
Related Work

Scott Kuroda

March 11, 2012

As software has taken on a more prevalent role in society, the security and robustness of applications has
become an increasingly important area of study. Though there are those that choose to specify in the domain
of computer security, it is a challenge that every developer in industry should be concerned with. Today, a
large amount of work goes into ensuring the reliability, stability, and security of application code in industry.
However, it is often an afterthought in academics.

Because of the already high demand on students in an academic setting, the challenge that presents itself
is how to incorporate secure coding practice into existing courses. One way to do this is to incorporate similar
tools and techniques used in industry to validate code, in an academic setting. By doing this, the code that
students already submit in there course work will be scrutinized to some extent by security analysis. Though
this will not necessarily generate experts in the field of security, it will, at a minimum, expose students to a
variety of potential security flaws in their code.

1 Existing Code Analysis

Code analysis in industry is done in a number of ways. Of particular interest are static analysis methods.
These offer lower computational overhead, compared to dynamic testing. It would allow for more rapid
feedback on submitted code. The following sections will discuss static code analysis methods, its accuracy,
and service oriented testing architecture.

1.1 Static Code Analysis

A popular method for analyzing code is through static code analysis. Static code analysis involves analysis
of code, in a variety of methods, without actually executing any code. Static code analysis can be broken
into three distinct stages. The first involves parsing the code. Because code is never actually run, this parsed
code is then used to create a representational model that the tool understands. The tool then provides some
analysis on this model, finding a variety of bugs and errors in the submitted code. The types of analysis
done vary widely, and are beyond the scope of this paper. Though tools do find a variety of issues, they
often have a large number of false positive and false negative results. This can be partially mitigated as
some tools allow for the incorporation of end user generated rules into the analysis set. [1]

1.2 Java Code Analysis

One particular study that involved combining a variety of Java static code analysis tools [6]. In this study,
Ware and Fox use 8 existing static code analysis tools against a series of test cases. These test cases together
provided 115 unique violations. In this study, violations ranged from security violations to simple coding
standards. To provide further analysis, there was some overlap in the test cases provided. That is, a single
test may encompass 1 to many unique violations.

After running all the test cases through the analysis tools, Ware and Fox found that the tools performed
in a less than impressive manner. As a whole, the tools successfully identified 50 of the unique violations
introduced. Also, no single violation was found by all of the tools. In addition, the tools also had a variety
of false positive results. Though the set of tools only found 50 of the 115 violations, the most violations an
individual tool found was 30. From these results we can draw two distinct conclusions. First that static

1



code analysis alone is not enough for code analysis. Second, though the set of tools together did not provide
great results, as a set they found almost twice as many unique violations than any given tool alone. [6]

1.3 Static Code Analysis and Inferred Information Flow

As previously discussed, static code analysis has its limitations. Beyond simple static code analysis
methods is dynamic analysis. This involves things like tainting code. However, this is very computationally
intensive. Though this may, at some point be incorporated into an analysis test suite, at the moment the
incorporation of dynamic analysis methods is beyond the scope of this paper. [3] To help bridge the gap
between dynamic and static analysis methods, [4] proposes using static code analysis to infer the information
flow. If done properly, this would provide another avenue for code analysis, with a relatively low amount of
overhead.

In [4], the authors propose a method to analyze explicit data flows. These flows are the results of variable
assignments. Not covered by this tool, but covered by many dynamic tools in implicit flows. Implicit flows
are the result of some conditional statement. For example, if a variable i’ were to be defined as j if j is
greater than some value. To complete this analysis, this method employs several different distinct analysis
methods, Point-to and fragment analysis. The results of these analysis methods are then used to create the
inferences. To validate their work, the authors used the described static analysis method on a set of Java
components. The tool found a variety of issues in the existing code base. The authors argue that the results
are both precise and practical. Though this analysis method only infers on explicit flow, it is still a step in
further utilizing static analysis methods beyond some of the current static code analysis tools. This type of
tool, combination with the other existing tools would allow for a more thorough final report to be generated.
Of course, even the combination of tools, as previously discussed, may not catch everything. But it would
give a more complete picture to the end user.

1.4 Testing as a Service

In addition to work being done regarding analysis methods, another related area is service oriented systems.
These systems leverage cloud computing services. By utilizing this architecture, a given system is much more
widely available. In addition, the pure computational load needed to perform a given task is removed from
a users machine, and pushed to a much more dynamic architecture, the cloud.

This architecture is generally referred to as Testing as a Service (TaaS). As previously stated, this moves
the testing of software from local machines, or in house testing by a company, and moves it to a cloud
based service. Because code analysis methods can be computationally intense, most developers would rather
not slow their development process with these additional checks. However, with a service oriented testing
architecture, a developer could continue development, as they test their existing code. Because this testing
would not occur on their machine, they would take a much smaller, if any, performance hit. By testing
continuously, and early on in the development process, it may be possible to identify bugs quickly. This
would allow for bugs to be fixed early on in the development cycle when, arguably, a given problem will be
easier to fix. [2]

However, cloud based systems are not without their challenges. Thoroughly testing software often requires
some expertise in the domain. With this in mind, TaaS is not the end all solution for testing. Rather, it
would handle a certain set of test, allowing in house testers to focus more on implementation details. In
addition, as with any cloud based service, the code being tested, as well as the results must be kept secure.
In [5], companies interviewed stated that they would need a certain level of guaranteed security. Because
of how their code base may integrate with the service, an attacker may be able to work from the testing
service, back into the companies system. With these issues in mind, cloud based testing, in industry, may
not be the end all solution. However, it can provide a level of testing, allowing in house testers to be much
more focused.

Though not necessarily required by all systems, depending on the scope, some TaaS systems allow for
individual configuration to test a set of code. This would allow additional flexibility for an end user to
take advantage of while leveraging the service based system. This type of system could be leverage through
creating a set of common rules that can be utilized across various submitted programs. Then, more detailed
testing can be done on a program by program basis. [2]

2



References

[1] D. Binkley. Source code analysis: A road map. In 2007 Future of Software Engineering, FOSE ’07, pages
104–119, Washington, DC, USA, 2007. IEEE Computer Society.

[2] G. Candea, S. Bucur, and C. Zamfir. Automated software testing as a service. In Proceedings of the 1st
ACM symposium on Cloud computing, SoCC ’10, pages 155–160, New York, NY, USA, 2010. ACM.

[3] J. Clause, W. Li, and A. Orso. Dytan: a generic dynamic taint analysis framework. In Proceedings of the
2007 international symposium on Software testing and analysis, ISSTA ’07, pages 196–206, New York,
NY, USA, 2007. ACM.

[4] Y. Liu and A. Milanova. Static analysis for inference of explicit information flow. In Proceedings of
the 8th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and engineering,
PASTE ’08, pages 50–56, New York, NY, USA, 2008. ACM.

[5] L. Riungu, O. Taipale, and K. Smolander. Software testing as an online service: Observations from prac-
tice. In Software Testing, Verification, and Validation Workshops (ICSTW), 2010 Third International
Conference on, pages 418 –423, april 2010.

[6] M. S. Ware and C. J. Fox. Securing java code: heuristics and an evaluation of static analysis tools. In
Proceedings of the 2008 workshop on Static analysis, SAW ’08, pages 12–21, New York, NY, USA, 2008.
ACM.

3


