algorithm are based on the length of edges

between vertices and the bending force is a simplified

form of the piecewise geometric bending energy in [2],

[9]. This bending force simplification, which is based on a

simple linear constraint across the shared edge of a pair of

triangles, is similar to the bending forces of traditional

mass-spring particle-based cloth models [4].

The ITS environment supports adaptive time

steps to help ensure stable and real-time interaction at all

times. Upon each iteration of the simulation, rapid

changes in position or velocity invoke an automatic 50%

reduction in the time step size down to a fixed lower limit.

If this divergent behavior continues, the simulation

proceeds without reducing the time step, and notifies the

ITS interface of the problem. However, if a stable

iteration occurs, a lowered time step is subsequently

increased incrementally, up to a user-defined upper

bound.

3.2 User interaction

Live and paused interactions with the simulation

are treated independently. When an animation is live, or

playing, the user is able to select and move any vertex in

any experiment using the mouse. The selected vertex is

moved by a spring force between the projected mouse and

vertex locations along a plane that is perpendicular to the

camera and intersects the original vertex location. This

movement method allows for smooth and natural

interaction that is compatible with any camera rotations or

translations (See Figure 6). To avoid numerical

instability, the vertex of interest is not directly moved by

the mouse. When an animation is paused, the user may

click and select any vertex and choose to “pin” or “unpin”

it. Pinning a vertex enforces a constraint with zero

degrees of freedom on the vertex of interest, and

unpinning a vertex releases any constraints. A pinned

vertex cannot change velocity or position in the virtual

world. As an example, the rear rim vertices of the bowl in

Figure 1 have been pinned using this technique. The user

is not allowed to move the positions of any vertices while

the animation is paused, because this might introduce

numerical instability caused by instantaneous changes in

position.

To allow useful comparative analysis, the ITS

system supports simultaneous live or paused user

interaction of multiple experiments in parallel, since all

experiments share the same mesh structure. When a user

performs a live or paused interaction with any of these

common vertices, the ITS environment attaches

simultaneous constraints and forces on all meshes. A

screenshot of the process of synchronized experiment

interaction is displayed in Figure 4.

3.3 Visualization

The ITS environment provides two visualization

enhancements, dynamic force histogram coloring and a

temporal cache, to complement and enhance real-time

interaction with the physical model.

3.3.1 Dynamic force histogram

In the ITS environment, it is important that the

user be able to visually distinguish between the various

forces acting in the simulation, so that he or she may

readily explore the effects of various types of interactions,

and recognize changes in the resulting simulation. To this

end, the user may choose to view color representations of

the force values for the membrane, bend, or total forces

for each vertex within the system. When any of these

views are chosen, each vertex is colored according to a

histogram with a discrete set of colors that vary in hue

attributes, as pictured in Figures 2 and 3. This mapping

from the large range of possible force values to a series of

discrete colors ensures that resulting coloring model

exhibits sufficient variations to be perceived by the

human eye. This is important for determining areas of

interest and performing comparative analysis. The

difference between a traditional histogram and the one in

the ITS environment is its dynamic range and force-to-

color mapping capabilities, which are accomplished

through compression and equalization algorithms,

respectively.

3.3.2 Histogram compression

The histogram compression algorithm, outlined

in Figure 2, attempts to analyze a histogram and adjust the

upper and lower ranges so that the force values are

distributed evenly. To distribute the values evenly, if the

boundary segments contain more than twice as many

values than the average number of values per segment the

algorithm iteratively expands the range. Expansion occurs

by widening the range boundaries to the average value in

the edge range segments. Alternatively, if non-edge

buckets in the histogram have more than twice the

average number of values in each segment, the range is

slowly compressed. The boundary value compression

occurs in half segment increments.

Figure 2 - The ITS histogram compression algorithm.

Due to the fact that the compression algorithm

analyzes only the resulting histogram table segments and

their distributions during each iteration, our algorithm is

simple and fast, but limited in precision. It does not

necessarily converge on an ideal range size due to the

heuristics used in expanding and contracting the range.

As a result of this imprecision, there is a chance that the

algorithm will oscillate the distribution of range values

about an ideal location. To prevent this, boundary value

adjustments are buffered and limited to 50 iterations.

3.3.3 Histogram equalization

Like the histogram compression algorithm,

histogram equalization attempts to evenly distribute force

values across the entire histogram, to allow for utilization

of the full discretized color spectrum for comparative

force analysis. However, this algorithm performs a

nonlinear transform on force values based on the

cumulative probability distribution of those values. The

resulting color values reveal difference in range values,

but the ranges are no longer of a uniform size, and

comparisons across range segments in the same image

cannot be made easily (See Figure 9).

