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Abstract: The aspect of purity versus impurity that

we address involves the absence versus presence of mu-

tation: the use of primitives (RPLfLCA and RPLACD in

Lisp, set-csr ! and set-cclr ! in Scheme) that change

the state of pairs without creating new pairs. It is well

known that cyclic list structures can be created by im-

pure programs, but not by pure ones. In this sense,

impure Lisp is “more powerful” than pure Lisp. If the

inputs and outputs of programs are restricted to be se-

quences of at ornic symbols, however, this difference in

computability disappears. We shall show that if the

temporal sequence of input and output operations must

be maintained (that is, if computations must be “on-

line” ), then a difference in complexity remains: for a

pure program to do what an impure program does in n

steps, O(n log n) steps are sufficient, and in some cases

Q(n log n) steps are necessary.

1. Introduction

The programming language Lisp (see McCarthy

[7] and McCarthy et aL [8]) was inspired by the A-

calculus (see Church [2]), and most of its basic features

are frank imitations of aspects of the A-calculus (with

the most essential differences being in the rules for order

of evaluation). In this way Lisp became the first signifi-

cant programming language to allow the computation of

all partial recursive functions by purely applicative—or

functional—programs, without side-effects.

One feature of Lisp that goes beyond the applica-

tive realm is the inclusion of primitives for what is now
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usually called “mutation”. These primitive have seman-

tics rooted in the von Neumann architecture of the ma-

chines on which Lisp was implemented, rather than in

the A-calculus. The main primitives for mutation in

Lisp are RPLACA and RPLACD, which mutate the compo-

nents of an existing pair (in contrast with CONS, which

creates a new pair). We shall refer to Lisp with or with-

out these mutation primitives as pure or impure Lisp,

respectively. (This usage is fairly common, but it must

be admitted that these terms are often used with ref-

erence to other features of programming languages—

indeed, for any features that happen not to fit conve-

niently within the writer’s conceptual framework.)

Our goal in this paper is to assess the extent to

which mutation primitives add something essential to

the language, and the extent to which they can be

simulated—or eliminated in favor of—the purely ap-

plicative primitives of the language. As is often the

case, the question can be formulated in several ways;

our immediate goal is to describe the formulation we

have in mind, and to explain why we have chosen it in

preference to others.

We begin with a trivial observation. If pairs, once

created, can never be mutated, then their components

can only be references to previously existing objects: all

the arrows in box-and-arrow diagrams point backward

in time, and thus these diagrams are acyclic. It follows

that if we allow the outputs of programs to be the data

structures represented by such diagrams, then RPLACA

and RPLACD do indeed add something essential, for they

make possible the creation of structures whose diagrams

contain cycles. This answer is not completely satisfying,

however, because it assumes we want our programs to

produce a particular representation of the answer, and

it is the representation—rather than the answer—that

is beyond the power of pure Lisp.

When we redirect our attention from representa-

tions of answers to the answers themselves, we are led
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to the observation that, when the inputs and outputs

of programs are words over a finite alphabet (or, alter-

natively, natural numbers) both pure and impure Lisp

compute all and only the partial recursive functions,

and thus are equivalent in power. This answer is also

not completely satisfying: while it describes what com-

putations can be performed, it ignores the issues of the

efficiency of these computations.

When we redirect our attention from computability

theory to complexity theory we obtain a crisp formula-

tion of our problem. Consider computational problems

that have as input a word over a finite alphabet (say a

sequence of Boolean values) and have as output a yes/no

answer (another Boolean value). Can every impure Lisp

program solving such a problem be transformed into a

pure Lisp program with the same input/output behav-

ior, in such a way that number of primitives executed by

the pure program exceeds the number performed by the

impure program by at most a constant factor? Unfortu-

nately, we are unable to answer this question. Only after

putting two additional restrictions on computations will

we be able to delineate precisely the additional compu-

tational power conferred by the impure primitives.

