CSC530-S02-Lisp Primer Pae 1

A Lisp Primer for C and JavaProgrammers

1. Owerview

To the C3 programmerLisp appearslifferent While there are manimportant diferences between CJ and Lisp,
there are also some fundamental similariti€his primer presents the major features of Lisp, withngples that
will help the CJ programmer sort out what is reallywrabout Lisp and what is similar to or the same as Tie
primer is a brief, bt reasonably complete Lisp introductiolt.covers all of Lisps hasic functions, and presents a
number of @amples on important Lisp programming idiométhe reader is planning to do major programming in
Lisp, a complete Lisp reference manual is in arder

Compared to CJ, the major féifences in Lisp are the follang:
 The syntax
* The interpretie ewironment
« The lack of &plicit type declarations
« The functional, list-oriented style of programming.

The syntax is a profoundiynimportant diference between Lisp and CHowever, snce the syntax is the first fea-
ture a programmer sees, Lispunusual" structure often leads CJ programmers\e hainitially negaive reaction.
To avoid a prematurely rggtive impression, CJ programmers must be patient with &igpitactic diferences.

Lisp’s interpretve environment is also diérent than most CJ programnsede likely to be &miliar with. In con-
trast to Lisps g/ntax, its interpretie environment is typically recged very well. This ewvironment allevs programs
to be eecuted and testecewy easily

Lisp is aweakly-typedanguage. Lisgunctions and ariables do hze types, havever their types are notxglicitly

declared’ Rather the type of an object is determined dynamigatlya pogram runs.This means, forample, that

the same ariable can hold an irger \alue at one point duringxecution, and a list alue at some other point.
While it is possiblefor variables to change types radically in a Lisp program, it is not typ@aherally variables in

Lisp are used in much the samayas thg are in CJ. Viz., a particular ariable is used to hold a particular type of
data throughout thexecution of a programThe diference in Lisp is that the programmer is not required to declare
the type of usagexplicitly.

The most significant dérence between CJ and Lisp is the last of the four items liste@ abthe functional, list-
oriented style of Lisp.Recursve functions and lists are the "bread andtdr" of Lisp programming, in much the
same vay that forloops and arrays are the "bread anttdy” of CJ. Also, Lisp programs are typically written as
collections of may small functions. CJ programmers who use a programming style based onydngittions will
find that this style is generally unsuited to Lisp.

The C/C++ programmer will notice the conspicuous absenpeiofersin Lisp. In this area, the dérence between
Lisp and C/C++ is similar to the t#frence between Ja and C/C++. Namely pointers in Lisp and da ae "belav

the surce". Lisps list data structure ales the programmer to define all of the structures that camilienith
pointers. Br the C/C++ programmeit will take a while to adjust from the pointer mindset to the Lisp list mindset.
It will probably tale a ittle less adjustment for thexdaprogrammersince the bela-the-surfice treatment of refer
ences in Ja is doser to the Lisp @y of thinking than thexplicit-pointer style of C/C++.

! The abbreiation "CJ" refers collectely to the Bmily of programming languages consisting of C, C++, amel Jeor the most
part, these languages can be treated as a single class in comparison WHesp.appropriate, distinctions are made between
plain C, C++, or Ja by referring to the languages indiually instead of collectely as "CJ".

2 Ccommon Lisp does ka mnstructs for griable declaration,ut we can safely ignore these forms here.

CSC530-S02-Lisp Primer Page 2

Having considered the major tifences in between CJ and Lisp, we should also point out some major similarities.
These include:

* Overall program structure and scoping rules.

* Function irvocation and conditional control constructs.

» An underlying similarity between Lisp lists and €8uilt-in data structures.

2. AnIntr oductory Session with Lisp

This section of the primer presents an introductory scenario of Lisp ushgepoint of the introduction is to pro-
vide the basic idea of oto use the Lisp interpreté environment. Additionakcenario-style xamples will be pre-
sented throughout the priméo illustrate both the language and itvieonment.

All primer examples are based on GNU Common Lisp (GCL), which is the current diigtnitof the Austin dialect
of Kyoto Common Lisp (AKCL).The GCL \ersion is 2.4.0, compiled for UNIXThree fonts are used in the sce-
narios, as well in thexamples in the remainder of the primer:

Font Usage

Bol d Information produced by GCL, such as prompting characters and the resuksudfom.
Pl ai n | Information typed in by the usesuch as commands to beeeuted.

Italic Explanatory scenario remarks.

Here nav is the introductory scenario.

% gcl Run gcl fom the UNIX ppmpt

CGCL (G\U Comon Lisp) Version(2.4.0) Thu Mar 28 16:04: 54 PST 2002
Li censed under GNU Li brary General Public License
Cont ai ns Enhancenents by W Schelter

>(+ 2 2) GCL identifies itselfa prints a caet '>" as the pompt dar-
acter After the fist pompt, the user types in a simphpees-
sion to be ealuated. Theexpression is(+ 2 2) which is
Lisp syntax for "2+2"

4 GCLs response to("+ 2 2)"is to perform the addition and
print the lesult. Thiss what Lisp always does at its top
prompt. l.e, it reads what the user types inyatates it,
prints the esult, and then prints another gmpt. Thisis
called the "ead-&al-print" loop.

>(defun TwoPlusTwo () (+ 2 2)) Here the user types in a very simple function definitidine
details of function declation will appear laterbut it should
be clear what is being definetNamely the user is defining a
function with no paametes that computes 2+2.

TWOPLUSTWO GCLs response to a function definition is to print the name of
the function that was just defined.

CSC530-S02-Lisp Primer

>(TwoPl usTwo)

Page 3

This is a call to the function that was just definédsp func-
tion calls have the gneal form (f uncti on-nane arg,

arg,) .

GCLs response to the function call is to print the value com-
puted by the function.

>(defun TwoPl usXPlusY (x y) (+ 2 x vy))

TWOPLUSXPLUSY

> (TwoPl usXPl usY 10 20)

32

>(load "avg.|")

Loadi ng avg. |
Fi ni shed | oadi ng avg. |

T

>(avg ' (1 2 3 4 5))

>(avg '(a b c))

Here the user defines another function, this time with two
parametes ramed x and.yThe function computes the sum of
2+X+Yy.

Again, GCls response to the function definition is to print its
name

This is a call to the function just defined.

Again, GClLs response to the function call is to print i&turn
value

Here the user decides to load a ¢gr lisp program. Assume
that the UNIX fileavg. | contains a lisp psgram to compute
the aveage d a list of numbes.

Lisp’s response to loading a file consists ofethtines, whia

inform the user when the loading starts and whexfitished.
The last esponse lineconsisting of the singld@ is the final
value ofl oad. Even if a function does not need &turn a
valug it must do so in Lisp.Further, the top-leel read-aval-

print loop will always print the value of a functiofgince the
load function does not carabout its eturn value but needs
one anywayit chooses the valu&, which sands for true in
Lisp.