Figure 3 - Histogram equalization

The histogram equalization algorithm is based on

previous work in image processing, and the theory behind

its continuous and discrete formations can be found

elsewhere [8]. Figure 3 shows the discrete equation that is

used in the ITS implementation of histogram equalization.

In the equation, DA represents an arbitrary force value, DM

is the number of color levels in the histogram, nk is the

number of values at force value k or less, and N is the

total number of force values in the data set.

When requested, both the compression and

equalization algorithms can analyze a single frame of

force values or all frames and therefore all force values

that have been recorded. The analysis of all past and

present frame data results in a histogram that is optimized

for an entire run of a simulation, and has the ability to

show, on average, an adequate distribution of color for

any given frame in the animation. In order to analyze all

frames of force data, the temporal simulation cache is

accessed.

3.3.4 Temporal cache

The ITS application stores a circular, fixed-size

buffer of previous simulation data in a cache so that the

user may navigate to a previous time step and analyze the

state of the animation. A slider bar in the user interface

controls the playback of the cache. The histogram-based

force value pseudo-coloring feature may also be enabled

when viewing the cache, so that previous force values can

be observed and analyzed. The buffer keeps track of the

locations of all vertices in the animation, as well as per-

vertex force values. In addition, the material parameter

settings for each experiment are stored in this cache, as

well the time step and gravity settings. In this way, the

user is able to see the exact progression of the animation

and determine the cause of various behaviors.

Figure 4 - The ITS Graphical User Interface. The spheres

and cube are obstacles with which the material can

collide.

4 RESULTS

In this section, we will highlight some of the

important features of the ITS environment that allow it to

act as a truly free form experimental environment.

4.1 User interface overview

The main ITS user interface is displayed in

Figure 4. In this screenshot, a user is interacting with four

simultaneous experiments with varying strengths of

membrane and bending forces, and has histogram force

coloring enabled. Regions A-G contain buttons for user

interaction’s described in the previous section. For

specific details see [16]. Region G highlights the visual

representation of the force histogram, as discussed in

Section 3. At the bottom, region H outlines the group of

controls that allow the user to play back cached animation

data, and select any frame of interest for further analysis.

Finally, region I marks the visual cues for the current

adaptive time step status. Each of these bars represents the

size of the current time step for each experiment on

screen, in relation to the targeted time step indicated in

the global preferences panel on the right side of the

screen.

4.2 Animation features

As expected, the explicit mode requires an

extremely small adaptive time step, on the order of

0.00001 seconds, 1/100
th

 the size of the implicit mode

time step, in order to keep the animation stable. Figure 5

demonstrates a set of simultaneous experiments with

varying membrane (kb) constants and bending force (km)

constants. From left to right, kb = km = 100000, 12500,

A

B

C

D

E

F

G

H

I

]1)]/(*[,0max()(2
= NnDroundDf kMA

1562, and 195, respectively. Each displayed frame of the

experiment is shown at the same moment in time, and

demonstrates varying reactions to collisions or pinned

vertex constraints.

Figure 5 - Two mesh experiments: A falling half sphere

impacting an invisible cube and a ring, pinned at a single

point, shown at the same moment in time, with decreasing

membrane and bending force constants.

Figure 6 - Live user interaction. The blue control points

resting on the plane represent vertices constrained in one

dimension.

4.3 User interaction

The screenshots in Figures 1 and 6 demonstrate

the paused and live interaction modes, respectively. The

hollow bowl in Figure 1 has three rim vertices pinned,

while the rest of the mesh is left to succumb to gravity.

Each displayed mesh has a varying level of bending force,

and is shown at the same moment in time. From left to

right, the bending force constants, kb,, are 100000, 12500,

8000, and 2000, respectively. As is expected, the bowl

loses its structural rigidity when its bending force is

reduced. Figure 6 demonstrates live user interaction using

a spring force. Here, the user has selected the vertex

colored by a red control point, and is dragging the cursor

towards the blue control point, which represents the target

constraint location. In addition, force coloring is enabled,

revealing the redder regions of high force. The arrow in

the screenshot shows the direction of force.

4.4 Visualization

In the screenshot in Figure 7, a hollow cylinder

lies flat on the floor, and its surface is colored according

to the histogram coloring scheme. Force vectors are also

visible on its surface, which augment the coloring by

indicating the direction of the force currently being

viewed.