WJe shall say that a computation is symboh’c if its in-

put and output each consist of sequences of atomic sym-

bols. These symbols can be incorporated as the com-

ponents of pairs, and can be distinguished from pairs

by a predicate ATOM, but the only other operation that

can be performed on them is the two-place predicate E(J,

which tests for equality of atomic symbols. The crucial

property of atomic symbols is that there is an unlimited

supply of distinct symbols, so that a single symbol can

carry an unbounded number of bits of information. The

fact that equality is the only predicate defined on sym-

bols makes it very inefficient to convert the information

the y carry into any other form. Nevertheless, atomic

symbols are a very natural part of the Lisp world-view,

and insisting that they be treated as such seems less

artificial that allowing primitives (such as the EXPLODE

and IMPLODE in some dialects of Lisp) that allow them

to be treated as composites.

We shall say that a computation is on-line if its in-

put and output each comprise an unbounded sequence

of symbols and if, for every n, the n-th output is pro-

duced by the computation before the (n + 1)-st input

is received. This notion refers to an unending compu-

tation, and some convention is necessary to reconcile it

with the customary view of Lisp programs as functions

with finitely many arguments and a single value. We

shall regard on-line computations as being performed by

non-terminating programs with no arguments, which re-

ceive their inputs using a primitive READ operation and

produce their outputs using a primitive WRITE opera-

tion. These new primitives have side-effects, of course;

it should be borne in mind that “purit y“ refers to the

absence of RPLACA and RPLACD operations, rather than

to an absence of side-effects. On-line computation is

not part of the classical Lisp world-view, but it is a

natural component of interactive transaction-processing

systems.

With these notions we can now state our main re-

sult .

Theorem 1.1: There is a symbolic on-line computation

that can be performed by an impure Lisp program in

such a way that at most O(n) primitive operations are

needed to produce the first n outputs, but for which ev-

ery pure Lisp program must perform at least Q(n log n)

primitive operations (for some inputs sequences, and for

infinitely many values of n) to produce the first n out-

puts.

(Here !J(f(n)) represents a function of n bounded

below by a positive constant multiple of ~(n).) That

this result is the best possible, to within constant fac-

tors, is shown by our second result.

Theorem 1.2: Every symbolic on-line computation that

can be performed by an impure Lisp program in such

a way that at most T(n) primitive operations are

needed to produce the first n outputs, can be per-

formed by a pure Lisp program that performs at most

O (T(n) log T(n)) primitive operations (for all inputs se-

quences, and for all values of n) to produce the first n

outputs.

To the objection that the efficiency of mutation is

too well known or obvious to warrant proof, we offer

the following argument. It is well known that a last-in-

first-out stack discipline is easily implemented in pure

Lisp, but the obvious implementation of a first-in-first-

out queue relies on mutation to add items at the tail of

the queue. But Fischer, Meyer and Rosenberg [3] have

shown by an ingenious construction that a queue (or

even a dequeue, where items can be added or removed

from either end) can be implemented in pure Lisp with

O(1) primitive Lisp operations being performed for each

queue (or dequeue) operation. In the face of this highly

non-obvious implement ation, it is unconvincing to claim

without proof that there is not an even more ingenious

and non-obvious implementation of a full interpreter for

impure Lisp in pure Lisp, with 0(1) primitive pure Lisp

operations being performed for each primitive impure

Lisp operation. Indeed, after rediscovering a special

case of the Fischer, Meyer and Rosenberg result, Hood

and Melville [5] conclude: “It would be interesting to

exhibit a problem for which the lower bound in Pure
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LISP is worse that some implementation using rplaca

and rplacd.”

2. Discussion

The question we address seems implicit in much

of the Lisp literature, but the first explicit formulation

we have found is due to Ben-Amram and Galil [1], who

mention the cyclic/acyclic distinction, then go on to

ask about the complexity of simulation. The use of

input values to which only certain restricted operations

can be applied is well established in the comparison of

programming languages according to “schematology”,

as introduced by Paterson and Hewitt [9]. The first use

of schematology for a comparison based on complexity

rather than computability is due to Pippenger [10]. The

special case of atomic symbols, in the sense used here,

was considered by Tarjan [13]. The restriction to on-

line computation is well established in the literature of

automata theory; see Hennie [4].

