
Published in the Proceedings of the 26th International Symposium on Computer Architecture, May 1999

Storageless Value Prediction Using Prior Register Values

Dean M. Tullsen John S. Seng

Dept of Computer Science and Engineering
University of California, San Diego

La Jolla, CA 92093-0114�
tullsen,jseng � @cs.ucsd.edu

Abstract

This paper presents a technique called register value
prediction (RVP) which uses a type of locality called
register-value reuse. By predicting that an instruction will
produce the value that is already stored in the destination
register, we eliminate the need for large value buffers to
enable value prediction. Even without the large buffers,
register-value prediction can be made as or more effective
than last-value prediction, particularly with the aid of com-
piler management of values in the register file.

Both static and dynamic register value prediction tech-
niques are demonstrated to exploit register-value reuse,
the former requiring minimal instruction set architecture
changes and the latter requiring a set of small confidence
counters. We show an average gain of 12% with dynamic
RVP and moderate compiler assistance on a next genera-
tion processor, and 15% on a 16-wide processor.

1. Introduction

This paper presents techniques for identifying and us-
ing an alternate type of data locality, register-value reuse.
Register-value prediction (RVP) identifies instructions that
typically produce values that are already in the register file.
The results of those instructions can be predicted using the
values in the register file. This eliminates the need for large
storage buffers for values, and keeps the prediction data
right where it is needed, in the register file and close to the
functional units.

All previously proposed value prediction schemes rely
on large buffers to store potential values. Often, the as-
sumed buffer is larger than current on-chip data caches. For
example, a value prediction scheme with a 2K-entry buffer
on a 64-bit processor requires 16KB of storage for the value
buffer and an additional 9-13 KB for the tags, depending on
the size of physical addresses. For such a mechanism to be
viable, it must provide more performance than, for exam-
ple, significantly increasing the size of the data cache. Li-
pasti and Shen [7] consider just this tradeoff to justify value
prediction.

The value prediction mechanism described in this pa-
per works with no added storage for values, yet is flex-
ible enough to encompass a wider range of reuse pat-
terns than most previously-proposed buffer-based predic-
tion schemes.

In this research, we only assume the presence of hard-
ware to exploit same-register reuse. The instruction uses the
old value in the destination (architectural) register as a pre-
diction for the new value produced. We depend on compiler
transformations to convert other forms of register or value
reuse into same-register reuse. This requires no changes to
the ISA to indicate the location of the value to be used for
the prediction – the destination register defines both the des-
tination of the result and the source of the prediction. Thus,
if an instruction that writes R3 is identified as predictable,
it will have predicted correctly if the value written to R3
is the same value that was there before the instruction exe-
cuted. Many times this happens naturally, but the compiler
can make it happen much more often.

Figure 1 shows the percentage of time the value pro-
duced by a load instruction was already in the register file
for the SPEC95 benchmarks. When it is already in the same
register, the compiler need do nothing to take advantage of
it with the hardware support we propose. When it is in an-
other dead register (a register whose value will not be read
again before it is written), it is likely that we could exploit it
with a different register allocation. When it is in a live reg-
ister, a simple move instruction could put the value in place
for register-based value prediction. Even these scenarios
do not exhaust the possibilities, as the particular values that
are visible depend very much on the current register alloca-
tion; for example, the last column includes last-value reuse,
which indicates the value was recently in the same register.
At least 75% of the time, the value loaded from memory is
either already in the register file, or was recently there.

Register-based (storage-less) value prediction certainly
has limitations. It cannot track a large number of values
(more than the size of the architectural register file) at once.
It relies in some cases on compiler assistance, and in par-
ticular can only exploit more complex reuse patterns if the
compiler or profiler can recognize them. However, it also

C SPEC F SPEC
0

20

40

60

80

100

P
er

ce
nt

 o
f i

ns
tr

uc
tio

ns
 w

ith
 r

eg
is

te
r

re
us

e

same register

dead register

any register

register or lvp

Figure 1. The degree of register-value reuse for loads in
the SPEC suite. The graph is the percentage of time the
loaded value is already in the same register, a register
that is dead, any register, or either in a register or was
the last value seen by the load.

has several inherent advantages over buffer-based value pre-
diction:

1. No hardware cost for storage of values.
2. Fewer additional datapaths in the core of the proces-

sor. In particular, it requires no new datapaths to communi-
cate predicted values to the processor core. Predicted values
are read from the register file, like other operands.

3. It can be actively managed. Software has complete
control over what values/variables are in what register.

4. No stale values. With buffer-based prediction, we
must either insert speculative values in the buffer and possi-
bly pollute it, or we must hold off inserting values until they
become non-speculative, forcing new instructions to possi-
bly use stale entries. With register-based prediction, reg-
ister renaming and branch recovery keep the register map
updated, so that we always read the most recent and correct
version of the register (and if it has not been produced yet,
we wait for it via normal register dependence mechanisms).

5. It can use the result of one instruction as a predic-
tion for another. Standard value prediction only predicts
based on the history of a single instruction — it cannot
exploit correlated variables/instructions. Memory renam-
ing [16, 11, 12] can identify correlated stores and loads,
but register-based prediction is even more general. For our
purposes we define correlated variables as ones that consis-
tently hold the same value (as each other, it need not be the
same actual value) over time.

