CSC530-S02-L.8 &e 1

CSC 530 Lecture Notes Week 8

Wrap Up of Denotational Semantics
I ntroduction to Axiomatic Semantics

I. Readingspapers 23-33 (marere abstracts only).

Il. Tennent Wrap Up

A. You may vant to check out remaining sections enment chapter 13 (sections 13.4 - 13.8}, b
we’ll not be ceering them in detail.Here are some highlights:

1. 13.4o0n continuations describes a mathematically sound, though strained formalism for han-
dling gotos.
a. Thesemantics of gotos is sarffrom what mathematical semantics can handle neatly that
the going gets pretty sloggy here.
b. Gotos really are aimherently operational concept that must be shoe-horned to fit the non-
operational (denotational) formalism.

2. Sectiond 3.5 and 13.6 discuss some additional details of semantics for a real language, such as
Pascal
a. 13.5covers simple it necessary semantic constraints such as identifier usage and scoping.
b. 13.6 formally defines the data structure domainsastcBl

3. Sectionl3.7 is a nice summary

4. Section13.8.1 preides a nice spie into our ceerage of \erification semantics; more on this
shortly

5. Sectiond.3.8.2 and 13.8.3 discuss practical applications of denotational semantics.

B. So,in conclusion, is all the formalismasth it?

1. Oncea working group shares a common understanding of the concise notation, things that are
bulky to express in other @ys come outery nice

2. E.g.,.expressing dierence between static and dynamic binding is notationalltjproblem
13.9).

3. Boththe Tennent and Knuth style semanticsypde excellentcompiler specs.
a. Theproblems you are arking on in Assignment 3 are precisely the kind of problems that

must be soled when writing a real compiler or interpreter

b. Formal semantics in some form are an indispensable tool for the serious compiler writer

Ill. Relationof axiomatic semantics to attute and denotational semantics
A. Knuth/Tennent semantics describe the meaning of a programming language in terms that amount
to a language translator specification.

1. Onemight consider this thénternal semantics of the language in the sense denotational
semantics neeal the internal wrkings of the language at thevék of what goes on inside a
translator

2. Knuthsemantics do the same thing.

B. Verification-oriented semantics, as represented by tlyelfHoare style, describe the meaning of a

programming language in terms that amount to a set of rules suitableimgpassertions about
particular programs.

CSC530-S02-L.8 &ye 2

1. Onemight consider this thexernal semantics of the language in the sense that the semantic
rules reveal nothing (or not much) about translatevel meaning.

2. Ratherthe \erification-oriented semantics specify a logical system which can be usedéo pro
assertions about program beioa, as goposed to a set of functions that can be useditd a
translator to perform program befnar.

C. Thefundamental relationship between axiomatic and denotational is that the soundness of former
is proved by appeal to the latter
That is, for a axiomatic semantics to be sound, we musefnat the axiomatic proof system
makes sense vis a vis the language it is to be used with.

1. Thisrequires some form of internal (in the sensevapdefinition of the language.
2. Sectionl3.8.1 in Bnnent discusses this relationship further

IV. The two basic components of an axiomatic semantics.
A. A set ofproof rules that describe the logical behar of each construct in a particular program-
ming language.
1. E.g.,the rule for an assignment statement describebtiieal effect of assigning aalue to a
variable.

2. Theseproof rules constitute the axiomatic semantics of the programming language.

3. Thesesemantics are comparable to a attigbor denotation semantic definitionytthere the
orientation is program pwing rather than program translation aeeution.

B. In conjunction with the proof rules, we must define aarall verification stategy that describes
how a program proof is constructed using the proof rules applied to a particular program.

1. E.g.,for a particular assignment statement in a particular program etiification stratgy
defines har to goply the rule for assignment to dedi the meaning of the assignment state-
ment.

2. Theverification stratgy is comparable to thevaluation stratgy defined for an attrilte or
denotational semantic definition.

3. Thekey difference with axiomatic semanticersus the other twforms is is that applying the
verification rules inolves manipulation of boolean predicates rather than manipulation of data-
valued \ariables.

a. Ewaluating an attribted parse tree or denotationally-defined function produces a data store,
the contents of which represent the meaning of a program.

b. In contrast, galuating (i.e., ‘erifying) an axiomatized program produces a set of boolean
expressions -- callederification conditionsproof of which constitutes the meaning of the
program.