We should say a few words about the models we use

to embody the powers of pure and impure Lisp. These

models will be the pure and impure Lisp machines. Such

a machine will be furnished with a built-in program

which takes the form of a flowchart, with recursion being

implemented by explicit manipulation of a pushdown

stack. Specifically, we consider programs that manipu-

late values (which may be atomic symbols or pairs) in

a fixed number of registers; these registers contain mu-

table values, even in the pure case. The primitive op-

erations are the predicates ATOM and E~ (which appear

in the decision lozenges of flowcharts) and the opera-

tions READ, WRITE, CONS, CAR and CDR (which also take

their arguments from and deliver their values to regis-

ters) and, in the impure case, the mutation operations

RPLACA and RPLACD.

The use of flowchart models allows us to ignore

questions of variable binding and scope, since the prim-

itives of even the pure model allow any of the common

scoping conventions to be simulated efficiently. (We are

assuming here that a particular program, including any

attendant subprograms, involves just a fixed number

of variable names, whose current bindings can be kept

in a fixed number of registers. There is no considera-

tion here of mechanisms such a EVAL that would allow

symbols from the input to be used as variable names

and bound to values. ) Flowchart models also allow us

to ignore questions of control structures: as mentioned

above, recursion can be simulated by manipulation of a

pushdown stack; many other control structures, such as

explicit use of current continuations, could similarly be

simulated.

We have not allowed for constants (such as NIL)

to be incorporated into programs, or for other uses of

QUOTE. Our justification for this is as follows. Any pro-

gram will involve only a fixed number of const ants, and

their only use is to be compared (via EQ) to other atomic

symbols. If k such constants are needed, we may assume

that the input sequence begins by presenting them in

some agreed upon order, and that they are to be echoed

back as the first k outputs. The program should test

that they are in fact pairwise distinct; if so it can then

proceed with the original computation; if not it can sub-

stitute some agreed upon dummy computation (such as

eternally echoing back inputs and outputs).

If we overlook the presence of atomic symbols, the

impure model is very similar to the Storage Modification

Machines introduced by Schonhage [12] (which in turn

have have the model of Kolmogorov and Uspenskii [6]

as a precursor).

3. The Upper Bound

We reformulate Theorem 1.2 in terms of machines

as follows.

Theorem 3.1: Every on-line symbolic impure Lisp ma-

chine M can be simulated by a pure Lisp machine Ml

in such a way that all outputs produced by M within

the first n steps are produced by M’ within the first

O(n log n) steps.

This theorem is established by the construction of

a trite simulation, which will not be given in detail here.

It can be obtained by modification of arguments given

by Ben-Amram and Galil [1], but it is just as easy to

describe the construction from scratch.

The key idea is to represent the state of the store in

the impure machine by a balanced tree. The construc-

tion of new pairs by CONS is accomplished by allocat-

ing new paths in the tree, and the allocator issues new

paths in order of increasing length, so that the tree is

kept balanced. The fetches from store implicit in CAR

and CDR operations, as well as the updates implicit in

RPLACA and RPLACD operations, are performed by fol-

lowing paths in the tree from the root to the nodes

cent aining the relevant information and, in the case of

RPLACA and RPLACD, in rebuilding a modified version of

the path while backtracking to the root. We observe

that the constant implicit in the O-notation is indepen-

dent of the machine M.

The “path copying” technique just described was

applied by Sarnak and Tarj an [11] to the implementa-

tion of “persistent” data structures, in which old ver-

sions of the data structure can always be copied and

updated independently. One of the benefits of a pure
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programming style (in the sense used here) is that all

data structures are automatically persistent.

4. The Lower Bound

In this section we shall concoct a computation that

separates the power of pure and impure Lisp machines.

