
CSC530-S02-L8 Page 1

CSC 530 Lecture Notes Week 8
Wrap Up of Denotational Semantics
Introduction to Axiomatic Semantics

I. Readings:papers 23-33 (many are abstracts only).

II. Tennent Wrap Up

A. You may want to check out remaining sections of Tennent chapter 13 (sections 13.4 - 13.8), but
we’ll not be covering them in detail.Here are some highlights:

1. 13.4on continuations describes a mathematically sound, though strained formalism for han-
dling gotos.
a. Thesemantics of gotos is so far from what mathematical semantics can handle neatly that

the going gets pretty sloggy here.
b. Gotos really are aninherently operational concept that must be shoe-horned to fit the non-

operational (denotational) formalism.

2. Sections13.5 and 13.6 discuss some additional details of semantics for a real language, such as
Pascal
a. 13.5covers simple but necessary semantic constraints such as identifier usage and scoping.
b. 13.6 formally defines the data structure domains of Pascal

3. Section13.7 is a nice summary.

4. Section13.8.1 provides a nice segue into our coverage of verification semantics; more on this
shortly.

5. Sections13.8.2 and 13.8.3 discuss practical applications of denotational semantics.

B. So,in conclusion, is all the formalism worth it?
1. Oncea working group shares a common understanding of the concise notation, things that are

bulky to express in other ways come out very nice
2. E.g.,expressing difference between static and dynamic binding is notationally trivial (problem

13.9).
3. Boththe Tennent and Knuth style semantics provideexcellentcompiler specs.

a. Theproblems you are working on in Assignment 3 are precisely the kind of problems that
must be solved when writing a real compiler or interpreter.

b. Formal semantics in some form are an indispensable tool for the serious compiler writer.

III. Relationof axiomatic semantics to attribute and denotational semantics

A. Knuth/Tennent semantics describe the meaning of a programming language in terms that amount
to a language translator specification.

1. Onemight consider this theinternal semantics of the language in the sense denotational
semantics reveal the internal workings of the language at the level of what goes on inside a
translator.

2. Knuthsemantics do the same thing.

B. Verification-oriented semantics, as represented by the Floyd/Hoare style, describe the meaning of a
programming language in terms that amount to a set of rules suitable for proving assertions about
particular programs.

CSC530-S02-L8 Page 2

1. Onemight consider this theexternal semantics of the language in the sense that the semantic
rules reveal nothing (or not much) about translator-level meaning.

2. Rather, the verification-oriented semantics specify a logical system which can be used to prove
assertions about program behavior, as opposed to a set of functions that can be used to build a
translator to perform program behavior.

C. Thefundamental relationship between axiomatic and denotational is that the soundness of former
is proved by appeal to the latter.

That is, for a axiomatic semantics to be sound, we must prove that the axiomatic proof system
makes sense vis a vis the language it is to be used with.

1. Thisrequires some form of internal (in the sense above) definition of the language.

2. Section13.8.1 in Tennent discusses this relationship further.

IV. The two basic components of an axiomatic semantics.
A. A set ofproof rules, that describe the logical behavior of each construct in a particular program-

ming language.

1. E.g.,the rule for an assignment statement describes thelogical effect of assigning a value to a
variable.

2. Theseproof rules constitute the axiomatic semantics of the programming language.

3. Thesesemantics are comparable to a attribute or denotation semantic definition, but here the
orientation is program proving rather than program translation or execution.

B. In conjunction with the proof rules, we must define an overall verification strategy that describes
how a program proof is constructed using the proof rules applied to a particular program.

1. E.g., for a particular assignment statement in a particular program, the verification strategy
defines how to apply the rule for assignment to deliver the meaning of the assignment state-
ment.

2. Theverification strategy is comparable to the evaluation strategy defined for an attribute or
denotational semantic definition.

3. Thekey difference with axiomatic semantics versus the other two forms is is that applying the
verification rules involves manipulation of boolean predicates rather than manipulation of data-
valued variables.
a. Evaluating an attributed parse tree or denotationally-defined function produces a data store,

the contents of which represent the meaning of a program.
b. In contrast, evaluating (i.e., verifying) an axiomatized program produces a set of boolean

expressions -- calledverification conditions, proof of which constitutes the meaning of the
program.

V. Overview of Floyd-style verification

A. The base programming language will be that of simple flowchart programs (SFPs) containing
assignment, conditional, looping, and function-call constructs.