The notion of register-value reuse was previously intro-
duced and measured by Gabbay and Mendelson [4]. In con-
trast to that work, we show that register-value reuse can
be greatly increased by the compilation process, and we
present an architecture that can exploit register-value reuse
with much greater effectiveness than the architecture pro-
posed in [4], which is described in the next section.

This paper presents both static and dynamic techniques
to exploit register-value reuse through RVP. The static tech-
niques are applied only to load instructions, but we apply
the dynamic techniques first to loads only, then to all in-
structions. With the static techniques we show the poten-
tial for as much as a 22% gain over the baseline hardware.
For the dynamic techniques, we show the potential for as
much as a 26% gain, and average 2% more performance
than (a moderate implementation of) last-value prediction,
despite dramatically lower hardware costs. Those results
are for a next-generation 8-issue processor. For a more ag-
gressive 16-issue processor, the gains are higher, both over
no-prediction and over traditional last-value prediction.

The rest of this paper is organized as follows. Section 2
discusses related work. Section 3 describes how register-
based value prediction supports several models of value lo-
cality. Section 4 presents the architectural support we as-
sume to enable register-based value prediction, and Sec-
tion 5 describes the register-reuse profiling which supports
our simulations. Section 6 gives our measurement method-
ology. The results for both static and dynamic RVP are
shown in Section 7. We conclude the paper in Section 8.

2. Related Work

Lipasti and Shen [7] and Lipasti, et al. [8] introduce
the concept of value prediction, and in particular last-value
prediction (LVP) to exploit value locality. They use an
untagged last-value prediction table and saturating confi-
dence counters to predict values (as well as more idealized
schemes).

Gabbay and Mendelson [4] also proposed value predic-
tion to exceed inherent ILP limits, adding the concept of
stride prediction and register-file prediction. Their register-
file predictor is the closest predecessor to our dynamic
register-value predictor, but they show it to have signifi-
cantly less predictability than their other predictors, and do
not pursue it further. However, our register-value predictor
has key differences from theirs. The Gabbay register predic-
tor is still a value file responsible for communicating values
to the instructions, while ours never writes predicted values
(from an external source) into the register file or functional
units. But most importantly, Gabbay’s confidence counters
are associated with the register value file entries and are in-
dexed by register number. In that scheme, register-value
reuse is only available if it remains high for all definitions
of the register. Our confidence counters are indexed by in-
struction PC, thus it only requires a single instruction to ex-
hibit register-value reuse to be able to exploit it. Section 7
demonstrates a dramatic difference in prediction coverage
and accuracy for the two approaches.

In addition, that study did not consider the ability of the
compiler to create same-register locality or to turn other-
register locality into same-register locality.

I1: add R6<-R4+R5
...

I2: use R6
...

I3: load R5, ...

loop:
I1: load R7, ...

...
I2: add R7<-R8+R3

...
beq loop

I1: store R4, 64(R2)
...

I2: load R3, 1028(R9)

(a) correlated values -- if I3
typically produces the same value
already stored in R6 (by I1), this can
be transformed into same-register
reuse by assigning I1 and I3 the
same destination register. If the live
ranges of I1:R6 and I3:R5 do not
overlap, this is easily done.

(b) memory renaming -- if I2
typically reads the same address (or
even the same value) as I1 stores,
this can be transformed into same-
register reuse by assigning I2’s
destination register the same
register used by I1.

(c) last-value reuse -- If I1 exhibits
last-value reuse, I2 prevents it from
also exhibiting same-register reuse.
By assigning I2 a different destination
register, I1 exhibits same-register
reuse.

I1: add R6<-R4+R5
...

I2: use R6
...

I3: rvp_load R6, ...

loop:
I1: rvp_load R7, ...

...
I2: add R6<-R8+R3

...
beq loop

I1: store R4, 64(R2)
...

I2: rvp_load R4, 1028(R9)

Figure 2. Three reuse patterns that can be turned into same-register reuse by register allocation.

Jourdan, et al. [6] also recognize the existence of reg-
ister value reuse and propose that it can be used to imple-
ment physical register sharing among logical registers, as
well as result reuse for possible prevention of execution of
certain instructions. They do not exploit any speculative
techniques, such as value prediction, although they men-
tion the possibility. They depend on hardware to recognize
other-register value-reuse, where we transform the program
to turn it into same-register reuse. Their technique could
be combined with ours to increase the effectiveness of RVP
without compiler intervention.

Value speculation scheduling (Fu, et al. [3]) uses explicit
instructions to manage value prediction hardware, allow-
ing the compiler to select instructions (loads) for prediction,
like our static RVP scheme. However, they use separate in-
structions for the load and the prediction, allowing software
scheduling of the prediction. They also do misprediction
recovery in software. They do not exploit any value reuse
patterns besides same-instruction value reuse; however, be-
cause their scheme uses a buffer (like conventional value
prediction), they can incorporate more sophisticated hard-
ware mechanisms, like stride and context-based predictors.

Tyson and Austin [16] and Moshovos and Sohi [11] each
present hardware schemes specifically aimed at predicting
load values from recent stores. Register-value prediction
can take advantage of memory communication through re-
naming simply by loading into the same register the value
was stored from. Our scheme currently exploits that only
when profiling finds the stored value still in a register, but
more aggressive compilation could ensure that correlated
stores and loads use the same register without intervening
writes of the register.