V. Overview of Floyd-style \erification

A. The base programming language will be that of simplevdlzart programs (SFPs) containing
assignment, conditional, looping, and function-call constructs.

B. Theaxiomatic semantics are defined in terms of SFP constructs.

C. TheFloyd-style the werification stratgy is as follevs:
1. We assert a logical formula at the digning of the program that specifies what conditions we
assume to be true before the programire execution; call this the programreconditionor
input predicate

CSC530-S02-L.8 &ye 3

2. We assert a logical formula at the end of the program that specifies what conditions obtain after
the program has completegeeution; this is the logical goal of the program, called the pro-
grampostconditioror output pedicate

3. At the top of each program loop, we assertraariant conditionthat specifies the logical
behaior of the loop. (In practice, the derétion of invariant assertions is one of the more non-
trivial aspects of theerification process.)

4. We werify that the input predicate implies the output predicate by applying the SFP proof rules
using a technique calldzhdkwards substitution
5. Exampleo follow shortly.

VI. Overview of Hoare-style erification
A. Thebase programming language is irttel form, such asd3cal or C.
B. Theaxiomatic semantics are defined in terms of PL constructs, in an syntax-directed manner

C. TheHoare-style werification stratgy is essentially the same as theyElstyle.

1. Thereare clerical difierences between the tband Hoare styles okvification, gven that one
is based on graphical representation and the other atualteepresentation.

2. Initially, the graphical representation is easier to fallo

Inthe graphical proof, we visualize the proof goal by annotating an SFP with formulae.

4. Inthe equwalent textual proof, we define the proof goal asl@are triple of the form
precond {program} postcond

which means that if the precond is true before the function body is (mathematicediyded,
then the postcond must be true after tkeegtion is complete.

w

VII. The mechanism for applying proof rules in a ¥de or Hoare-style proof.

A. The overall verification goal is to pnge that the program precondition implies the postcondition
throughthe program.
B. Asis normal in mathematical proofs, we magriweither direction on such a proof.

1. l.e.,we may vork forwards from the condition of the implication (the preconditiomjatds
the conclusion (the postcondition).

2. Alternatve, we may work backwards from the conclusionwards the condition.

C. Empirically it's easier in program proofs toask backvards.
1. Accordingly we will use a technique called bacvwds substitution.

2. Usingthis technique, we @ark our way from the postcondition, using the proof rules to "push
formulas through" the program.

3. Sinceeach proof rule defines an implication we can endilout a particular program construct,
we can apply these rules t@rk our way implicationwise through the program.

4. At evey point that a "pushed-through” predicate "runs into" a supplied predicate,veeaha
verification condition (VC)hat must be preed.

5. Afterall VCs are proed, the program proof is completescept for a a termination condition
may need to be pved.

D. Proofof termination is a separate, generally induefiroof, that erifies the program terminates

CSC530-S02-L.8 &e 4

on all inputs.

1.
2.
3.

Without a termination proof, we ackiepartial correctness
With a termination proof, we achietotal correctness
We'll deal only with partial correctness in these notes.

VIIl. SFP proof rules
A. Flowcharts are a helpful representation for understanding forenidication.

1.

2.

Theres mantically special about the ilohart representation of programs vis a vis tix¢ te
representation.
The/'re in fact isomorphic.

B. We'll examine proof rules for the follding basic constructs:

1.
2.
3.

4,
5. Aswith our earlier vork on operational and axiomatic semantics, these basics pretty well co

anassignment statement,

anif-then-else statement

atop-of-loop node that is used in conjunction with an if-then-else to form while loops in a flo
chart.

afunction call

the fundamentals of a PL, from which adeed features can be ded.

C. Therule of assignment

1.
2.

11 P(..., expr, ...)

var = expr

11 P(..., var, ..))

Thepicture describes the meaning of assignment in termariafble substitution.
Specificallythe precondition fovar = expr is derived from the postcondition by systemat-
ically substituting all occurrences wér in the postcondition witexpr in the precondition.