B. Theaxiomatic semantics are defined in terms of SFP constructs.

C. TheFloyd-style the verification strategy is as follows:
1. We assert a logical formula at the beginning of the program that specifies what conditions we

assume to be true before the program begins execution; call this the programpreconditionor
input predicate.

CSC530-S02-L8 Page 3

2. We assert a logical formula at the end of the program that specifies what conditions obtain after
the program has completed execution; this is the logical goal of the program, called the pro-
grampostconditionor output predicate.

3. At the top of each program loop, we assert aninvariant conditionthat specifies the logical
behavior of the loop. (In practice, the derivation of invariant assertions is one of the more non-
trivial aspects of the verification process.)

4. We verify that the input predicate implies the output predicate by applying the SFP proof rules
using a technique calledbackwards substitution.

5. Exampleto follow shortly.

VI. Overview of Hoare-style verification

A. Thebase programming language is in textual form, such as Pascal or C.

B. Theaxiomatic semantics are defined in terms of PL constructs, in an syntax-directed manner.

C. TheHoare-style verification strategy is essentially the same as the Floyd-style.

1. Thereare clerical differences between the Floyd and Hoare styles of verification, given that one
is based on graphical representation and the other on a textual representation.

2. Initially, the graphical representation is easier to follow.

3. In the graphical proof, we visualize the proof goal by annotating an SFP with formulae.

4. In the equivalent textual proof, we define the proof goal as aHoare triple of the form

precond {program} postcond

which means that if the precond is true before the function body is (mathematically) executed,
then the postcond must be true after the execution is complete.

VII. The mechanism for applying proof rules in a Floyd- or Hoare-style proof.

A. The overall verification goal is to prove that the program precondition implies the postcondition
throughthe program.

B. As is normal in mathematical proofs, we may work either direction on such a proof.

1. I.e.,we may work forwards from the condition of the implication (the precondition) towards
the conclusion (the postcondition).

2. Alternative, we may work backwards from the conclusion towards the condition.

C. Empirically, it’s easier in program proofs to work backwards.

1. Accordingly, we will use a technique called backwards substitution.

2. Usingthis technique, we work our way from the postcondition, using the proof rules to "push
formulas through" the program.

3. Sinceeach proof rule defines an implication we can make about a particular program construct,
we can apply these rules to work our way implicationwise through the program.

4. At ev ery point that a "pushed-through" predicate "runs into" a supplied predicate, we have a
verification condition (VC)that must be proved.

5. After all VCs are proved, the program proof is complete, except for a a termination condition
may need to be proved.

D. Proofof termination is a separate, generally inductive proof, that verifies the program terminates

CSC530-S02-L8 Page 4

on all inputs.

1. Without a termination proof, we achievepartial correctness.

2. With a termination proof, we achieve total correctness.

3. We’ll deal only with partial correctness in these notes.

VIII. SFPproof rules
A. Flowcharts are a helpful representation for understanding formal verification.

1. There’s semantically special about the flowchart representation of programs vis a vis the text
representation.

2. They’re in fact isomorphic.
B. We’ll examine proof rules for the following basic constructs:

1. anassignment statement,
2. anif-then-else statement
3. atop-of-loop node that is used in conjunction with an if-then-else to form while loops in a flow

chart.
4. afunction call
5. Aswith our earlier work on operational and axiomatic semantics, these basics pretty well cover

the fundamentals of a PL, from which advanced features can be derived.
C. Therule of assignment

var = expr

P(..., expr, ...)

P(..., var, ...)

1. Thepicture describes the meaning of assignment in terms of variable substitution.
2. Specifically, the precondition forvar = expr is derived from the postcondition by systemat-

ically substituting all occurrences ofvar in the postcondition withexpr in the precondition.
D. Therule of if-then-else

CSC530-S02-L8 Page 5

. . .

P(. . .)

. . .

Q(. . .)

expr

if expr then P(. . .) or
if not expr then Q(. . .)

true false
�

R(. . .)

R(. . .) R(. . .)

E. Therule for loops

expr

true

. . .false
�

. .
 .

. .
 .

programmer-supplied loop condition

F. The rule for function calls:

CSC530-S02-L8 Page 6

var = f(...);

Pre(f) and P(..., Post(f), ...)