Calder, et al. [1] and Gabbay and Mendelson [5] show

that value locality can be profiled efficiently. They also
show that static value locality is highly predictable across
different inputs, which we also found.

Martin, et al. [10] and Lo, et al. [9] also recognize the
utility of dead registers. Martin, et al. seek to identify dead
registers in hardware to avoid writing useless information
into them, while Lo, et al. make dead registers available for
renaming. We are attempting to find ways to put the dead
registers to work with useful data.

3. Exploiting Value Locality With Prior Regis-
ter Values

Register-based value prediction (RVP) uses the previous
value in the instruction’s destination register as a prediction
for the new result. Deciding which instructions to predict
can be done statically or dynamically. This paper examines
both approaches. In the static case, we assume that only
loads are predicted. Thus, only a few extra opcodes need be
found to support static register-based value prediction.

For example, instruction load R3, 800(R5) would
be replaced by rvp load R3, 800(R5). Subsequent
instructions that use R3 will use the prior value of R3 as
a prediction and can issue immediately if the ‘old’ value is
available. This technique can support several types of value
locality:

Correlated Values — If the values of two variables
are highly correlated, we can use register-based predic-
tion to use one to predict the other. If they have non-
overlapping lifetimes, they can be assigned the same regis-
ter (See Figure 2a). If not, a single move instruction before
the rvp load can provide the correlated prediction.

Memory Renaming — Memory Renaming identifies
stores and loads that typically go to the same address, and

passes the value from the store to the load through a struc-
ture similar to the value prediction buffer, but enhanced with
even more tables. See Figure 2(b) for how we support this
simply with RVP.

Last Value Locality — In cases where there has not
been an intervening write to the destination register, any in-
struction that exhibits last-value predictability also exhibits
register-value predictability. Figure 2(c) deals with the case
when there are intervening writes.

Constant Locality — In some cases, constant prediction
is more accurate than last-value prediction. For example, in
reading a sparse matrix where most entries have value zero,
predicting each value to be zero can have fewer mispredic-
tions than last-value prediction. Constant prediction can be
accomplished simply by moving a constant into the register.

Et Cetera — Stride prediction can be accomplished with
the insertion of an add instruction. For path-based correla-
tion (a variable is highly correlated with a different variable
along two different paths), all three variables could be as-
signed the same register. Other re-use patterns could also
be implemented.

This study does not take full advantage of most of these
opportunities, only using profile-based knowledge of exist-
ing register-value reuse and last-value reuse. The potential
for optimization beyond what this study assumes is great.

Dynamic register-based value prediction can also sup-
port all of these prediction models. It still takes advantage
of compiler support to increase register reuse (through some
of the above techniques), but performs well in many cases
with no compiler support whatsoever.

4. Architectural Support

None of the register-value prediction schemes we simu-
late require storage for values. This section describes the
hardware support that is needed.

Static register-based value prediction of loads requires
new opcodes to identify predictable instructions. Dynamic
RVP requires counters for confidence tracking and (possi-
bly) extra register read ports when predicting instructions
besides loads. Also, any form of value speculation will re-
quire misprediction recovery mechanisms; we model three
different mechanisms, and introduce them here.

These discussions assume instruction-queue based dy-
namic instruction scheduling, where instructions read reg-
isters when issued or receive the values from forwarding.

4.1. Static Register Prediction

With static register-value prediction, candidates for pre-
diction are identified with new opcodes (we assume only
loads, but there is no reason rvp-versions of a few common
or long-latency instructions could not also be added). When
an instruction marked for prediction goes through register
renaming, it is assigned a new physical destination register.

That register name is not written into the register map (or
if it is, it is written into an extra field), but a field is writ-
ten indicating the mapping is speculative dependent on the
rvp load. Subsequent instructions that read the virtual
register will read the old physical mapping, but know that
they are speculative. They will execute and read the previ-
ous value of the register if it is available, otherwise they will
wait for it.

The load instruction that was marked for prediction also
takes the old mapping as a source operand, because it will
read that value from the register file to be compared against
the new value. This still only gives the load two source
operands in most RISC processors. If the speculation is suc-
cessful, the new register mapping can be abandoned in favor
of the old, otherwise the old mapping must be replaced by
the new.

4.2. Dynamic Register Prediction

The hardware mechanisms for dynamic register predic-
tion are similar to static prediction, using the same register-
mapping mechanism to provide the predicted values and to
identify and correct mispredictions.

Since no ISA changes are required for dynamic RVP, we
consider both restricting prediction to loads and the option
of predicting all instructions. Non-load instructions that are
predicted would require an extra register read port to read
the predicted value (to identify mispredictions). This is not
as heavy a burden as it may seem. One or two extra read
ports would limit the number of predictions per cycle, but
place no limit on the number of instructions that can use
predicted values. In our simulations of dynamic RVP for all
instructions, we average less than 0.2 predictions per cycle
for the drvp all results and about 0.5 predictions per cycle
for the drvp all dead lv results, so a single extra read port
would likely suffice for the architecture we assume.