The user calls the just-loaded function with a list of five num-
bers.

GCL responds with the value computed by dlg function.

The user attempts to call the amge finction with non-
numeric aguments.

CSC530-S02-Lisp Primer

Error: Cis not of type NUVMBER

Broken at +. Type :H for Help.

>>:

>(hel p)

Page 4

GCL responds to the esr by printing an apppriate messge
and entering the intecctive debigger, signaled by the double
caret pompt. Theuser esponds immediately with theg
delugger command, whie quits the debgger, returning to the
top-level.

The user calls theamerl help function.

Wl cone to Kyoto Common Lisp (KCL for short).

Here are the few functions you should learn first.

>(bye)

GCL responds to théhel p) function by typing somesgeal
help information, not all of whitis shown hee. Further help
is provided if the user follows tbugh the help instructions.
Basically smple help descriptions aravailable for all GCL
functions and enronment variables.

The functionbye exts the GCL ewironment, bak to the
UNIX shell.

This concludes the initial scenariddditional scenario-stylexamples will be used throughout the prim&able 1
summarizes the significant points of this initial scenario, in partidudar to enter and lege the ewironment, and
how to return to the top-kel when an error occurd-or details on the use of the Lisp dejger and other adanced

Command

Meaning

% gcl
>any | egal Lisp expression

>any erroneous Lisp expression
>>.q

>(l oad "unix-file")

>(hel p synbol)

>(bye)

Run gcl from the UNIX shell to enter the Lispv@onment.

Typing a lgd Lisp expression at the topyel of Lisp results
in the ealuation of the gpression and the printing of italue.

Typing an erroneous Lispxpression at the topatel of Lisp
results in entry to the Lisp degger

The command q exts the dehgger returning to the top-iel
of Lisp.

Thel oad function loads a Lisp file andr@uates its contents,
as if they had been typed directly at the topde

The hel p function pravides information about uilt-in lisp
symbas, which include functions andwronment \ariables.

Thebye function &its gcl, back to the UNIX shell.

Table 1: Summary of Important Lisp Eironment Commands.

CSC530-S02-Lisp Primer Page 5

ervironment commands, the reader should consult a manual.

3. Lexicaland Syntactic Structure

Lisp has a egry simple lgical and syntactic structureéBasically there are tw demental forms in lisp -- the atom
and the list. An atom is one of the folleing:

« an identifier comprised of one or more printable characters
* an integer or real number

* a double-quoted string

« the constants t and nil

For example, the follaving are Igd Lisp atoms:

10

2.5

abc

hi -there

"hi there"

t

nil
Notice the dash used ini -t her e. In Lisp, identifiers may contain mostyaprintable characterThis is possible
because of the ddrent form of g&pression syntax used in Lisp, as will be described shofthe constants and
ni | represent the boolearalues true andafse, respectely. ni | also represents the empty list, in addition to
boolean &lse. Thisoverloading ofni | is similar to the werloading of0 in C, whereO represents both boolean
false and the null pointer

A Lisp list is comprised of zero or more elements, enclosed in matching parentheses, where an element is an atom or
(recursvely) a list. For example, the follaing are Igd lists:
()
(a b c)
(10 20 30 40)
(a (b 10) (c (20 30)) "x")
(+ 2 2
Note that list elements need not be the same typat is, a list is deteogeneouscollection of elementsNote also
the last of thexamples. ltis a three-element list that is also aeautable &pression. Theommonality of gpres-
sions and data in Lisp is a notathy feature that we will>amine further in upcomingcamples.

3.1. Expression and Function Call Syntax

Lisp uses a uniform prefix notation for allpgessions and function call$n CJ, and most other programming lan-
guages, bilt-in expressions use infix notatio.he purely prefix notation of Lisp may seemksvard at first to CJ
programmers. Thillowing examples comparexpressions in Lisp and CJ:

Lisp CJ Remarks
(+ab) a+b Call the huilt-in addition function with operands a and b
(f10 20) (10, 20) Call the function named f, withguments 10 and 20.

((+ab)(-cd))| (a+b)<(c-d)| Evaluate (a+b)<(c-d).
The following is the general format of a Lisp function call, including expression that uses aili-in operator:
(function-name &, ... amg,)

A function call is ealuated as follass:
1. Thefunction-namds checled to see that it is bound to a functiadue. Suchbinding is accomplished by

CSC530-S02-Lisp Primer Page 6

def un. If the name is so bound, its functicalwe is retriged.
2. Eachof thearg, is evaluated.

3. After agument galuation, the @alue of eacharg, is bound to the corresponding formal function parameter

This binding is accomplished usingall-by-valueparameter discipling.

4. Finally, after parameter binding is complete, the body of the functionalsi@ed, and the resultingalue is
that of the last (only)»@ression within the function body

This method of functionwaluation is quite similar to CJ, including thact that call-by-alue is the only standard
binding discipliné.
3.2. TheQuote Function

There is a potential problem with Lispitra-simple syntax.Viz., there is no syntactic fiéfence between a list as a
data object and a list as a function c&llonsider the follawing example

>(defun f (x) ...) Define a function f
F
> (defun g (x) ...) Define a function g
G

Given these definitions, what does the fellag Lisp form represent?
(f (g 10))

Is it
(a) A call to function f, with the tarelement list gjument (g 10)?
(b) A call to function f, with an grument that is the result of a call to function g withuanent 10?

The answer is (b)That is, the defult meaning for a plain list form in Lisp is a function cdlb dbtain the alternate
meaning (a) aba, we must use the Lisguotefunction (usually abbréated as a single quote character) to indicate
that we vant to treat a list as a literal datuiire., the follaving form produces meaning (a) aeo

(f " (g 10))
which is equialent to the spelled-out form
(f (quote (g 10)))

Thequot e function is som&hat more general than presentedv&bdlhat is,quot e is used for more than distin-
guishing a list data object from a function cafipecifically quot e is the general means to peat evaluation in
Lisp. Thereare three consas in which Lisp performswaluation:

1. Thetop-level read-@a-print loop performs eduation.

2. Whena function is called, each of itsgarments is euated.

3. Anexplicit call to theeval function performsealuation (see Section 9.1).
Upcoming eamples will further clarify the use of tlggiot e function.

3.3. Nonmi n Function Necessary

In CJ, a distinguished function namedi n must be supplied as the topkof program eecution. InLisp, no
mai n function is necessaryRather the programmer simplgef un’s and/orl oads a mary functions as desired at

% Section 11.6 describeswaall-by-reference parameter passing can be wethiir lists, using destrust list operations.

4In C++, as opposed to plain C andalahere is call-by-referenceubit’s generally seen as an application of the C++ reference
mechanism as opposed to being a specific paraipassing discipline.

CSC530-S02-Lisp Primer Page 7

the top-leel of the Lisp interpreterTo gart a Lisp program, grdefined function can be called.