P(..., Post(var), ...)

wherePost(var) is the postcondition of function f in whichvar appears, andPost(f) is the postcon-
dition of f with appropriate local variable substitution.

1. Intuitively, what we’re doing is substituting the function precondition for the postcondition.

2. Recallin earlier discussions of formal specification we indicated that there are two methods to
ensure that function preconditions are maintained:
a. Specifyexplicit exceptions that are thrown by a function.
b. Verify that a function will never be called if is precondition is false.

3. We’re now in a position to see how to do the latter of these two methods.

IX. Before we tackle a serious example, let’s see how the preceding verification rules can be used to
prove that 2+2=4 (a clearly stunning result).

A. Here’s the program:

int Duh() {
/*
* Add 2 to 2 and return the result.
*
* precondition: ;
* postcondition: return == 4;
*
*/

int x,y;
x = 2;
y = x + 2;
return y;

}

B. Here’s the SFP:

CSC530-S02-L8 Page 7

x = 2

4 == 2+2

4 == x+2

y = x + 2

4 == y

return = y

Post: return == 4

Pre: true

VC: if true then 4 == 2+2

X. Theexample above concluded with the startling result that a program correctly adds 2+2 to get 4.

A. Let’s try to prove the following implementation:

int ReallyDuh() {
/*
* Add 2 to 3 and return the result.
* precondition: ;
* postcondition: return == 4;
*/

int x,y;
x = 2;
y = x + 3;
return = y;

}

B. Here’s the proof attempt

CSC530-S02-L8 Page 8

x = 2

4 == 2+3

4 == x+3

y = x +3

4 == y

return = y

Post: return == 4

Pre: true

VC: if true then 4 == 2+3

C. Whathappens here is that we are left with the VC

true⊃ 4 == 2 + 3 ==>
true⊃ false

which is false.

D. In general, proofs will go wrong at the VC nearest the statement in which the error occurs.

XI. Thebasic ground rules of implication proofs

A. You may recall from your discrete math class the following truth table for logical implication:

p q p⊃ q

0 0 1
0 1 1
1 0 0
1 1 1

B. That is, the logical implicationp ⊃ q is only false ifp is true andq is false.

C. Now, in a formal program verification, we assume that thep in the implication formula is true,
since it represents the precondition.

D. Hence,the basic way that a VC will fail to be proved is if q in the implementation is false (as was

CSC530-S02-L8 Page 9

the case in the attempt to prove 2 + 3 == 4).

XII. Now let’s try a proof of a simple factorial example

A. Here’s the function definition:

int Factorial(int N) {
/*
* Compute factorial of x, for positive x, using an iterative technique.
*
* Precond: N >= 0
*
* Postcond: return == N!
*
*/

int x,y; /* Temporary computation vars */

x = N;
y = 1;
while (x > 0) {

y = y * x;
x = x - 1;

}
return y;

}

B. Figure1 outlines Floyd-style proof.
C. Figure2 outlines the equivalent Hoare-style proof.

XIII. Logical derivation of inductive assertion ‘‘y * x! = N!’ ’

A. At the top of loops, we ask ourselves what relationship should exist between program variables
throughout the loop.I.e., what relationship should x, y, and N have to one another each time
through at the top of the loop?

B. Looking at it another way, we want to characterize themeaningof the loop in terms of program
variables.

C. Sincethe meaning of whole program is y = N!, the meaning of the loop is something like ‘‘y
approximatesN!’ ’ But how?

D. Puttingthings a bit more precisely,

y R f(x) = N!

for some relation R.And it looks like R is multiplication, i.e.,

y * f (X) = N!

E. Sowhat is f(x)? I.e., how much shy of N! is y at some arbitrary point k through the loop?It looks
like y is growing by a multiplicative factor of x each through, so at point k we have

y = x * (x-1) * (x-2) * ... * (x-k) * (x-k-1) * ... * 1 = N!

F. I.e.,

y * x ! = N!

G. Thiskind of reasoning is typical of that used to derive loop assertions.

CSC530-S02-L8 Page 10

VC1: if N >= 0 then 1 * N! == N! and N >= 0

x > 0

true

false

Loop: y * x! == N! and x >= 0

x = N

1 * x! == N! and x >= 0

y = 1

y * x * (x-1)! == N! and (x-1) >= 0

y = y * x

y * (x-1)! == N! and (x-1) >= 0

x = x - 1

1 * N! == N! and N >= 0

return = y

VC2: if y * x! == N! and x >= 0 then
 if x > 0 then y * x * (x-1)! == N! and (x-1) >= 0

VC3: if y * x! == N! and x >= 0 then
 if x<= 0 then y == N!