Dynamic prediction must be able to identify candidates
for prediction. This is done with confidence counters and
no value storage. Confidence counters are associated with
instructions rather than registers. Therefore, if only one of
multiple instructions that define a register has high register-
value reuse, we will only predict that instruction. We as-
sume a direct-mapped table (1K entries) of 3-bit counters
indexed by the instruction PC. We assume that the confi-
dence counters are not tagged with the PC; we have mod-
eled results from both cases to confirm that untagged coun-
ters actually outperform tagged.

4.3. Misprediction Recovery

If an instruction is correctly predicted, we will imme-
diately clear the field in the register map that indicates the
mapping is speculative and then release the unused register
mapping when the instruction is committed.

If an instruction is mispredicted, more significant mea-
sures must be taken. We examine three techniques, of in-

creasing complexity. The first two require only that we can
identify the first instruction that uses a predicted value. The
third requires that we track all dependences between pre-
dictions and subsequent instructions. In the latter two cases
we need the ability to broadcast prediction results, and pos-
sibly new register mapping data, to dependent instructions
waiting in the instruction queue (IQ).

These recovery schemes are not specific to RVP, and
match reasonably well with others discussed in studies such
as [7] and [16], so we will omit the details. The three re-
covery schemes are:

Refetch — a value mispredict is treated like a branch
mispredict. Instructions beginning with the first-use of the
predicted value are squashed, and the fetch unit is responsi-
ble for getting them back in the machine.

Reissue — all instructions after the first-use are kept in
the IQ until they are no longer speculative, and may re-issue
from there with minimal delay in case of a mispredict.

Selective Reissue — only instructions dependent on the
predicted value (either directly or indirectly) are kept in the
IQ until the prediction is resolved.

In the first case, the cost of a value misprediction is the
same as a branch mispredict. In the other two cases, we as-
sume a single cycle cost for checking the value — a depen-
dent instruction will issue one cycle later after a mispredict
than it would if the previous instruction were not predicted.

For the first scheme, it is sufficient to roll back the regis-
ter map to the point of prediction, with the correct register
mapping for the now non-speculative predicted instruction.
For the other two, we must correct the register mapping for
the predicted instruction on the fly, and signal all other spec-
ulative instructions that they must re-issue when their de-
pendences are satisfied.

5. Register-reuse profiling

Although there will certainly already be some same-
register value reuse in existing programs, the real power of
this technique comes from the ability of the compiler to cre-
ate register-value reuse. To understand the potential for this
technique, we must make some assumptions about what the
compiler will be able to do.

We profile each of the applications and create four lists
of instructions that have (1) same-register value reuse, (2)
high correlation with a value in a dead register, (3) high
correlation with a value in a live register, and (4) high last-
value predictability. In static register prediction, we assume
the compiler has used this information both to mark pre-
dictable instructions and to alter register allocation to create
register-value predictability. For dynamic RVP, predictable
instructions are identified by hardware, but we assume for
some results that one or more of the latter three lists have
been used to alter register allocation.

We assume the compiler will take advantage of these

types of reuse in the following ways. High correlation with
a dead register can be exploited by changing the register
allocation of the destination of the current instruction to
match that of the dead register. The compiler can simply
combine the live ranges for the purpose of register alloca-
tion as long as the live range of the current register definition
does not overlap the live range of the previous definition.
Otherwise, the compiler could break up live ranges or use
the following technique for live registers.

When there is high correlation with a live register, the
new value cannot be written into the same register because
we know the live ranges overlap; however, the new register
is always dead before it is written. Any value can be writ-
ten into the register while it is dead to make the instruction
predictable. Since the correlated value is already in a reg-
ister, a simple register move accomplishes this. In our sim-
ulations we do not account for the latency of such a move,
since many times it can be put in a place that will not im-
pact the critical path of execution. Therefore, these results
will represent a somewhat optimistic upper bound. For that
reason, we show the results of the live optimization in only
one graph (Figure 3).

When an instruction has high last-value locality, the
compiler can automatically expose register-value pre-
dictability by ensuring that no other instructions define the
same register between executions of the instruction. This is
easy if the loop is small, but will place constraints on reg-
ister allocation if the loop is large and there are many loads
with last-value predictability.

These profiles do not expose all of the potential for
compiler-created reuse. In addition to ignoring many of
the possibilities listed in Section 3, variables that have high
value correlation but are separated by a register write to the
wrong register will not be visible to our current techniques.

For most of the results in Section 7, we make the opti-
mistic assumption that the compiler will be able to expose
all of the reuses (of a particular type) found by the profiler.
For example, if an instruction is identified in our dead list as
exhibiting value reuse with another register, we track reuse
of the value in the other register for that instruction (to de-
termine prediction success). For all unlisted instructions (in
the dynamic case) we only track same-register reuse. In
Section 7.3, we show that a realistic model of compiler-
based register reallocation to exploit dead-register and last-
value reuse does in fact achieve most of the potential perfor-
mance (shown as the dead lv results in Section 7), even in
the more difficult case of all instructions being candidates
for prediction.

6. Evaluation Methodology

All measurements are done on an execution-driven
instruction-level simulator of a processor with a 9-stage
pipeline and a 7-cycle misprediction penalty. Our simula-

go ijpeg li m88ksim perl hydro2d mgrid su2cor turb3d
0

0.5

1

1.5

2

2.5

3

3.5
In

st
ru

ct
io

ns
 P

er
 C

yc
le

Programs

no_predict

lvp

srvp_same

srvp_dead

srvp_live

srvp_live_lv

Figure 3. Static register-based value prediction on SPEC95 programs.