In terms of @erall program structure, Lisp is similar to plain C in that a program is defined as a collectiovetop-le
function declarationsLisp is diferent from C++ and Ja in that there are no class definitions; all functions are
declared as top-lel entities.

4. Arithmetic, Logical, and Conditional Expressions

Lisp has the typical set of arithmetic and logical functions found in most programming langihgeflloning
table summarize them:

Function Meaning

(+ numbes) | Return the sum of zero or more numbers. If uArents are gen, return 0.
(1+ numbej | Returnnumber+ 1.

(- numbes) Return the dierence of one or more numbers, obtained by subtracting the second and
subsequent gument(s) from the first gument. Ifone agument is gien, the agument
is subtracted from O (i.e, the numeriga#n of the agument is returned).

(1- numbej | Returnnumber- 1.
(* numbes) | Return the product of zero or more numbers. If uiREENts are gen, return 1.

(/ numbes) Return the quotient of one or more numbers, obtainedvigintj the second and subse-
guent agument(s) into the first gument. Ifone agument is gien, the agument is di-
vided into 1 (i.e, the reciprocal of thegament is returned).

There are a host of other arithmetic, logical, and string-oriented functions in CommonClogpult a Common
Lisp manual for details.
4.1. Type Predicates

While there are no type declarations in Lisp, Lisues do hee types, and it is often necessary to determine the
type of aalue. Theollowing table summarizes the important Lisp type predicates.

Function Meaning

(atomexpr) Returnt if expris an atomni | otherwise.(at om ni |) returnst .
(listp expr) Returnt if expris a list,ni | otherwise.(listp nil) returnst.
(null expr) Returnt if exprisni |, ni | otherwise.

(numberpexpr) Returnt if expr is a numbemi | otherwise.
(stringpexpr) Returnt if expris a stringni | otherwise.

(functionpexpr) | Returnt if expr is a function (defined with defurmj | otherwise.

There are other type predicates in Common LiSpnsult a manual for details.

4.2. Thecond Conditional Control Construct

Lisp has a fleible conditional &pression calledond. It has features of both if-then-else and the switch statement
in CJ. The general form afond is the follaving:

(cond ((test-e&xpr,) expr, ... &pr.)

((test-expr) expr, ... &pr,)
The evaluation of cond proceeds as folle:

CSC530-S02-Lisp Primer Page 8

Ewaluate eaclest-eprin turn.
Whenthe first non-nitest-expr is found, the corresponding@ession sequence igauated.

A

Thevalue ofcond is the \alue of the laséxpr, evduated.

4. If none of theest-eprs is non-nil, then the &lue of the entireond is nil.
Upcoming &les illustrate practical usagesaofind.
4.3. Equality Functions

Lisp has a dferent type of equality for each type of atomic data, ardforms of equality for lists.The following
table summarizes them

Function Meaning

= numeric equality

string= stringequality
equal generaxpression equality (deep equality)
eq same-objeaquality (shallav equality)

The diference betweeaq andequal is a subtle bt important oneViz., two lists areeq if they are bound to the
same object, whereas thare equal if they havethe same structureThis concept will be reconsidered after we
have s2en more about lists and the concept of binding.

5. Function Definitions

The introductory scenario illustrateddwimple function declarationsThe general format of function declaration in
Lisp is:
(defunfunction-naméformal-pammetes) expr, ... expr,)

As an initial @ample, here is a side-by-side comparison of a simple function declaration in Lisp and CJ:

Lisp: CJ:

(defun f (x vy) int f(int x,y) {
(plus x vy) return x +vy

) }

As has been noted, there are mplieit type declarations in LispHence, where CJ declares the return type of the
function and the types of the formal parameters, Lisp doesEatiently the parameters must be numeric (or a
least addable), since the body of the function adds them togétberve, the Lisp translator does not enforce/an
static type requirements on the formal parametars; addition errors will be caught at runtime.

Notice the lack of a return statement in the Lisp function definifidris oves to Lisp being amxeression language
-- i.e., every construct returns aalue. Inthe case of a function definition, thalwe that the function returns is what-
evea value its &pression body computesNo explicit "r et ur n" is necessary This typically tales some getting
used to for CJ programmers.

Further function definitions appear in forthcomingu@ples, wherein additional obsations are made.

6. Listsand List Operations

As described earliethe list is the basic data structure in Lispommon Lisp does support other structures, includ-
ing arrays, sequences, and hash tabldwese structures primle more diciency than lists, it no fundamentally
new expressie pwer over lists. Substantialisp applications can be andveabeen implemented using no data
structure other than the list.

CSC530-S02-Lisp Primer Page 9

This primer describes the important list operations, and/staw lists can be easily used to represent the major
built-in data structures of CJ -- arrays, structs, and pelmsed structuresThe reader should consult a Lisp man-
ual for discussion of the other Lisp data structures.

6.1. TheThree Basic List Operations
There are only three fundamental list operations, from which all others canvselderi

Operation Meaning

car return the first element of a list
cdr return eerything except the first element of a list
cons construct a ng list, given an aom and another list

The following fundamental relationshipgist between the three list prinviés:

e (car (cons X Y)) =X
e (cdr (cons XY)) =Y

The initial CJ-programmer reaction to these privegimay well be "Is that all?".In a formal sense, the answer is
"Yes". Thatis, ary list operation, including operations on complicated structures, camibeujpon these three
primitives. Thepractical answer to the question is of course "N&hile it is theoretically possible to deei dl list
operations from these primigs, it would be silly for rgular Lisp programmers to do sélence, Common Lisp
provides a generous library of higHewel list functions, the important ones of which are described in the primer

Despite the x@stence of highelevel functions, the primitie gerations are not simply relic¥hey are still regu-
larly used in gen sophisticated programmingn particular there is a fundamental idiom in Lisp called "tail recur
sion" that uses a combination of cadr, and recursion to iterate through a ligthis tail recursion idiom is compara-
ble to array iteration in CJ, using afor while-loop. Considethe folloning initial example:
(defun PrintListEl ens (1)
(cond ((not (null 1))
(print (car I)) (PrintListEl ems(cdr 1))
)

)
This Lisp function is semantically comparable to the feitmg CJ function:
void PrintArrayEl ens(int a[], int n) {
int i;
for (i=0; i<n; i++)
printf("od", a[i]);?®
}

Using PrintListElems as axa&mple, the tail recursion idiom goesdithis:

1. Startby checking if the list being processed is nil.

2. If so, do nothing and return from the functiolfi.any recursve alls have keen made to this point, this
“return-on-nil" check starts the recusiunwinding process, in ffct terminating the list iteration.

3. If the list is non-nil, then do what needs to be done to the first element of the lshi(thend then recurse
on the rest of the list (thedr , ak.a. thetail). In this case, what "needs to be done" is just printing,irb
general it could be gprocessing.

SThepri nt f function is Cs version ofSyst em out . pri nt | nin Jaa The first agument tgpr i nt f is a formating string,
the details of which are not important here.