Post: return == N!y == N!

Pre: N >= 0

Programmer-Supplied Condition
Verification Condition

Derived Asserition

FONT LEGEND:

Figure 1: Floyd-style factorial proof.

CSC530-S02-L8 Page 11

Step Logic Rule

1 1*x! = N! /\ x ≥ 0 { y = 1 } y*x! = N! /\ x ≥ 0 Assmnt
2 1*N! = N! /\ N ≥ 0 { x = N } 1*x! = N! /\ x ≥ 0 Assmnt
3 1*N! = N! /\ N ≥ 0 { x = N; y = 1} y*x! = N! /\ > ≥ 0 Comp(2,1)
4 N ≥ 0 ⊃ 1*N! = N! /\ N ≥ 0 VC1
5 N ≥ 0 { x = N; y = 1} y*x! = N! /\ x ≥ 0 Conseq(4,3)
6 y*(x-1)! = N! /\ x-1 ≥ 0 { x = x-1 } y*x! = N! /\ x ≥ 0 Assmnt
7 y*x*(x-1)! = N! /\ x-1 ≥ 0 {y = y*x } L 6 Assmnt

8 L7 { y = y*x; x = x-1 } R6 Comp(7,6)

9 R6 /\ x > 0⊃ L7 VC2

10 R6 /\ x > 0 {S8} R6 Conseq(9,8)

11 R6 { w hile (x > 0) { S8 } } R 6 /\ ¬ x > 0 Iter(10)

12 N≥ 0 { S5 ; S11 } R6 /\ ¬ x > 0 Comp(5,11)

13 R6 /\ ¬ x > 0⊃ y = N! VC3

14 N≥ 0 { x = N; y = 1; while x > 0 {
y = y*x; x = x-1; } } y = N! Conseq(12,13)

where L
i
stands for the left part of the ith Hoare triple, R

i
stands for the right part of the ith triple, and S

i
stands for the statment (middle) part of the ith triple.

Figure 2: Hoare-style factorial proof.

H. An alternative to puzzling it out with abstract reasoning is to usesymbolic evaluationas an aid in
deriving loop assertions, which topic will look at shortly.

XIV. Further tips on doing the proofs

A. Generally, the proofs of verification conditions are not that difficult.

B. If the program is correct, then the proofs generally involve simple algebraic formula reduction.

C. A discrete Math book (e.g., from CSC 245) contains rules for logical formula manipulation.

D. In addition, here are some rules for reducing "if-then-else" style formulas:

1. if t then P1 else P2 <=> t⊃ P1 and not t⊃ P2

2. if t then t => true

3. if t then if t then P1 else P2 => if t then P1 else P2

4. if t then t and P => if t then P

5. if t1 then if t2 then P => if t1 and t2 then P

6. t and (if t then P) => P(modus ponens)

7. t and (if t then P1 else P2) => if not t then P2

8. x≥n and x≤n => x==n

9. x>nand x<n => false

XV. A closer look at the factorial verification conditions (VC’s)

A. According to the proof strategy outlined earlier, we are obligated to prove each verification

CSC530-S02-L8 Page 12

condition.

B. For factorial, VC1 is trivial.

C. Proofof factorial VC2:

if (y*x! == N! and x>=0) then if (x>0) then y*x*(x-1)! == N! and (x-1)>=0=>
if (y*x! == N! and x>=0) then if (x>0) y*x! == N! and x>=1=>
if (y*x! == N! and x>=0) then if (x>0) y*x! == N! =>
if (y*x! == N! and x>=0) then y*x! == N! and x>0=>
true

D. Proofof factorial VC3:

if (y*x! == N and x>=0) then if (x<=0) then y==N!=>
if (y*x! == N! and x==0) then y==N!=>
if (y*0! == N!) then y==N! =>
if (y*1 == N!) then y==N! =>
true

XVI. Looking at some possible errors in factorial and how they would manifestin the verification.

A. Supposewe transpose the two loop body statements (‘‘x = x-1’’ and ‘‘y = y*x’ ’), as was the case
in the originalFactorial function presented above?