Inst queue size 32 int, 32 fp
Functional units 6 integer (4 can perform

loads/stores); 3 fp
Pipeline 9 stages, 7-cycle branch

mispredict
Branch
prediction

256-entry BTB, 2K x 2-bit
PHT, gshare

Fetch Bandwidth Eight instructions
onchip L1 I
cache

32KB, 4-way SA, 64-byte
lines; 20-cycle miss pen.

onchip L1 D
cache

32KB, 4-way SA, 64-byte
lines; 20-cycle miss pen.

off-chip L2
cache

512KB, 2-way SA, 64-byte
lines; 80-cycle miss pen.

Table 1. Processor parameters used in the simulator

tor is derived from the SMT simulator [14], but configured
for single-thread execution. The simulator executes unmod-
ified Alpha object code and models the execution pipelines,
memory hierarchy, TLBs, and the branch prediction logic
of the processor. We extended this capability to allow both
buffer-based and register-based value prediction.

The processor we model (Table 1) is not particularly ag-
gressive, because we realize the advantages of RVP are most
attractive while the size of the value prediction table is still
prohibitive; however, we show that RVP also has perfor-
mance advantages that make it attractive beyond that time
frame.

For last-value prediction, we assume a 1K-entry last-
value prediction buffer with a 3-bit confidence counter as-
signed to each entry. We use resetting counters with a con-
fidence threshold of 7. This means we only predict after we
have seen seven consecutive hits. This is a conservative fil-
ter, but is consistent with our machine model, reducing the
pressure prediction places on the instruction queues. It is
also consistent with the thresholds we use for the profiler
to select instructions for static prediction (80% predictabil-
ity, except for figure 4, which uses 90%). The exact same
counters are used for dynamic RVP.

Our workload consists of nine of the SPEC95 bench-
marks. We compiled each program with the Digital Unix C
(or FORTRAN) compiler under DEC OSF V4.0, with full

optimization. Each program is simulated for 300 million
committed instructions, except su2cor which runs for 3 bil-
lion due to a very long initialization period.

For static register-based prediction, we identify instruc-
tions for prediction through profiling, as described in the
previous section. Identification of same-register reuse is rel-
atively fast, but identifying correlations with other registers
is slower; however, this paper is attempting to explore the
limits of our prediction approach, so we made no attempt
to find shortcuts to achieve more reasonable profile time.
Many of the techniques from [1] could be applied.

We used profiles of the SPEC95 train data set to both
mark instructions (for the static techniques) and to guide
our assumptions about compiler-based re-allocation of reg-
isters; we then used that data for the measurement simula-
tions on the ref data sets.

7. Results

This section details the results of our simulations for
static register value prediction, dynamic RVP for loads, and
dynamic RVP for all instructions. Other results shown are
no-prediction, dynamic last-value prediction using the last-
value prediction table, and in one case, Gabbay and Mendel-
son’s register predictor [4].

7.1. Static RVP

Figure 3 shows the results for the selective re-execute
recovery mechanism without value prediction (nopredict),
with dynamic last-value prediction using a 1K-entry value
prediction table (lvp), and with static RVP assuming var-
ious levels of compiler support for register allocation:
no support (srvp same), dead-register correlation opti-
mization (srvp dead), live-register correlation optimization
(srvp live), and srvp live combined with last-value opti-
mization (srvp live lv).

Because a key advantage of RVP prediction is the drastic
reduction in required storage over even the simplest last-
value predictors, we do not compare it with schemes that
add additional storage and complexity to what is required
for last-value prediction. Examples of such schemes are

go ijpeg li m88ksim perl hydro2d mgrid su2cor turb3d
0

0.5

1

1.5

2

2.5

3

3.5

In
st

ru
ct

io
ns

 P
er

 C
yc

le

Programs

no_predict

srvp_refetch

srvp_reissue

srvp-selective

Figure 4. The effect of the recovery mechanism on the
performance of value prediction. All RVP results are for
the dead optimization.

stride predictors [4], context-based/two-level/hybridpredic-
tors [17, 13], or memory renaming architectures [16, 11].

In three of the nine programs, enough register value lo-
cality already exists in unmodified code to achieve perfor-
mance gains of 3% or more. In most of the programs, fur-
ther gains are enabled by the compiler optimizations. li
gains another 8% with the dead-register optimization, and
mgrid gains 21%.

7.1.1 Performance of Recovery Mechanisms

The mispredict recovery mechanism had a significant im-
pact on our results. These results are applicable to more
than just register value prediction. The mechanisms, de-
scribed in Section 4 are refetch, the scheme with the highest
misprediction cost, reissue, and selective reissue. In each
case, the srvp dead result is shown.