CSC530-S02-Lisp Primer Page 10

A few aher obserations can be made about theREJd nt Arr ayEl ens function as compared to its Lisp counter
part,Pri nt Li st El ens. Frst, it is clear that the tfunctions are not semantically identical, in that the CJ func-

tion uses iteration to tvarse the arrgywhere the Lisp @rsion uses recursion toveese the list. While it is possible

to use iteration in Lisp, and in turn possible to use tail recursion in CJ, each language has its most typically used
idiomatic forms. In Lisp, recursie traversal of lists is the idiom of choicdn CJ, iteratve traversal of arrays (and

other linear collections) is more typically used than recersaversal.

A second obsemtion r@ads the need for the additional igex parameter to the CJ functioBince there is no

automatic vay in C/C+* to test for the end of an arrayis typical for array processing functions to be sent both an
array and the number of array elements to be procesbethe tail-recursie Lisp version, reaching the end of the
list is a natural occurrence, and no additional list-length parameter is needed.

Finally, the CJ ersion of this rample only varks on arrays of inggers, whereas the Lisgssion works on lists of
ary type. Thereason is that Lisp’'weak typing praides a high dgree of function polymorphism that is notag:

able in plain C, andvailable in a more limited inheritance-based form in C++ ama. Ja full discussion of poly-
morphic functions is hend the scope of this priméaut its benefits are well kmon to Jaa and C++ programmers.

6.2. cXrforms

Programming with lists frequently requires composition of basic list operationsgxample,(car (cdr L)) is
a oommonly-used compositior-or notational comenience, Lisp praides short-hand compositions, of the form

CXr

where theX can be replaced by twthree, or foua’s and/ords. For example,(cadr L) is the short-hand for
(car (cdr L)).

6.3. OtherUseful List Operations

The following table summarizes particularly usefuilbin list operations.

Function Meaning
(appendists) Return the concatenation of zero or more li€gnilar tocons, but cons re-
quires eactly two asguments.
(list elements Return the concatenation of zero or more items, where items can include atoms.

Similar toappend, but append requires all bt the last ajument to be a list.
(memberelement list | Return the sublist dfst beginning with the first element dikt eq to element

(lengthlist) Return the intger length oflist. Note thatl engt h works on the uppermost
level of a list, and does not recuvsly count the elements of nested lis&s.g.,
(length " ((abc) (d(ef)))=2

(reverselist) Return a list consisting of the elements iverse order of the gen list.

(nthn list) Return thenth element ofist, with elements numbered from 0 (as in CJ arrays).
(nthcdrn list) Return the result afdr ing dawn list ntimes.

(assodkey dlist) Return the first pair P ialist such (car P) key. The general form of an alist s

(key, valug) ... (key, value)). See section 7.2 for further discussion of alists.

(sortlist) Return thdist sorted.

5 Java, of course, preides the hilt-in array length operator

CSC530-S02-Lisp Primer Page 11

6.4. DotNotation and the Internal Representation of Lists

The internal representation of lists within the Lisp translator is adifdinary tree.For example, the lis{a b ¢

d) has the internal representationwhan Figure 1.In the figure, notice that the right pointer in the rightmost ele-
ment points tani | . By corvention, this is the standard internal representation of a list, and it corresponesdo ho
CJ programmer might think of implementing a Lisp-style lisimong other things, the rightmost nil pointer alto
ary list-based function to find the end of a list reliab{yhis is akin to hw strings in C/C++ are alays terminated
with a null charactey

The rationale for the binary representation is that it is a generfdlieef lowv-level representation on most standard
computer architecturedn addition, the binary-tree representation has a long history in Lisp, and it has become the
internal standard.

There is an important question related to this internal representafipn.is it possible to create a binary tree that
violates the covention of the rightmost pointer being nilPhe answer is yes, and it is done quite easffyecifi-
cally, we wse the standardons function. For example, Figure 1 is the internal representatiofafns 'a ' b).

The ne&t question is, what is thexternal representation of such alue. l.e.jf (cons 'a ' b) is entered at the
top-level of Lisp, what is printed as thale? Thensweriga . b). Thatis, rather than a space separating the
elements, a dot is usedilence, the name for this form of item ig@tted pairIn general, the only ay that a dotted
pair can be constructed is if we pide an atomic &lue as the secondgairment tocons, or to some function that
returns the alue of acons.

So, at the internal representatiomdewhat cons actually does is allocate a single binary-tree cell that can be part of
a linked tree structureFor this reason, these cells are calleds cellsn Lisp terminologyor justconss for short.

Most of the time, we can get along just fine in Lisp withmat @orrying about the dotted-paindd of list represen-
tation. Occasionallywe may unintentionally create a dotted pair instead of a list, in which case it is usefulsto kno
what Lisp is doing.For example, suppose weant to append an atom onto the end of a lisive use the cons
operation lile this:

(cons "(a b c) '"d))
we obtain the potentially urpected result

((ABC . D

b I

nil

Figure 1: Internal representation of the (istb c d). Figure 2: Internal representatino @fons 'a 'b).

CSC530-S02-Lisp Primer Page 12

The reason, ain, relates to the precise meaningohs. Viz.,(cons x y) produces thealue(x . y). Ify

is a list, the wlue is(x . (y)), which is written in normal list notation &x y) , and hence the dot is not a visi-
ble part of the alue. Onthe other hand, if is an atom in(cons X y), then there is no highael list notation
for the result, and Lisp must use dot notation to accurately describaltlee v

In practice, accidental andvem intentional creation of dotted pairs is typically rare in Ligp.the circumstances
where such creations do arise, it is necessary to understand dot notation in order to be clear adoas tthatv
Lisp is manipulating.

There is another area in which an understandingveddeel list structure is necessaryhis is in the use of the so-
calleddestructivdist operations, which are eered in Section 11.5 belo

7. Building CJ-Lik e Data Structures with Lists

This section of the primer demonstratesvhasp’s smple list structure can be used to represent all of the common
built-in data structures found in modern programming languageecifically we show how to use lists to represent
CJ arrays, structs, liekl lists, and trees.

7.1. Arrays

Given the huilt-in nt h function, CJ arrays are Vially represented as list&Vhile nt h is a huilt-in library function,
it is instructive © consider its implementation in terms of the list priv@si. Hereit is:
(defun my-nth (n I)
(cond ((< n0) nil)
((eg nO0) (car |))
(t (nmy-nth (- n 1) (cdr 1)))

)
The name has been changed, so as not to replaceilthie hisp library function namedt h. The algorithm uses a
tail recursve idiom to mae ove the firstn-1 car s, returning thethif it exists,ni | otherwise. Notéhe last alter
natve d thecond in the body ofy- nt h. Usingt as the testsgression is the standarcawto male the last ele-
ment of acond an "otherwise" (a.k.a. "else") clause.