D. Therule of if-then-else

CSC530-S02-L.8 &e 5

—2 ifexprthenP(...) or
if not expr then Q(. . .)

true

E. Therule for loops

|

~ Z——— programmer-supplied loop condition
false ..
true

F. The rule for function calls:

CSC530-S02-L.8 &e 6

ll Pre(f) and P(..., Post(f), ...)

var = f(...);

ll P(..., Post(var), ...)

wherePost(var)is the postcondition of function f in whiakar appears, anBost(f) is the postcon-
dition of f with appropriate localariable substitution.
1. Intuitively, what wete doing is substituting the function precondition for the postcondition.
2. Recallin earlier discussions of formal specification we indicated that there anmdthods to
ensure that function preconditions are maintained:
a. Specifyexplicit exceptions that are thwn by a function.
b. \erify that a function will neer be clled if is precondition isdlse.

3. We're naw in a position to see he to do the latter of these twmethods.

IX. Before we tackle a seriousxample, lets e hov the preceding erification rules can be used to
prove that 2+2=4 (a clearly stunning result).

A. Heres the program:

int Duh() {
/*
* Add 2 to 2 and return the result.

precondition: ;
postcondition: return == 4,

L I

/

int x,vy;
X = 2;

y = X + 2;
return vy,

B. Heres the SFP:

CSC530-S02-L.8 &e 7

T Z— Pre:true
T Z—— vC:iftrue then 4 == 2+2

T 4=my

Y

return =y

X. Theexample abwe mncluded with the startling result that a program correctly adds 2+2 to get 4.

A. Let’s try to prove the folloving implementation:

int ReallyDuh() {

/*

* Add 2 to 3 and return the result.
* precondition: ;

* postcondition: return == 4;
*/

int x,y;

X = 2;

y =x +3

}
B. Heres the proof attempt

CSC530-S02-L.8 &ye 8

T Z— Pre:true
T Z—— vC:iftrue then 4 == 2+3

T L——— 4==243

Xx=2

T L—— 4==x+3
Y

y=x+3

T 4e-y

\i

return =y

- Z___ . __
Post: return ==

C. Whathappens here is that we are left with the VC

trued4=2+3 =>
true false

which is false.

D. Ingeneral, proofs will go wrong at the VC nearest the statement in which the error occurs.

XlI. Thebasic ground rules of implication proofs

A. You may recall from your discrete math class the falig truth table for logical implication:

B. That is, the logical implicatiop (I g is only false ifpis true andj is false.

C. Now, in a formal program erification, we assume that tipein the implication formula is true,
since it represents the precondition.

D. Hencethe basic wy that a VC will &il to be preed is if gin the implementation isafse (as w&s

CSC530-S02-L.8 &e 9

the case in the attempt to peo2 + 3 = 4).

XIl. Now let's try a proof of a simpleaictorial kample

A.

B.
C.

Heres the function definition:

int Factorial (int N) {
/*

*

Conpute factorial of x, for positive x, using an iterative technique.

*
* Precond: N >= 0
*
* Postcond: return == N
*
*/
int x,y; [* Tenporary conputation vars */
X = N
y = 1;
while (x > 0) {
y =y *x
X =X - 1;
}
return vy;
}

Figurel outlines Flgd-style proof.
Figure2 outlines the eqwialent Hoare-style proof.

XIll. Logical derivation of inductive assertion'y * x! = N!"”’

A.

G

At the top of loops, we ask ourses/what relationship shoul&ist between programaviables
throughout the loop.l.e., what relationship should x, gnd N hae o one another each time
through at the top of the loop?

Looking at it another \ay, we want to characterize thmeaningof the loop in terms of program
variables.

Sincethe meaning of whole program is y = N!, the meaning of the loop is somethingylik
approximatedN!"” But how?

Puttingthings a bit more precisely
y R f(x) = N!
for some relation RANd it looks like R is multiplication, i.e.,
y *f(X) =NI!
Sowhat is f(x)? l.e., hav much sly of N! is y & some arbitrary point k through the loopflooks

like y is growing by a multiplicatie factor of x each through, so at point k weéda
y=x*(x-1)* (x-2) * ... * (x-k) * (x-k-1) *...*1 = N!

l.e.,
y*x!=N!

Thiskind of reasoning is typical of that used to deribop assertions.