Figure 4 shows that the relatively simple refetch scheme
performs well on this architecture, often outperforming reis-
sue by large margins and occasionally beating selective re-
issue. While refetch has the highest mispredict cost, it also
imposes the least pressure on the architecture for a cor-
rect prediction. The other two schemes force instructions
to stay in the queue as long as they remain speculative in
the interest of reissuing them quickly. This prevents other
instructions from getting into the machine, restricting par-
allelism and negating the advantage of the prediction. Be-
cause the selective mechanism holds fewer instructions in
the queue, however, and has the low mispredict penalty, it
still provides the best overall performance. We will use the
selective scheme in the rest of the simulations, but recog-
nize that refetch represents an attractive alternative due to
its low complexity. A higher prediction threshold was used
for this figure (90% instead of 80%) to mark instructions,
even for the selective results, because refetch and reissue
require more conservative prediction.

7.2. Dynamic RVP

Static RVP requires (small) ISA changes and depends
heavily on the compiler to mark the right loads. Dynamic
prediction, which uses the hardware to identify instructions
with register-value reuse, requires no changes to the ISA.
It also is more tolerant of compiler “mistakes” — if an in-
struction the compiler thought would have high predictabil-
ity turns out not to, nothing is lost because it will not be
predicted by the hardware. This will allow the compiler
to actually be more aggressive in identifying and exposing
possible register-value reuse through register allocation and
other techniques. It also works in many cases with no com-
piler support at all.

Dynamic RVP, described in Section 4, requires a set of
small confidence counters but no value storage. Although
RVP could have many more confidence counters than the
number of value file entries in an LVP implementation be-
cause the counters are so small, we assume the same number
of confidence counters (1K, direct-mapped indexing).

In addition to the value storage buffers needed for dy-
namic LVP, we also assume dynamic LVP buffer entries are
tagged with the PC, which improves performance. Tagging
entries detects interference in the table to inhibit predictions
in that case. We do not assume tags for the RVP confidence
counters (which would eliminate much of the hardware sav-
ings). Unlike LVP, RVP actually performs (slightly) better
without the tags. With RVP, positive interference can be
exploited when there are no tags, as long as both instruc-
tions that map to the same confidence counter experience
register-value reuse. With LVP, positive interference only
occurs in the rare case when both instructions experience
last-value reuse and the values are the same. This is an im-
portant result, because an LVP value file becomes virtually
useless for a loop that is larger than the value prediction
table due to interference, but that is not true for the RVP
counters.

Figure 5 shows the performance of dynamic RVP applied
only to load instructions, compared to last-value prediction
for loads. RVP-dead only slightly under-performs the much
more expensive last value prediction, while RVP-dead-lv
outperforms LVP somewhat, achieving an 8% average gain
over no prediction.

With dynamic prediction, we do not have to restrict our-
selves to load instructions because of ISA restrictions. Any
instruction that writes a register can exhibit register-value
reuse. Figure 6 shows the result for LVP and dynamic RVP
applied to all instructions. Dynamic RVP can be quite pow-
erful in this scenario, with the dead-register plus last-value
(dead lv) reallocation results providing 12% more perfor-
mance than no prediction. Even the dead-register optimiza-
tion alone provides more performance than the buffer-based
last-value prediction mechanism. Also included in these
results is register-value prediction using the Gabbay and

go ijpeg li m88ksim perl hydro2d mgrid su2cor turb3d average
0.9

1

1.1

1.2

Sp
ee

du
p

O
ve

r
N

o
Pr

ed
ic

tio
n

Programs

lvp

drvp

drvp_dead

drvp_dead_lv

Figure 5. The performance of dynamic register-based value prediction for load instructions on the SPEC programs.

% Insts Predicted/Pred. Rate
drvp

dead dead lv lvp G&M RP
go 4/93.7 15/95.7 14/94.8 .3/95.9

hydro 22/99.3 38/99.7 28/99.2 7/98.3
ijpeg 15/98.8 10/98.9 12/98.4 2/97.8
li 9/98.6 26/99.1 24/98.2 .4/91.1
m88k 29/99.8 64/100 57/99.9 3/98.4
mgrid 7/99.9 9/99.7 7/99.4 4/97.9
perl 18/99.1 4/95.2 16/98.8 .4/87.5
su2 9/96.9 22/99.2 21/98.2 1/94.1
tu3d 28/98.2 38/99.0 32/98.4 8/94.4

Table 2. The percentage of instructions that were pre-
dicted and the prediction accuracy for RVP, last-value
prediction, and the Gabbay register predictor.

Mendelson scheme (Grp all), but without the stride pre-
dictor they include, to equalize comparisons. That register
predictor suffers from high interference on the predictors,
as every instruction that writes a register shares the same
counter.

Table 2 shows the prediction coverage for the rvp dead
algorithm, the last-value predictor, and the Gabbay and
Mendelson scheme. In comparing the RVP and LVP re-
sults, we see that both get extremely high accuracy from
the conservative resetting counters with the threshold set at
seven. Comparing the table with our performance results
(Figure 6), we see that there is more correlation between
coverage and performance than accuracy and performance.
However, neither is a particularly good predictor of perfor-
mance. In [15] it is shown that overall predictability of in-
structions is not necessarily highly correlated with the pre-
dictability of instructions on the critical path, the ones that
impact performance.

For both dynamic RVP techniques, we have shown that
the low hardware cost of register-based value prediction is
in no way a barrier to high prediction accuracy and signif-
icant performance gains, being more than competitive with
much more expensive techniques.