The proof that producing the first n outputs can be

accomplished with O(n) operations in impure Lisp will

be easy. The proof that pure Lisp requires fl(n log n)

operations, which we shall just sketch here, is the heart

of the result. At a superficial level, this proof is an

information-theoretic counting argument analogous, for

example, to the one used to show that Q(n log n) com-

parisons are needed to sort n items. It is not at all

obvious, however, how such an argument can dist in-

guish between creation and mutation. The key to the

argument is to bring about a situation in which certain

information, which can be measured by a counting ar-

gument, can be retrieved by impure operations at a rate

of Q(log n) bits/operation, but by pure operations only

at a rate of 0(1) bits/operation.

Consider a set of s “records” RI,. ... R,, each of

which comprises an atomic symbol together with two

pointers that are used to link the records into two linear

chains. The first chain, which we call the A-chain, will

link the records in the order

A-l+l-+ . . . _R$—--iNIL.

The second chain, which we call the B-chain, will link

the records in the order

B-R=(l)- . . . ----+R=($)+NIL.

where m is a permutation on {1, . . . . s}.

We shall now describe the computational problem

by describing how an impure Lisp machine solves it.

The problem consists of a prolog comprising S2 steps,

followed by an unbounded sequence of phases, each com-

prising 2s steps.

The prolog takes place as follows. After checking

that it has received two distinct input symbols to use

as Boolean values, the impure machine ill reads a tally

notation for s (as s – 1 trues follows by a false), and

constructs as it does so the s records linked in the A-

chain. (The B-chain links and atomic symbols are left

unspecified.) Then, for each r from 1 to s, M reads

a tally notation for T(T), and fills in as it does so the

B-chain links. (The atomic symbols are still left unspec-

ified.) The prolog finishes by reading enough additional

inputs to bring the number of steps up to S2. (This is

done just to make the number of steps in the prolog

independent of the permutation n.)

The remainder of the computation is divided into

phases of 2s steps each. During the first s steps of each

phase, M reads in s atomic symbols and stores them

in the records in their order according to the A-chain.

During the last s steps of each phase, M writes out

these s atomic symbols from the records in their order

according to the B-chain. We have not specified what

symbols M writes out during the prolog, or during the

first half of each phase; we shall stipulate that it ethos

the last symbol read at each such step. (The output

does not depend on the symbols M reads during the

second half of each phase.) It is clear that M can per-

form this computation using O(1) primitive operations

between each READ and WRITE operation.

We shall restrict our attention at this point to in-

put sequences for which all the atomic symbols read and

written in all of the phases are distinct. This will allow

us to ascribe each symbol produced by a WRITE oper-

ation during a phase to a well defined READ operation

earlier in that phase. We observe that for any value of

s, there are just s! possible permutations T that might

be described during the prolog.

It remains to show that any pure Lisp machine M’

requires at least Q(s logs) primitive operations in each

phase, for most choices of T, say for all but (s – 1)!/2

choices of m. Since M performs just 0(s2) operations

in the prolog, and just O(s) operations in each phase,

we can then obtain Theorem 1.1 by considering the first

s phases, for then M will produce 0(s2) outputs using

0(s2) operations, while M’ will require Q(s2 logs) op-

erations for all but at most S(S – 1) !/2 = s!/2 choices of

T.

Consider an interval [a, b] of steps. Let us say that

a set of input sequences is (a, b)-coherent for the pure

Lisp machine M’ if, from the processing of the a-th in-

put z. to the b-th output yb, all test operations (that is

ATOM and EQ operations) have the same outcome. The

operation of M’, restricted to such an interval of oper-

ations and to a set of coherent inputs, corresponds to

that of a “straight-line program”, in which a fixed se-

quence of the primitive operations CAR, CDR, CONS, READ

and WRITE is performed.

Let us say that an input sequence is (a, b)-psittacine

for M’ if each of the outputs Y., . . . . y~ is equal to one

of the inputs x~, . . . . Zb.

Lemma 4.1:Let C be any (a, b)-coherent set of inputs for

a pure Lisp machine M’, and suppose that the inputs

in C are (a, b)-psittacine for I@. Then there exists a

map h : {a,... ,6} + {a,... ,b} such that, for every
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input sequence xl, xz, . . . in C, iW’ produces the output

Vi = zh(~) for i C {a,... ,b}.