Figure 7 - Visible force vectors and force-based vertex

pseudo-coloring

Figure 8 - The progression of forces in four dropped

cylinders with varying internal force contributions.

Similarly, Figure 8 shows the progression of

force coloring at various frames of an animation. In this

example, four simultaneous experiments with a mesh

cylinder of varying membrane and bend constants are

analyzed, with membrane forces only enabled in the

upper left, upper right, and lower left frame, and total

forces rendered in the lower right frame. The final frame

demonstrates the membrane energies canceling out the

gravitational force on the top of the cylinder, and residual

vibration between the floor boundary and the bottom of

the cylinder introducing a small amount of force on the

lower side of the object.

The histogram compression and equalization

algorithms are displayed in Figure 9. The plane mesh in

this screenshot has its upper left vertex pinned. Initially,

the force histogram distribution is insufficient for

revealing the force variations on the mesh at this stage in

the animation. In the middle frame, the histogram

compression algorithm has altered the range as much as it

could while maintaining fixed size range segments. In this

state, the image has a larger contrast and the variations in

the forces across the upper region of the mesh are more

apparent, but much of the lower region shows very little

visual variation. In the rightmost frame of this figure, the

equalization algorithm properly distributes the force

values across the histogram, at the expense of fixed color

range segment sizes. In this final stage, the force

variations are very visible, but judgments about their

relative force intensities would be inaccurate, due the

nonlinear force value mapping.

Figure 9 - Histogram compression and equalization. The

original histogram range (left), the compressed range

(middle), and the compressed and equalized range (right).

4.5 Thin shell model weaknesses

Due to the visualization and control features of

ITS, we easily and directly observed a weaknesses in our

thin shell model. As mentioned in Section 3, the bending

forces in our physical model are simple linear constraints

across the shared edge of two triangles. Given a rest

condition in which the angle between a pair of triangles is

close to 180 degrees, any bending that occurs will not be

resisted strongly until the bending angle has extended far

from that nearly flat configuration. This occurs because

the linear bending constraints are nearly parallel to the

pair of triangles, and imbue little force along the normal

of each of the triangles until a large amount of

deformation occurs. The weakness in this approximation

is readily observable within ITS as structural weakness in

certain meshes, such as the cylinder mesh in Figure 8.

Even with extremely high bending force constants, the

cylinder deforms easily during collision or user-initiated

interaction, due to the nearly parallel angles between each

adjacent polygons in the mesh.

The ITS interface also reveals another inherent

weakness which stems from the discrete nature of the

animation. This weakness is not unique to our

implementation, but extends to any physically-based

animation model that relies on a discrete geometric

formulation of an object. The weakness is illustrated in

Figure 10, where a v-beam is constrained on an entire side

and left to hang under the force of gravity. Both corners

of the beam should exhibit symmetric force distributions

but they do not due to the discrete triangulation of the

mesh. This structure results in one corner vertex that has

three membrane constraints to neighboring vertices, as

seen on the right frame of Figure 10, while the other

corner vertex in the left frame has connections with two

neighboring membrane constraints and a single, weaker

bending constraint across to the neighboring triangle.

Therefore, the inherent discrete geometry of the model

prevents it from accurately mimicking the symmetric

forces that would have resulted from a similar real world

experiment with a thin shell material in a similar

configuration.

Figure 10 - Unrealistic Forces. Two panels (left, right)

show bending force views of two sides of the same

experiment on a v-beam with pinned vertices. The forces

are asymmetric due to the underlying triangulation of the

mesh. The black lines indicate triangle edges.

4.6 User feedback

The ITS interface was tested by several expert

researchers working in the field of physical simulation

from two different research labs. Users reported that the

open, experimental framework encouraged them to play

with simulation parameters, which they found to be

valuable. In particular, they found the side-by-side

experiments with varying parameters and the temporal

cache play-back features to be useful when exploring a

simulation [10], [17]. A thorough user study is left for

future work.

5 CONCLUSIONS AND FUTURE WORK

The Interactive Thin Shells application provides

an experimentally-focused, open, informative and very

accessible interface to a physically-based animation

algorithm. The careful research of Michael Rooks resulted

in specific system requirements and framework for VIS

applications [15]. These specifications served as a basic

guide for the construction of our system. Ultimately, by

providing features that allow for thorough intervention,

inspection, user-driven specification, and visualization of

the underlying physical model, we satisfied each of the

VIS requirements in multiple ways, so that the user has a

large variety of useful visualization and interaction

mechanisms available at all times.