CSC530-S02-L.8 &ye 10

- Z—Pre N>=0

T Z—— VCLifN>=0then1* N!==N!l'and N>=0
T Z——— 1*NI==NlandN>=0

T Z——— 1*xi==Nlandx>=0

Loop: y*x!'==Nlandx>=0

T Z—— vC2ify* x! ==N! and x >= 0 then
if x>0theny* x* (x-1)! == N! and (x-1) >=0

T Z—— vC3ify* x! ==N! and x >= 0 then
if x<=0theny ==N!

//y:N! //Post: return == N!
Y

> — = —
x>0 >l se return =y

true

L y*x*(x-1)! == N!and (x-1) >=0

y=y*x

T Z——— y*(x-1)!==Nland (x-1) >= 0

x=x-1 FONT LEGEND:
e Programmer-Supplied Condition

@ Verification Condition

@ Derived Asserition

Figure 1. Floyd-style fctorial proof.

CSC530-S02-L.8

)
3

Logic

&ye 11

Rule

© 00 NOoO U WNPRE

L el
N WwWDNRO

x! =NI'Ax=20{y=1}y*x! =N\ x=0
PN =NIANZO{x=N}1*x =N!'Ax=0
PN =NIANZO{x=N;y=1}y*x! =NIN>=>0
N=0O1*NI =NI'AN=0
N=0{x=N;y=1}y*x! =NI'Ax=20
V(X-D) =NTAX-120{x =x-1}y*x! =NI'Ax=0
yoxA(x-1)! =NEAX-120{y =y*x } L ¢
L{y =y%Xx=x1}Rg
RAx>00L,
RAX>0{S}R,
R{while (x>0) {§}}RNA=-x>0
Nz0{S.;S }R;AN-x>0
RA-x>00y=N!
N=0{x=N;y=1; whilex>0{

y=y* x=x-1}}y =N!

Assmnt
Assmnt
Comp(2,1)
VC1
Conseq(4,3)
Assmnt
Assmnt

Comp(7,6)
VC2
Conseq(9,8)
Iter(10)
Comp(5,11)
VC3

Conseq(12,13)

where L stands for the left part of the ith Hoare triple,skands for the right part of the ith triple, and S
stands for the statment (middle) part of the ith triple.

Figure 2: Hoare-style dctorial proof.

H. An alternatve © puzzling it out with abstract reasoning is to sgebolic galuationas an aid in
deriving loop assertions, which topic will look at shortly

XIV. Further tips on doing the proofs

oo w>»

© N Ok wDNE

Generally the proofs of erification conditions are not that fiult.

XV. A closer look at theafctorial \erification conditions (V)

If the program is correct, then the proofs generallglite Smple algebraic formula reduction.
A discrete Math book (e.g., from CSC 245) contains rules for logical formula manipulation.

In addition, here are some rules for reducing "if-then-else" style formulas:
if t then P1 else P2 <=1 P1 and not {1 P2

if t then t => true

if t then if t then P1 else P2 => if t then P1 else P2
iftthentand P =>iftthen P

if t1 then if t2 then P => if t1 and t2 then P

tand (if t then P) => Rmodus ponens)

tand (if t then P1 else P2) => if not t then P2
x=n and xsn => x==

x>nand x<n => @lse

A. According to the proof stratgy outlined earlierwe ae obligated to pree each \erification

CSC530-S02-L.8 &ye 12

condition.
B. For factorial, VC1 is twial.

C. Proofof factorial VC2:
if (y*x! == N! and x>=0) then if (x>0) then y*x*(x-1)! == N! and (x-1)>=6>
if (y*x! == N! and x>=0) then if (x>0) y*x! == N! and x>=1=>
if (y*x! == N! and x>=0) then if (x>0) y*x! == N!=>
if (y*x! == N! and x>=0) then y*x! == N! and x>0=>
true
D. Proofof factorial VC3:
if (y*x! == N and x>=0) then if (x<=0) then y==N&>
if (y*x! == N! and x==0) then y==N!=>
if (y*0! == N!) then y==N! =>
if (y*1 == N!) then y==N! =>
true

XVI. Looking at some possible errors iactorial and he they would manifestn the \erification.

A. Supposeave transpose the tMoop body statementsx‘'= x-1" and “y = y*x’"), as was the case
in the originalFact ori al function presented ake?

