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Introduction 

 Autonomous robotics is a well-trodden path and recent legislative pushes to license 

autonomous vehicles in Nevada point to a future where autonomous vehicles become an even more 

prevalent part of daily life.  Beyond just the convenience of having cars park themselves, propositions 

regarding greater safety and empowering less mobile groups (like the elderly) to maintain greater 

independence also underscore the quality-of-life improvements such systems can offer.  Fortunately, 

this research has also been applied to smaller platforms like wheelchairs, and can bring many of the 

same benefits to individuals with even more limited mobility.  Alternative input devices can even 

provide control of these systems to users otherwise unable to use conventional keypads and joysticks.  

This thesis explores the combination of electroencephalography (EEG) headsets with an assistive AI as 

part of a control system for a wheelchair. 

Related Work 

 Being so heavily explored, one of the initial challenges was identifying system architectures that 

worked well, rather than those whose further work sections alluded there was much to be desired.  The 

cost constraint also represents another challenge since many wheelchair systems feature $5,000+ laser 

ranging systems.  Though these afford considerable situational awareness to the system, one of the 

goals of this thesis is to implement a system with similar functionality at a lower cost.  Low cost sensors 

have the consequence of increasing the degree of uncertainty in the platform’s internal world 

representation, also requiring models which are flexible in reasoning amid uncertainty.  Partially 

observable Markov decision processes, an extension of Markov chains, are aptly suited to this task, 

though their flexibility comes at a price: they are PSPACE-hard [4].  Nonetheless, approximations can be 

used to reduce the scope of the state distributions and bring the benefits into computational tractability. 

Xavier 

Fortunately, there have already been successes leveraging partially observable Markov decision 

processes (POMDP) in the context of robotic navigation.  One platform in particular, named Xavier, 

logged over 60 kilometers of travel in an office setting, utilizing a partially observable Markov decision 

process with over 3,000 states [2].  It exhibited strong resilience against sensor failure by being able to 

reevaluate and dynamically adjust its state periodically.  Most impressive was the plug-and-play manner 

in which the POMDP was implemented.  This allowed the POMDP-based navigation layer to be swapped 

with a more conventional landmark-based navigation layer for comparison on an otherwise identical 

robotic platform.  Testing showed the later to have an approximate success rate of 80% with the 

POMDP-based solution edging it out at 93%.  The overall success of this platform and the research 

team’s positive evaluation of its dealings with sensor failure and positional uncertainty lend strong 

credibility to the potential effectiveness of POMDP-based approaches to navigation in dynamic 

environments.  Xavier’s decision process is still tiered, where behaviors become increasingly 

sophisticated as lower level checks (like proximity sensors) return within certain ranges.  Breakdowns at 



lower levels can render the robot substantially impaired and undermine higher navigational goals.  

Migrating to an architecture where sensor processing is decentralized and driven by agent consensus 

could make the system even more robust in the event of failure and opens up the platform to even 

greater extensibility. 

RHINO 

 Another robotic platform, named RHINO, used Markov models purely for localization within the 

environment [1].  Though I intend to follow the approach of Xavier which used POMDP more explicitly 

for navigation, RHINO’s unique environment draws attention to certain potential sources of error in 

localization not accounted for in Xavier.  While relying on a conventional array of sensors (stereo 

cameras, SONAR, and laser ranging), RHINO was situated in a museum for testing, giving it certain 

obstacles which were “invisible”, at least to its sensors.  Glass casings around exhibits were essentially 

undetectable and created discrepancies between SONAR and laser readings which might otherwise 

seem like an errant situation.  The use of Markov localization allowed RHINO to nonetheless navigate 

the environment.  Taking into account largely “invisible” obstructions which a wheelchair may 

encounter (i.e. chain-link fencing or glass panes next to doors) will be key to the user experience and 

underscores the need to ensure no single agent is afforded too much control over the system.  RHINO’s 

use of multiple sensor types for a single function provides not only a level of fault-tolerance, but also the 

opportunity to detect obstructions that certain types of sensors are more prone to missing.  While in 

principle this makes sense, finding sensor combinations which can reliably detect obstructions like chain 

link fences is something that will need to be addressed. 

Collaborative Wheelchair Control 

 There were quite a few papers by Yoshinori Kobayashi which centered on trying to make 

wheelchairs more useful in healthcare settings [5][6].  The goal was to empower users, by not needing 

to be pushed by someone who would be perceived as a caregiver, and allow the wheelchair to travel 

alongside someone, as is more common in interactions with friends.  Though their sensor systems were 

just as elaborate as those of Xavier and RHINO, the emphasis was not on strictly autonomous operation.  

Rather, the goal was to have the wheelchair intelligently follow someone walking and respond intuitively 

to situations like the leader holding open a door or needing to pass others single-file in a hall.  While 

care facilities are not the intended target of this thesis, people following behaviors may prove to be very 

effective strategies in densely populated environments like sidewalks or hallways.  Since the system 

must prevent collision with pedestrians, and in many cases it could be advantageous to implement 

following behaviors.  As the platform will already be equipped with depth cameras, implementing these 

features is within the realm of possibility.  Feedback seemed positive from users, though issues like the 

wheelchair turning away from the caregiver in certain situations were noted as room for improvement. 

HaWCoS (Hands-free Wheelchair Control System) 

 The HaWCoS appears to be one of the earlier implementations of EEG for wheelchair control [3].  

It did not aim to offer a coupled autonomous mode, which is a key area of difference, but does make do 

with very modest resources by modern standards, running off a Pentium 3 laptop.  EEG input, though 



noted as having inherent problems with noise and model matching, appeared to have been an effective 

input mechanism for users with severe disabilities.  Joystick input was unsurprisingly faster, but in 

testing, the researchers found that EEG control only took on average 48% longer to complete the same 

paths.  For users with few input options, those results are quite promising, and hopefully with the 

integration of an assistive AI to deal with problem cases (like minor adjustments to keep travelling 

straight down a hall) the time disparity could be shrunk down even further. 

Combining Strengths 

 Each of the noted systems offers an important insight into potential problems for both 

autonomous and guided navigation.  This thesis aims to take the strengths of each in the hope of 

mitigating concerns noted in each of their further work sections.  Responding intelligently in a dynamic 

environment will require well developed heuristics, and I believe in combination, these systems along 

with others could perform quite well.  
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