7.2. Structd

A CJ-style struct can be represented by a list with thewiollp general format:
((field-name value) ... (field-namevalug))
That is, we use a list of pairs, where each pair represents a struct field.

To make auch structures useful, we need a couple functions to access and modify them, called getfield and setfield.
Here are their implementations:

; Return the first pair in a struct with the given fiel d-nane,
;or nil if there is no such field-nane.

(defun getfield (field-name struct)
(cond
((eq struct nil) nil)
((eq field-name (caar struct)) (car struct))
(t (getfield field-name (cdr struct)))

7 For the Jara-only programmerconsider a struct to be a class with all public data fields and no methods.

CSC530-S02-Lisp Primer Page 13

; Change the value of the first pair with the given field-nane
; to the given value. No effect if no such field-name. Return
; the changed struct, w thout affecting the given struct.

(defun setfield (field-name val ue struct)
(cond ((null struct) nil)
((eq field-name (caar struct))
(cons (cons (caar struct) (list value)) (cdr struct)))
(t (cons (car struct) (setfield field-name value (cdr struct))))

)

Theget fi el d function uses a straightfoasd tail recursion, quite similar to ting/- nt h function we se earlier.
Theset fi el d function is worthy of some additional studysnce it is representat d an important Lisp idiom --
non-destructie list modification. The basic stratgy of theset f i el d function is as follas.

a. Firstmake a opy of all fields up to, it not including the field to be changed.

b. Then mak a rew field, consisting of the old field name, and ther malue.

c. Thencopy the rest of the fields folleing the one that as changed.

d. Assemblehe collection of copied and weields into a list, and return the list as tladue of the function.

An important property of the list operations wevdaeen thusdr is that thg are non-destructive That is, these
operations neer change the alue of ag list parameter Rather they only accessasting lists, or create melists.
The set fi el d function, as written abe, is dmilarly non-destructie. Rather than change its list (i.e., struct)
parameterit constructs a ne list, according to the strajg outlined abwe.

Lisp does hee destructivdist operations, that do change list paramet@itsese operations are discussed in Section
11.5 belov.

While this deelopment of CJ-lilke dructs has been instrued it is in fact lagely unnecessaryAs might be
expected, Lisp has a number afilt-in functions to operate on structildata structuresThe standard terminology
used in Lisp for such structures is #iist, which stands foassociation list The general form of an alist is:

((key, value) ... (key, value))

That is, alists and our CJ-ékdructs hae the same structureThe huilt-in assoc function performs precisely the
same function aget f i el d. A destructve, i.e, in-place, form ofet f i el d is considered in Section 12.6.

7.3. Linked Lists and Trees

CJ programmers generally earn theieg by bilding pointerbased structur@s In Lisp, ary pointerbased structure
can be represented using a listirgy fundamentally to theatt that lists may recuxgy contain other lists, to an
arbitrary level of recursion.

This primer will not present a formal andhaustve comparison of recurge lists and pointebased structures.
Rather we will look at two representatie examples of pointebased structures, by which the reader should be con-
vinced that lists can at least go quiteaywovards handling pointebased structures.

8 reference-basedtructures in Ja terminology

CSC530-S02-Lisp Primer Page 14

Corresponding

Graphic:]
Lisp: (a (b (c d) e) (f g h) i) /R

AN

T e g h
d

Figure 3 Sample Lisp Representationof an N-Ame@.

7.3.1. Linked Lists

CJ-style singly-linkd lists are tyiial in Lisp. Viz., they are just plain lists.And, if we consider the underlying dot-
notation level, Lisp lists are indct implemented using pointers, in aythat pointers are typically used to imple-
ment lists in CJ.

7.3.2. N-AryTrees

An n-ary tree can be represented using a reaulist of the follaving form:
(root subtes, ... subtee)

For example, Figure 3 shes an @ample n-ary tree, and its corresponding graphic representdtialeft as an
execise for the reader to design some basic tree access and manipulation furgiticestree data structures are
one place in CJ where recursion is usapialy, the Lisp implementation of tree functions willMeasome notice-
able similarity to tree implementations in Cd¢ept in Lisp things are a bit simpler

While it is possible to generalize the n-ary tree structure ter @wide range of pointebased structures, there is
one important class that cannot be&ered easily -- gclic structures.While it is possible to represengatic struc-
tures without non-destrugg list processing, it is rather cumbersome to do lHence, the complete eerage of
pointerbased structures relies on the list operations discussed in Section 14.5 belo

8. A Multi-Function List-Pr ocessing Example

As an illustration of typical list programming style, a multi-functicaraple is shan if Figure 4. The collection of
functions performs a mge sort on a list that contains orderable elements, where orderable mgasahthe com-
pared with the< operator The lines of the program are numbered for reference in the discussion thas.follo

Line 1 defines the topmost function of the collectioer, ge- sor t , that talkes one list gjument. Line® through 5
are the recurse implementation ofrer ge-sort. Line 3 is a typical end-of-recursion check for an empty list.
Line 4 is the base case, where we axgéally sorting a list of length 1, which means we return the list itdatie 5

is the crux of the mge sort algorithm.Here a tve-way recursion is used, in contrast to the omg-tail recursion
we hare ®en in preious list-processingxamples. Thdogic of line 5 should read reasonably easifiz., the
recursve ask is to subdide the input list into tw halves, sort each, and them merthem back together using the
auxiliary functionner ge- 1 i sts.

nmer ge-1i sts is also a fundamental part of the algoriththis a tail-recursie function that meges tvo sorted
lists by taking each element of the first list and inserting it in its proper ordered position in the secdihe ltsil
recursion, on line 11, is used to iterate through the elements of the firgtdighe iteration tads place, the auxil-
iary functionor der ed- i nsert is called.

order ed-i nsert is another simple tail-recura function. Itstask is to insert an element in the its proper ordi-
nal position within a list.lts processing is similar to theet f i el d function discussed earlieiiz., or der ed-

CSC530-S02-Lisp Primer

©CoOo~NoOUh~wWNPRE

WWWWWWWNNNNNNNNNNRPRPRPRPRPRPERPRPERPRE
O, WNPFPOOONOUOUODWNRPOOO~NOOODAWNEO

(defun nerge-sort (1)
(cond
((null 1) nil)
((eq (length 1) 1) 1)

Page 15

(t (merge-lists (nerge-sort (1st-half 1)) (nmerge-sort (2nd-half 1))))

)

(defun merge-lists (1112)
(cond ((null 11) 12)
(t (merge-lists (cdr 11) (ordered-insert (car 11) 12)))
)

)

(defun ordered-insert (i I)
(cond ((null 1) (list i))
((<i (car 1)) (cons i 1))
(t (cons (car |I) (ordered-insert i (cdr 1))))

)

(defun 1st-half (I)
(1st-half1 1 (floor (/ (length) 2)))
)

(defun 1st-halfl (I n)

(cond ((eq n 0) "())
(t (cons (car |I) (1st-halfl (cdr 1) (- n 1))))
)

)

(defun 2nd-hal f (1)
(nthedr (floor (/ (length 1) 2)) 1)
)

Figure 4 Collection of Functions to Perform Mg Sort of a List.

i nsert takes in a single element and a sorted list as ingresits return @alue, it constructs a nelist composed
of all elements less than the input elements’d with the input elementons’d with the rest of the input list.