7.3. Register Re-allocation to Support Register
Reuse

The results shown do not represent an upper bound on
the performance available with register reuse. In fact, we
take only limited advantage of opportunities for value reuse.
However, the results shown do represent upper bounds for
the performance available given the register reallocations
suggested by the particular profiles we use.

In this section, we will examine the compiler’s abil-
ity to exploit the dead-register and last-value optimizations
through register reallocation. Clearly not all register-reuse
opportunities can be accommodated with a given legal reg-
ister allocation. For example, two neighboring instructions
may both exhibit reuse with the same register. If the first in-
struction’s result is still live when the second executes, they
cannot both be allocated to the same register as the dead
value. If too many instructions within a loop exhibit last-
value reuse, not all can be assigned an exclusive register
within the loop.

For these results we filter out register-reuse patterns that
cannot be supported with a legal register allocation using
traditional register coloring techniques [2]. We start with
the dead-register and last-value profile data and attempt to
support as many of the reuses as possible through register
reallocation. No instructions are added to move data be-
tween live registers — those reuses are considered unus-
able.

For each procedure we create a register interference
graph using live range analysis, assuming that all non-
volatile registers are live at entrance and exit, and that each
procedure call uses all argument registers. Then the inter-
ference graph is supplemented by each register redefinition
suggested by our profiles. For dead-register reuse, the live
range of the register defined by the instruction is combined
with the live range of the instruction that was the primary
producer of the value in the reused register, thus assigning
them the same color for the register allocation. We need
a new profile to identify the primary producer of a value,
since only the identity of the register was needed for our
other results. At this point, many reuses are found to be

go ijpeg li m88ksim perl hydro2d mgrid su2cor turb3d average
0.9

1

1.1

1.2

Sp
ee

du
p

O
ve

r
N

o
Pr

ed
ic

tio
n

Programs

lvp_all

Grp_all

drvp_all

drvp_all_dead

drvp_all_dead_lv

Figure 6. The performance of dynamic register-based value prediction for all instructions on the SPEC programs.

illegal because the live ranges already conflict in the inter-
ference graph. Although we know the producing instruc-
tion’s value is dead when the re-using instruction executes,
it may be that the re-using instruction’s live range wraps
around and overlaps the producing instruction. Also, pre-
vious register-reuse or last-value reuse graph changes may
have created the conflict. Regardless of the reason, the in-
struction reuse is abandoned if the live ranges cannot be
combined. We also do not allow reuse of registers defined
in other procedures, although we manually made a handful
of exceptions when the dead value was in a volatile register
and the mapping was otherwise legal.

If an instruction exhibits last-value reuse (LVR), we cre-
ate an interference edge with every instruction in the inner-
most loop containing the instruction. Any instruction that is
not in a loop within the procedure is abandoned. Occasion-
ally the LVR instruction already shares a color with another
instruction in the loop — this also makes the LVR unusable.

This process can add significantly to the edges in the in-
terference graph. If it is possible to find a legal coloring for
the register graph, we allow the remaining register reuses
that have not already been found illegal to be used. If the
graph cannot be colored with 31 registers, register reuses
are removed until the coloring succeeds. We use a combi-
nation of heuristics to choose reuses to abandon. Starting
with the highest priority heuristic, we:

1. Remove LVR reuse before register reuse. LVR typi-
cally adds much more complexity to the graph.

2. Start at outer loops (particularly with LVR) and move
inward. LVR instructions in outer loops are executed with
less frequency and add more complexity than inner-loop
LVR.

3. Use critical-path profiles [15] to gauge the importance
of each instruction. This quantifies each instruction’s con-
tribution to the critical data dependence path through the
entire program. Many instructions do not contribute at all
to the critical path and are good candidates to be removed.

By the time the register reallocation is done, we typically
have thrown out over half of the register reuses; however,

hydro2d li mgrid su2cor
1

1.1

1.2

1.3

Sp
ee

du
p

ov
er

 n
o

pr
ed

ic
tio

n

lvp

drvp_all_noreallocate

drvp_all_dead_lv_realloc

drvp_all_dead_lv(ideal realloc)

Figure 7. Speedup over no prediction with a more real-
istic model of register reallocation, compared to LVP, no
reallocation, and ideal reallocation.

the automatically-eliminated ones often are not the impor-
tant ones (e.g., LVR that is not in a loop), and our heuristics
hopefully guard the important instructions during the prun-
ing to enable coloring. Figure 7 shows the results for the
four applications where there was a significant difference
between DRVP with and without ideal reallocation. Among
those left off this graph are ijpeg and m88ksim that get all of
their performance gain without any need for compiler assis-
tance.

Compiler-based register reallocation appears able to gen-
erate most of the performance potential uncovered by our
profiles. In each case where traditional last-value predic-
tion outperformed the base DRVP result, the register reallo-
cation was sufficient to exceed it.

7.4. More Aggressive Architectures

The results presented up to this point have focused on a
near-future architecture, assuming the cost of a buffer-based
value prediction scheme will become less of an issue over
time. In this section we show that register value predic-
tion will continue to be competitive with last-value predic-
tion even when the hardware differences are minimized, due
purely to performance advantages.