B. Theultimate result is wdl get the follaving erroneous VC3:
y*x!=N!and 0 and x>0 0 y*(x-1) * (x-1)! =N! and x-1=0 ==>
y*x!=N!and x>0 0O y* (x-1) * (x-1)! = N! (oops)

C. Supposeve hare “x = 0" in the test (instead of x strictly greater 0); ivget the follaving:
y*x!I=N! and x0 and -(x20) O y=N! ==>
y*x!=N! and x>0 and x<0 O y=N!

XVII. Automatic inductive assertion generation via symbolizakiation

A. A mechanical technique for generating loop assertions is to apply the idea of sywdboditian,
which means towaluating a program with symbolic rather than actual dataes.

B. For example, starting with the output predicate symbolicallgiieating the &ctorial loop looks
like this:

CSC530-S02-L.8 &ye 13

y = NI
l
y =NI
l
y *x=N!
l
y *(x-1) = N!
l
y*x*(x-1) =N!
l
y *(x-1) * (x-1-1) = N!
l
y*x*(x-1) * (x-2) = N!
l

l
y*x*(x-1)*..*(x-N) = N!

C. By inspecting the result of this symboligakiation, we notice that the general relationship that
remains true during loopxecution is y * x! = N!.

D. It's dso interesting to look at the erroneous case where the loop statenventsdratransposed:

y = NI
l
y *x=N!
l
y *(x-1) = N!

l
y*x*(x-1) =N!
l
y *(x-1) * (x-2) = N!
l

!
y*(x-1) * (x-2) * ... * (x-N) = N!
E. Inthe erroneous case, the symbolialegation will lead us to deve the wrong loop assertion.

F. This will ultimately cause theerification to &il (if we dont notice that the assertion is clearly
wrong before we attempt thenfication).

XVIII. Example verification that functiorFact or i al is never called with a &lse precond.
A. Considerthe SFP in Figure 3 that callsct in a erifiably correct vay.
B. Table 1 shws the details of the proof, topadn.

CSC530-S02-L.8 &e 14

x = readint()

T L——p4

true false
T L—p2 - L——p3
\ Y
y = fact(x) y =X
—Z__ T L—pm

- <
@ =

T L—rm

return =y

- Z___
l Post

Figure 3: Factorial call proof outline.

CSC530-S02-L.8

Label

Pr edi cat e

&e 15

Proof Step

VC.

Pre:

P4

P3:
P2:
P1:

Post :

true => forall (x: integer)

Rul e of verification

if (x>=0) then x!==x! else x==x condi ti on generation
=>
true I nducti on on X
true G ven
forall (x: integer) Rul e of readint
if (x>=0) then x!==x! else x==x
if (x>=0) then Rul e of if-then-else
if (x>=0) then x!==x! else x!==x P2
el se
if (x>=0) then y==x! else x==x P3
=>
if (x>=0) then x!==x! else x==x Sinplification
if (x>=0) then y==x! else x==x Rul e of assignment
if (x>=0) then x!==x! else x!==x Rul e of function cal
if (x>=0) then y==x! else y==x Rul e of assignment
if (x>=0) then return==x! else return==x G ven

Table 1: Proof that Rctorial call does not violate precondition.

XIX. Verification and programming style

A.

B.

In order to mak a pogram ‘\erifiable using the simple rules we’ dscussed thusaf, certain

stylistic rules must be oled.

Hereis a summary of rules wee assumed thusaf

1. Functiongannot hae sde efects.

2. Inputparameters cannot be maodified in the body of a funct{@his is wty we alded the
input N to the implementation of tlk@ct or i al function earlies

3. Arrestricted set of control flo constructs must be used, i.e., only those constructs for which
proof rules gist.

XX. Somecritical questions about formal programrification.

A. QuestionCan it scale up?

B.

C.

Answer: Yes, with appropriate tools.

QuestionWhy hasnt it caught on (yet)?
Answer: For a \ariety of reasons, not the least of which@skural (cf. the Perlis paper).

QuestionWill it ever catch on?
Yes, when
1. software engineers rea@ alequate training in formal methods, and
2. software users and customers gefisigtly sick of crapp products, and
3. productiorguality tools becomevailable, such as the follang:
a. formalspecification languages

CSC530-S02-L.8 &ye 16

b. automatic assertion generators
C. automaticheorem proers

D. Suchtools hae keen deeloped and studied widely in the research community and at a handful of
commercial locations.