Lines 22 through 30 illustrate a typidainction/functionlidiom. Thisform of function pairing is used in cases
where a single property is needed to help with further re@umbcessing. Br example, in this case it is easier to
to compute the first half of a list if we kiwdow mary elements there are in itdence, thelst - hal f function on
lines 22 through 23 computesvihanary elements are in the half, and passes thekvon tolst - hal f 1. 1st -
hal f 1 uses simple recursion to cons up the theffiedements of its gen list, wheren is provided bylst - hal f .

Finally, the one-line2nd- hal f uses the librarpt hcdr function directly (line 33).

9. Basiclnput and Output

The following table summarizes the basic Lisp I/O functions:

CSC530-S02-Lisp Primer Page 16

Function Meaning

(read ptrean) Read from the gen stream if specified, or from stdin otherwise.

(print expr [streani) Print a n&vline followed by the alue ofexpr to the gven stream if specified, or
to stdout otherwise.

(princ expr [streani) Like print, but without the leading ndine.
(terpri [strean]) Print a single neline tostreamor stdout; (highly anachronistic name).

(pprintexpr [strean]) | "Pretty" print the alue ofexpr to the gve stream "pretty" means format the
parenthesized structure of aganalue in human-readable form.

(openfilenamé Return a stream (usable in functions\a@mpen on the gien filename which is
specified as a string.

10. Programs as Data

As noted earlierLisp lists and function calls are syntactically identidatr example, the pression (+ 2 2)"

can be rgaded in two equally valid ways: a three-element data list, containing the atoms '+', 2, and 2; a function
call that applies the operator '+' to thegaments 2 and 2In the first form, the list is "data", whereas in the second
form it is a "program".

Not only do programs and data look alik Lisp, they can be manipulated interchangeablp this end, Lisp pro-
vides functions thatwaluate a list data object as a program.

A limited form of the programs-as-data conceptvalable in C/C++ through the use of function pointers, and in
Java through the use of reflectiorin C/C++, the alue of a function can be assigned tcaaable or passed as an
actual parameter to another functidn. Jasa, functions (a.k.a., methods) can be treated as first-class objects using
the facilities of thej ava. | ang. ref | ect package. liwe think of a function pointer (methodlue) as a "pro-
gram", then assigning it to @wable is treating it as "data".

Lisp takes the concept of programs-as-data to its logical conclusiohisp, any expression can be treated equally
well as progranor data. Lispprovides two functions to eplicitly evaluate a data object eval andapply.
These functions takdata objects that look likprograms andwaluate them as such.

10.1. BEwl

The callableeval function is eactly the same as tt@al in Lisp’s top-level read-eval-print loop. eval is an
extremely poverful function in Lisp, since it éctively puts the pwer of the full Lisp translator at the disposal of
the programmerWe can construct anlegd Lisp expression, and then\g it to eval to be executed. Ifwe had the
equivalent paver in CJ, we wuld be able todild a piece of CJ program at runtime, call the CJ compiler (as a func-
tion) to compile it, and therxecute the result of the compilation, all while the original program is still running.

As an illustration of the peer of eval, suppose we wuld like to build a simple desk calculator program, where the
user could input the name of a calculator operation (such as + or \wddlloy the @lues to be operated onlere
is a functioncal c that illustrates he eval could be used in such a calculator program.

>(defun calc ()

(print "lInput the nane of an operation and its two operands:")(terpri)
(eval (list (read) (read) (read))))

>(cal c¢)

I nput the name of an operation and its two operands:

+ User input for fist read

2 User input for seconcead
2 User input for thid read

4 Result of the call to calc

CSC530-S02-Lisp Primer Page 17

What happens here is that a list is constructed out of the three inputs that are @mdanthis list is the ¢d
expression(+ 2 2), it can be gien to eval for evaluation.

The reader should considervihthe function calc could be written in Cli.is considerably longer than three lines.

10.2. Apply

When the full paver ofeval is not needed, there is a "junior” function naraegl y. Appl v is slightly less pa-
erful thaneval , in thatappl y takes the name of a function and a list of itguanents, and applies the function to
them. E.g.,

(apply "+ " (2 2))
produces 4.
appl y provides a capability similar to thavailable in C/C++ with ivocation through function pointers, and in
Java via Met hod. i nvoke. Howeve, Lisp'sappl y is a good deal more perful than function imocation in CJ,

since lilt-in as well as usedefined functions can bevgh to appl vy in the first agument. InCJ, only usedefined
function names or function pointer (method)iables can be applied tagaments.

11. Scopingwith Let

Common Lisp preides two scoping constructs similar to the curly-brace scoping block inT& constructs are
| et andprog. Thel et block is described here ama og is defined in the né section on imperate features.
Thel et expression has the folldng general format:

(et ([[(var [val)] ... [(Jvar [val)]]) expr, ...exor)

The square braeits indicate optional constructs, so that the elements of the first lgpsegsdon can be either sin-
glevars a (var val) pairs.

The e/aluation ofl et proceeds as folles:
Eachof theval is evaluated and bound to the correspondiag.

Thesebindings are done "in parallel”, not in left-to-right sequential order
If ary val is missing, then thear, is bound to nil.

Afterthe bindings are are completed, &xpr, are @auated sequentially

o ~ wbdh P

Thevalue of the let is thealue ofexpr .

As an eample, here is a side-bye-side comparison of alLé&tpexpression and a comparable CJ block:

Lisp: CJ:
(let {
(i int i;
(j 10) int j = 10;
(k 20)) int k = 20;
expr, stnt,
expr stnt
) }

The placement dfet in Lisp is essentially the same as the placement of curly-brace blocks rh&tlis,| et is
most typically used as a function bodyt is not limited to this usageA | et may appear aiwhere an gpression
is legd in Lisp, in the same ay that a block may appearyavhere that a statement ig&in CJ.

CSC530-S02-Lisp Primer Page 18

As explained abuwe, the binding ofl et variables is carried out in paralleln particular this means that neal
expression can use the result of a preceding binding in the IsameFor example, if \ariablex has no preous
global binding, then the fol@ing | et is erroneous, since the bindingxdk not aailable for use in binding :

(let ((x 10) (y x)) ...)

In some circumstances, it might well be useful teedaet evduate the bindings sequentiallather than in paral-
lel, so that this xample would in fact work (i.e.,y would be bound to 10)This behaior is available in thel et *
expression. Specifically et * evduates the same a®t except that arial bindings are performed sequentially
rather than in parallel.