Sketch of Proof.’ For i E {a,.. ., b}, start with the WRITE

operation that produces yi and trace back through the

computation to the READ operation that received cor-

responding input Xj such that yi = Zj. For each in-

put sequence, we have that j is a well defined value in

{a,... , b}, and we must show that j is the same value

h(i) for all input sequences in C.

We trace back in the following way. The WRITE

operation that produces yi takes the output value from

some register. We trace back to the operation that put

this value into the register. If this operation was a READ

operation, we are done. Otherwise, it was a CONS, CAR

or CDR operation. In this case we trace back to the op-

eration that put the relevant argument into a register.

We continue until we reach the appropriate READ opera-

tion. (The process of tracing back must terminate with

a READ operation, since we have disallowed the use of

QUOTE to introduce constants.)

Since M’ is a pure Lisp machine, any pairs involved

in the process above must have been constructed during

the interval [a, b] (we are starting from an output in the

interval [a, b], following pointers that point backward in

time, and ending with an input in the interval [a, b]). It

follows that all the operations involved in the process

take place in the interval [a, b], during which itl’ exe-

cutes a straight-line program. Consequently, the same

input cj is reached from the output y~, for every input

sequence in C, which is what was to be shown. A

It is worth observing that this lemma breaks down

for impure Lisp machines for two reasons: (1) the value

produced by a CAR or CDR operation might trace back to

a RPLACA or RPLACD rather than a CONS, and (2) pointers

do not necessarily point backward in time, so we cannot

conclude that all relevant operations take place in the

interval [a, b].

Now suppose that during some phase, correspond-

ing to an interval [a, b], M’ performs at most t test op-

erations for each of at least (s – 1) !/2 choices of x. The

outcomes of these operations partition a set of (s – 1) !/2

input sequences into at most 2t (a, b)-coherent classes.

During each phase, ~’ writes out only symbols read

in during the same phase, so each of these classes is

(a, b)-psittacine for Ill’. Thus, by Lemma 4.1, the out-

puts produced by M’ are specified by one of at most 2t

maps. But the behavior of the impure Lisp machine M

calls for at least (s — 1) !/2 different maps, since there

are (s — 1) !/2 different permutations T. Thus we have

2f > (s – 1)!/2 or, by taking logarithms, t = L?(s log s).

(Since each of the s phases needs Q(s logs) comparisons

for all but the easy permutations (where “easy” means

that fewer comparisons are needed), and since there are

at most (s — 1) !/2 easy permutations for each phases

and s phases, ther are at most S(S — 1) !/2 permutations

that are easy for some phase. Hence at least half of

the permutations (s!/2) are not easy during any phase.

Hence at least one permutation is not easy during any

phase.)

We can see at this juncture the roles played by

our two special restrictions. The symbolic inputs and

outputs allow each step of a phase to involve !d(logs)

bits of information (since there are s distinct symbols in

each phase), while allowing the impure machine to pro-

cess these bits using 0(1) operations, Thus, the lower

bound would break down if we required the input se-

quence to be over a finite rather than an infinite set of

symbols (and the upper bound would break down if we

charged logarithmically for point er manipulation oper-

ations, reflect ing their implementation using a finite set

of symbols). The on-line assumption allows the basic ar-

guments to be repeated ins disjoint phases; without this

assumption a pure machine could read the inputs for s

phases before writing all the outputs for these phases,

all using 0(s2) operations.

5. Conclusion

We have shown that mutation can reduce the com-

plexity of computations, at least when the computations

are required to be performed on-line and when their in-

puts and outputs may be sequences of atomic values

(rather than sequences of symbols drawn from a finite

alphabet). We have further shown that this reduction

is sometimes by as much as a logarithmic factor, but

can never exceed a logarithmic factor.

Naturally it would be of interest to lift either or

both of the special assumptions we have made. We

would conjecture that a reduction in complexity can

occur even for off-line computations and even for com-

putations in which the inputs and outputs are words

over a finite alphabet. Such a result, however, seems

far beyond the reach of currently available methods in

computational complexity theory.
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