Figure 8 examines the performance of RVP on a more
aggressive processor architecture. This architecture has

go ijpeg li m88ksim perl hydro2dmgrid su2cor turb3d average
0.9

1

1.1

1.2

Sp
ee

du
p

O
ve

r
N

o
Pr

ed
ic

tio
n

Programs

lvp_all

drvp_all

drvp_all_dead_lv

Figure 8. The performance of value prediction mecha-
nisms on a more 16-wide processor architecture.

double the instruction queue entries, functional units, re-
naming registers, and fetch bandwidth of the processor
modeled for all prior results. It also has the ability to fetch
up to three basic blocks per cycle to take advantage of the
increased fetch bandwidth.

In removing many of the limitations to instruction-level
parallelism existent in the previous processor, the perfor-
mance of RVP increases, both over no-prediction (15% per-
formance gain) and over traditional last-value prediction
(5% higher performance). In fact, RVP with no compiler
support (rvp all) provides equal performance to the last-
value architecture.

8. Conclusions

The programs we have studied exhibit register-value
reuse. We have shown techniques for register-based value
prediction that have the potential to achieve significant
speedup with only a small fraction of the hardware cost
of previously proposed value prediction schemes. These
speedups are not only over no-prediction, but even over a
non-aggressive (but still very expensive) buffer-based last-
value prediction scheme.

While recently proposed hardware-based value predic-
tion mechanisms have become more and more sophisticated
(and expensive), they all depend solely on the history of a
single instruction. The simple mechanism we propose en-
ables an unlimited number of other inputs to prediction,
including the values of other variables and the path taken
through the program. We have modeled the bounds of some
simple techniques to expose register-value reuse through
register re-allocation to combine correlated values.

We demonstrate both static and dynamic techniques for
a processor to exploit register-value reuse. On a next-
generation processor with realistic limits on fetch band-
width, instruction queue size, and issue rates, RVP can
achieve speedups up to 12% on average over no predic-

tion. With a more aggressive processor model, the potential
speedup is 15% over no prediction.

Acknowledgments

We would like to thank the anonymous reviewers for
their useful comments. This work was funded in part
by NSF CAREER grant No. MIP-9701708, NSF grant
No. CCR-980869, and a grant from Compaq Computer Cor-
poration.

References
[1] B. Calder, P. Feller, and A. Eustace. Value profiling. In 30th Inter-

national Symposium on Microarchitecture, December 1997.
[2] G. Chaitin, M. Auslander, A. Chandra, J. Cocke, M. Hopkins, and

P. Markstein. Register allocation via coloring. Programming Lan-
guages, 6(1):47–57, 1981.

[3] C. Fu, M. Jennings, S. Larin, and T. Conte. Value speculation
scheduling for high performance processors. In Eighth International
Conference on Architectural Support for Programming Languages
and Operating Systems, Oct. 1998.

[4] F. Gabbay and A. Mendelson. Speculative execution based on value
prediction. EE Department TR 1080, Technion - Israel Institue of
Technology, Nov. 1996.

[5] F. Gabbay and A. Mendelson. Can program profiling support value
prediction? In 30th International Symposium on Microarchitecture,
Dec. 1997.

[6] S. Jourdan, R. Ronen, M. Bekerman, B. Shomar, and A. Yoaz. A
novel renaming scheme to exploit value temporal locality through
physical register reuse and unification. In 31st International Sympo-
sium on Microarchitecture, Nov. 1998.

[7] M. Lipasti and J. Shen. Exceeding the dataflow limit via value pre-
diction. In 29th International Symposium on Microarchitecture, Dec.
1996.

[8] M. Lipasti, C. Wilkerson, and J. Shen. Value locality and load value
prediction. In 17th International Conference on Architectural Sup-
port for Programming Languages and operating Systems, pages 138–
147, Oct. 1996.

[9] J. Lo, S. Parekh, S. Eggers, H. Levy, and D. Tullsen. Software-
directed register deallocation for simultaneous multithreaded proces-
sors. IEEE Transactions on Parallel and Distributed Systems, to ap-
pear.

[10] M. Martin, A. Roth, and C. Fisher. Exploiting dead value informa-
tion. In 30th International Symposium on Microarchitecture, pages
125–135, Dec. 1997.

[11] A. Moshovos and G. Sohi. Streamlining inter-operation memory
communication via data dependence prediction. In 30th Interna-
tional Symposium on Microarchitecture, Dec. 1997.

[12] G. Reinman, B. Calder, D. Tullsen, G. Tyson, and T. Austin. Profile
guided load marking for memory renaming. Technical Report Tech-
nical Report UCSD-CS98-593, University of California, San Diego,
July 1998.

[13] Y. Sazeides and J. Smith. The predictability of data values. In 30th
International Symposium on Microarchitecture, 1997.

[14] D. Tullsen. Simulation and modeling of a simultaneous multithread-
ing processor. In 22nd Annual Computer Measurement Group Con-
ference, Dec. 1996.

[15] D. Tullsen and B. Calder. Computing along the critical path. Tech-
nical report, University of California, San Diego, Oct. 1998.

[16] G. Tyson and T. Austin. Improving the accuracy and performance
of memory communication through renaming. In 30th Annual In-
ternational Symposium on Microarchitecture, pages 218–227, Dec.
1997.

[17] K. Wang and M. Franklin. Highly accurate data value prediction
using hybrid predictors. In 30th Annual International Symposium on
Microarchitecture, pages 281–290, Dec. 1997.