In the terminology of functional programming, thet expression is aingle assignmemonstruct. Vithout the use
of assignment statements within the body oflthe expression, thé et variables are only bound (i.e., assigned to)
a dngle time, at the lgnning of thel et . This means that theet construct itself is side-ffct free, in contrast to
the imperatre features of Lisp we are about to discuss.

12. Imperative Features

The Lisp features presented thas provide all the pwver that is necessary to write serious Lisp programtsese
features comprise the what is called thectional or pure subset of lisp.A detailed discussion on the fiifence
between functional and impenailanguages is lyend the scope of this primewhat can be said is that there are a
number of compelling adwntages to using onlgr primarily, Lisp’s functional constructs.

Since CJ is an imperaé language, the imperaé features of Lisp makit a much more "CJ-lik" language.In fact,
using these imperat features, it is possible to write programs in a stegley wuch lile CJ. Havever, such a style
may be counteproductive in mary cases. Br example, it is frequently more natural to use recursion in Lisp to iter
ate through the elements of a list, rather than the more €ddiloop described belo In any case, it is a mistak

for the CJ programmer to cling tightly to the CXliknperatve features of Lisp, since much of thewmss and ele-
gance of Lisp will be lost in doing so.

12.1. AssignmenStatements

Thesetgfunction is the Lisp assignment statemelfdr example, the follaving Lisp epression
(setq x (+ 2 2))
is equiaent to the CJ assignment statement:
X =2 + 2
Since \ariables are not declared in Lisp, the first assignment &iable sergs to declare it, as well as initialize it.

In Lisp terminologythe assignment of aalue to a ariable is calledinding Henceset g is said tobind the \alue
of its second gument to the ariable in its first yjument.

A more general form of assignment in Common Lispvialable through theset f function. Itis more general
sinceset g must hae an @om as its first ument, whereas the firsigament toset f can be an arbitrary lalue.
That is,set f can be used to assign toygtace in a cons cellConsider the follwing example:

>(setq x "(a b ¢))

(ABO

>(setf (cadr x) 10)
10

>X
(A 10 Q)

As can be seen in the resultinglue of X, theset f functions results in a permanent (a.k.a., destrgcthange to
thecadr of x. To accomplish changeset f has accessed the pointevel representation of thealue of x, and
changed (destruettly) the second elemenGiven this behaior, set f belongs in the cag@ry of destructivelist
operations, defined belo

CSC530-S02-Lisp Primer Page 19

12.2. Detailsof Scope and Binding

There are noxglicit declarations for globalariables is Lisp.Wheneer a variable is bound at the topvig of the
Lisp interpreterit becomes a globalariable. Considethe folloving example.

>(defun f (x y) (+ xy z))
F

>(setq x 1) Bind x at top-lgel, making it global.
1

>(setq y 2) y is dobal
2

>(setq z 3) z is gobal
3

>(f 10 20)
33

In functionf , x andy are the formal parameterdust as in CJ, all function parameterseiacal scope. Hencegs
in CJ, the references foandy within the body of functiori are to the parameters, not to the globally bourad

y. Also as in CJ, references within a function to non-locals are references to globally-adabtks. Thus, when
functionf is called in the abe example,x is locally bound to 10y is locally bound to 20, and is globally bound
to 3.

In Lisp terminology the \ariablez is said to bdreein functionf. Because there are napdicit declarations in
Lisp, there is a subtleubimportant diference between a freanable in a Lisp and a globahrable in CJ.Namely

in Lisp, a free ariable need notxést when a function that references it is declarBd: example, the functiorf
above is declared before its freeaviablez is ever bound. Freevariables must be bound before a referring function
is evaluated If not, then an "unboundaviable" error occurs.

12.3. Piog

The Lisppr og expression is a more impenati vasion of thel et expression described earlieUsing pr og in

Lisp, it is possible to writeery CJ-like quences ofxressions, including the use @bt os & in C/C++. There
are no actual "statements" in Lisp, onkpeessions, the dérence being that anxgression aliays returns a alue
whereas a statement does nGiven the imperatre mture of &pressions likset g andgo, they can be used &dfc-

tively like datements within @ar og. The general format of a Liggr og is the follaving:

(prog (fvar, val)) ... {var_val) expr, ... expr,)

The first agument topr og is a possibly empty list of locakviable bindings.Before thepr og is executed, each
val is bound to the correspondingr,. The scope of thesaxiables is entirely local to the pro@nce the locals are

bound, eaclexpr, is evaluated.

The CJ analog of Lisp’'prog is the compound statemeiere is a side-by-sidexample that illustrates the similar
ity between Lisp prog and CJ compound block:

9 Jasa rogrammers may delude themsedvthat Jea does not hee truly global \ariables in the ma sense of C or C++; such is
indeed a delusion, ggn that a static public data field is just a "datag" from being as global as it gets.

CSC530-S02-Lisp Primer Page 20

Lisp: CJ:
(prog {
((i 10 int i = 10;
(j 20.5) float j = 20.5;
(k "xyz")) char* k = "xyz"
(setgi (+i 1)) i =i + 1;
(setq j (1+])) j+=1
(print (+1i j)) printf("20d", i +j);
) }
The deéult value of apr og expression i1 | . Itis possible to hee a pog return a &lue other thani | using the

Lispr et ur n function. Itis important for CJ programmers not to confuse Isisgturn with CJ. Thetwo are sim-
ilar, but not identical. Specifically ar et ur n in Lisp can only appear within an enclosipgog, not in a general
function body When Lisp galuates(r et ur n expr) , it terminates th@r og within which it is contained, and the
entirepr og returns the &lue of ther et ur n expr. Lispr et ur n’s will look much like CJ returns, if a function
body consists of just a singbe og. Howevae, the Lispr et ur n returns from gr og NOT from a function.

The finalpr og-related function igo, which acts lile a s$atement in C/C++A simple example easily illustrates the
use of go:

(defun read-eval -print-loop ()

(prog ()
| oop

(princ ">"
(print (eval (read)))
(terpri)
(go | oop)

)

)

This istheread-eal-print loop for Lisps top-level. Nasty but slick.

12.4. lterative Control Constructs

There is a gry CJ-like iteration function in the imperag Lisp trick bag. It is calleddo, and it is a lot lile CJ's for
loop. Thegeneral format oflo is:

(do ((var, val, rep,) ... (var_val_ rep,)) ext-clause epr, ... &pr,)
Each ar, val, rep) triple is similar to the semi-colon separated contxpression of a CJ for loopiVhen thedo is
initially started, eachar, is initialized to the correspondingl..
After thevar, initialization, theext-clauseis examined. ltis of the general form:

([test[ext, ... exit_]])

If the entire &it clause isni | , then thedo terminates immediatelyOtherwise, thdestexpression is waluated, as
anuntil test. Thats, if testis non-nil, then thelo is ready to terminateJust prior to termination, th@dtp expres-

sions arexecuted in orderand the \alue of the last one of these is the retualue of thedo.