The ITS visual feedback worked so well, it

allowed us to identify weaknesses in the chosen thin shell

model. While the bending angle constraint simplification

was known to be imperfect, the subtle behavior of weak

bending forces at extremely obtuse angles and their

results on the animation as a whole were only obvious

after carefully exploring simultaneous experiments on

multiple meshes while varying specific parameters. In

addition, the force coloring patterns in specific pinned

mesh configurations were another clear indicator that our

simplistic bending force was not a completely adequate

model in many cases. The additional discovery of

asymmetric forces due to the triangulation of the mesh

was another phenomenon that was found only after use of

the ITS interface. In this case, the histogram compression

algorithm was essential in allowing us to perceive the

force asymmetry in the v-beam mesh in Figure 10. Due to

the fact that many physically-based animations utilize

discrete representations, such as triangles meshes, the

ability to discover and analyze the flaws in these

approximations is an extremely valuable feature of the

ITS interface, and further exhibits the usefulness of the

tool in situations outside of thin shell animation.

Future work includes improving the force

coloring scheme by implementing a form of intelligent

surface shading that does not excessively obscure the

force coloring, yet preserves the surface shading. To

make the ITS program widely available, ideally, its

visualization and analysis components could be

generalized into an API for a large assortment of

mathematically intensive animation models.

6 REFERENCES

[1] Baraff, D. & Witkin, A. (2001), 'Physically

Based Modeling', Siggraph 2001 Course Notes.

[2] Baraff, D. & Witkin, A. (1998),Large steps in

cloth simulation, in 'SIGGRAPH '98: Proceedings of the

25th annual conference on Computer graphics and

interactive techniques', ACM Press, New York, NY,

USA, pp. 43--54.

[3] Beaubouef, T. & Mason, J. (2005),'Why the high

attrition rate for computer science students: some

thoughts and observations', SIGCSE Bull. 37(2), ACM

Press, New York, NY, USA, 103--106.

[4] Breen, D.E.; House, D.H. & Wozny, M.J.

(1994),Predicting the drape of woven cloth using

interacting particles, in 'SIGGRAPH '94: Proceedings of

the 21st annual conference on Computer graphics and

interactive techniques', ACM Press, New York, NY,

USA, pp. 365--372.

[5] Burgoon, R.J. (2005),'Discrete Shells Origami',

Master's thesis, California Polytechnic State University

San Luis Obispo.

[6] D'Antonio, L.; Baldwin, D.; Ford, F.; Henderson,

P. & Wyatt, R. (2002),'Panel: is there too much math in

the computer science curriculum?', J. Comput. Small Coll.

17(3), Consortium for Computing Sciences in Colleges, ,

USA, 97--102.

[7] Feynman, C. (1986),'Modeling the Appearance

of Cloth', Master's thesis, Massachusetts Inst. of

Technology.

[8] Fisher, R.; Perkins, S.; Walker, A. & Wolfart, E.

(2003),'The Hypermedia Image Processing Reference',

http://homepages.inf.ed.ac.uk/rbf/HIPR2/.

[9] Grinspun, E.; Hirani, A.N.; Desbrun, M. &

Schröder, P. (2003),Discrete shells, in 'SCA '03:

Proceedings of the 2003 ACM SIGGRAPH/Eurographics

symposium on Computer animation', Eurographics

Association, Aire-la-Ville, Switzerland, Switzerland, pp.

62--67.

[10] Grinspun, Eitan. Personal Communication

regarding lab’s use of ITS, November 2006.

[11] Konvalina, J.; Wileman, S.A. & Stephens, L.J.

(1983), 'Math proficiency: a key to success for computer

science students', Commun. ACM 26(5), 377--382.

[12] Marci, D. (2006), 'Simulating Cloth for 3D

Games', http://www.intel.com/cd/ids/developer/asmo-

na/eng/20413.htm.

[13] Marci, D. (2000),’Real-Time Cloth’, in 'Game

Developers Conference 2000 Proceedings'.

[14] Pritchard, D. (2006), 'Implementing Baraff &

Witkin's Cloth Simulation'.

[15] Rooks, M. (1991),A unified framework for

visual interactive simulation, in 'WSC '91: Proceedings of

the 23rd conference on Winter simulation', IEEE

Computer Society, Washington, DC, USA, pp. 1146--

1155.

[16] Skorupski, J., Interactive Thin Shells - An

Interface for the Analysis of Physically Based Animation.

Technical Report CPSLO-CSC-06-02, California

Polytechnic State University, 2006.

[17] Smith, Adam & Scher, Steve. Personal

Communication, May 2007.