B. Theultimate result is we’ll get the following erroneous VC3:

y * x! = N! and x≥0 and x>0 ⊃ y * (x-1) * (x-1)! = N! and x-1≥ 0 ==>

y * x! = N! and x>0 ⊃ y * (x-1) * (x-1)! = N! (oops)

C. Supposewe have ‘‘x ≥ 0’’ i n the test (instead of x strictly greater 0); we’ll get the following:

y * x ! = N! and x≥0 and ¬(x≥0) ⊃ y = N! ==>

y * x! = N! and x≥0 and x<0 ⊃ y = N!

XVII. Automatic inductive assertion generation via symbolic evaluation

A. A mechanical technique for generating loop assertions is to apply the idea of symbolic evaluation,
which means to evaluating a program with symbolic rather than actual data values.

B. For example, starting with the output predicate symbolically evaluating the factorial loop looks
like this:

CSC530-S02-L8 Page 13

y = N!
↓

y = N!
↓

y * x = N!
↓

y * (x-1) = N!
↓

y * x * (x-1) = N!
↓

y * (x-1) * (x-1-1) = N!
↓

y * x * (x-1) * (x-2) = N!
↓
.
.
.
↓

y * x * (x-1) * ... * (x-N) = N!

C. By inspecting the result of this symbolic evaluation, we notice that the general relationship that
remains true during loop execution is y * x! = N!.

D. It’s also interesting to look at the erroneous case where the loop statements have been transposed:

y = N!
↓

y * x = N!
↓

y * (x-1) = N!
↓

y * x * (x-1) = N!
↓

y * (x-1) * (x-2) = N!
↓
.
.
.
↓

y * (x-1) * (x-2) * ... * (x-N) = N!

E. In the erroneous case, the symbolic evaluation will lead us to derive the wrong loop assertion.

F. This will ultimately cause the verification to fail (if we don’t notice that the assertion is clearly
wrong before we attempt the verification).

XVIII. Exampleverification that functionFactorial is never called with a false precond.

A. Considerthe SFP in Figure 3 that calls fact in a verifiably correct way.

B. Table 1 shows the details of the proof, top-down.

CSC530-S02-L8 Page 14

y = fact(x)

P2

y = x

P3

x>=0
true false

�

P1

P1 P1

P5

Pre

P4

x = readint()

Post

return = y

VC

Figure 3: Factorial call proof outline.

CSC530-S02-L8 Page 15

Label Predicate Proof Step

VC: true => forall (x: integer) Rule of verification
if (x>=0) then x!==x! else x==x condition generation

=>
true Induction on x

Pre: true Given

5: forall (x: integer) Rule of readint
if (x>=0) then x!==x! else x==x

P4: if (x>=0) then Rule of if-then-else
if (x>=0) then x!==x! else x!==x P2

else
if (x>=0) then y==x! else x==x P3

=>
if (x>=0) then x!==x! else x==x Simplification

P3: if (x>=0) then y==x! else x==x Rule of assignment

P2: if (x>=0) then x!==x! else x!==x Rule of function call

P1: if (x>=0) then y==x! else y==x Rule of assignment

Post: if (x>=0) then return==x! else return==x Given

Table 1: Proof that Factorial call does not violate precondition.

XIX. Verification and programming style

A. In order to make a program verifiable using the simple rules we’ve discussed thus far, certain
stylistic rules must be obeyed.

B. Hereis a summary of rules we’ve assumed thus far

1. Functionscannot have side effects.

2. Input parameters cannot be modified in the body of a function.(This is why we added the
input N to the implementation of theFactorial function earlier.)

3. A restricted set of control flow constructs must be used, i.e., only those constructs for which
proof rules exist.

XX. Somecritical questions about formal program verification.

A. Question:Can it scale up?
Answer: Yes, with appropriate tools.

B. Question:Why hasn’t it caught on (yet)?
Answer: For a variety of reasons, not the least of which arecultural (cf. the Perlis paper).

C. Question:Will it ever catch on?
Yes, when
1. software engineers receive adequate training in formal methods, and
2. software users and customers get sufficiently sick of crappy products, and
3. productionquality tools become available, such as the following:

a. formalspecification languages

CSC530-S02-L8 Page 16

b. automatic assertion generators
c. automatictheorem provers

D. Suchtools have been developed and studied widely in the research community and at a handful of
commercial locations.