If the until testis ni | , then the body of thdo is executed, where the body consists of ﬂ)prj. When the body
completes oneycle of execution, eactvar, is rebound to the correspondirep, and the testycle of the preceding
paragraph is repeated.

Here is a side-by-side comparison of a Ldgpand a comparable Gbr loop:

CSC530-S02-Lisp Primer Page 21

Lisp: CJ:

(do for
((i 1 (i =1
(1+ i)))>_<:i <= 10;
((>1i 10)) i++) {

(print i) printf("\n%", i);
}

Note that the use of the parentheses in the dispnay seem a bit trigkat first. Itis easy to fayet the &tra set of
parentheses around the binding triples antatause. For example, the follaing is a reasonable lookingiberro-
neous ersion of the precedingcample:

(do (i 1 (1+1i)) (>i 10) (print i))

missing parens * missing parens

12.5. Destructve List Operations

Several sections abe dluded to the so-called "destruddf list operations.Simply put, these operations pide
direct access to the internal poinbarsed implementation of Lisp listsSThe two primitive list destructors are
r pl aca andr pl acd, which stand for "replace car" and "replace cdr", respagti Here is a summary of these
two, as well as some highkavel destructve goerations:

Function Meaning

(rplacacons-cell gpr) | Destructvely replace the car of theons-cellwith expr and return the result.
(rplacdcons-cell &pr) | Destructvely replace the cdr of theons-cellwith expr and return he result.

(nconclists) Destructvely change the last cons-cell of each of theagilists to point to the
next of the gven lists. nconc is the destructie vesion ofappend.
(setfcons-cell &pr) Destructvely change the contents of thevei cons-cellto the gven expr, and

return the alue ofexpr.

Here is a telling scenario of what can be done with these destrgoéirations:

>(setq x-safe "(a b c))
(A BC

>(setq y-safe x-safe)
(A BC

>(setq x-safe (cons 'x (cdr x-safe)))
(X B Q)

>y-safe Non-destructiveltange to x-safe does not fct y-safe
(A B O

>(setq x-unsafe '(a b c))
(A BC

>(setq y-unsafe x-unsafe)
(A BC

>(rplaca x-unsafe ' x)
(X B Q)

>y-unsaf e Destructive bange to x-unsafedoeseffect y-unsafe
(X B Q)

CSC530-S02-Lisp Primer Page 22

>(setf (cadr y-unsafe)
Y

y) Another destructivehange

>X- unsaf e
(XY O

>y-unsaf e
(XY O

12.6. Call-by-Refeence Rirameters

Destructie list operations makit possible to achiee all-by-reference parameter passingerethough the Lisp
function evaluation mechanism only supports call-bghve. Ary list passed to a function can béeefively treated
as a call-by-reference parameter by performing a desteugteration on it.

As an illustratve example, here is an alternagiimplementation of theet fi el d function, defined earlier in the
primer. Here it is called dsetfield, to indicate its destugctemantics.

(defun dsetfield (field-nanme val ue struct)
(setf (cdr (assoc field-name struct)) (list value)))

12.7. Rinters Fully Revealed

In order to cope &ctively with the paver of destructie list operations, we must fully understandivhioisp man-
ages its list structures at the pointesele Specifically we must understand:

a. Exactlywhen n&v cons cells are allocated.
b. How pointers are used durin@sable and parameter binding.
c. Haw pointers are used in both destruetend non-destructe list functions.

New cons cells are allocated in one ofotwways: (1) &plicit application ofcons or a non-destructe mnstructor
function derved from cons; (2) the appearance of a literal ledue aywhere in a program.

Whenever a list value is bound to aaviable or formal parametehe binding is via pointer cgp The process of
binding itself nger creates n& cons cells.For example, in an assignment such as

(setg x "(a b ¢c))
it is the creation of the literal liselue that allocates the cons ceN§hat is assigned to is a pointer to the list con-
taininga, b, and c. Wheneer the list \alue of one ariable is assigned to anotheriable, it is the pointeralue
that is assigned, not a gopf the list. For example, \ariablesx, y, and z all point to the same list after the folle
ing sequence of assignmentsvsleated:

(setg x "(a b c))

(setg y x)

(setq z vy)

All list access functions, whether destruetia non-destructre, access lists via pointer manipulation, andytide
not allocate ne cons cells. The critical distinction between destruvetivasus non-destruste functions is that a
non-destructie function neer changes thealue of a pointemsidea ans cell, whereas a destrwetifunction does.

To illustrate the abee points in a succincb@mple, consider the folleing scenario:

>(setq x "(a b c¢))
(ABCO

>(defun f (i j k)
(setf (cdddr k) (cdr j))
(setf (cadr j) i)
(setf (cdr j) k)
(setqg z k)

CSC530-S02-Lisp Primer Page 23

nil
)
F

>(f x (cdr x) "(a b c))
NI L

The three parts of Figure 5 shithe following three snapshots of the list space as this scenario proceeds:
a. afterthe assignment to, but before functiori has been called;
b. dterf has been called, its parameters bounti plefore its body has beexeeuted,;
c. afterthe execution off has finished.

It should be clear from thisxample that it is possible to makrbitrary spaghetti out of the list space using destruc-
tive list operations.One of the more unhapmspects of bilding cyclic structures such as the onewhdn Figure

4c is that all standard print functions will infinitely veese them. This is in fict why the last line in the body of
functionf isni | . If that line is omitted, then the outputfois k, becausek is the \alue of the lastx@ression in
the body off . Sincek is an entry point into theyclic structure, the readsd-print loop will chole when attempt-
ing to print the returnalue off . As roted earlierdl standard list functions rely on the nil-termination structure of
lists in order to behe nsibly When this structure is violated via destruetiist manipulation, the programmer
must be kenly avare of the consequences.

An important consequence of Lisphternal pointer manipulation is that non-destueciiperations are more fef
cient than thg might appear For example, one imocation ofcons only takes enough time to allocate a singl®tw
element memory block, and gofwo pointers into it. Hence, a cons operation such as this

(cons huge-listl huge-list2)

takes the same (small) amount of time ag afer cons operationThis is because cons, and its non-destracti
derivatives, do not cop all of their aguments to maknew lists, just pointers to theg@rments.

12.8. Caeat CJ Hack

While some Lisp programmers find destruetiist operations indispensable, myasthers utterly decry their use.
For example, Robert \ilensky (author of the widely-use@ommon LISP@&ft) does not introduce destruai list
operations until page 265 of his book, and he does so under the subheading "The faélaad andr pl acd".

Having seen Lisps imperatve wnstructs, and the destruilist operations in particulathe die-hard CJ hack may
well be thinking "At last, something in Lisp | can sink my teeth intde most appropriate response to this is

X

\

Figure 5 Three Snapshots of the List Space.

CSC530-S02-Lisp Primer Page 24

"You better hee grong teeth".C/C++ die-hards are well acquainted with thgdeathat the misuse of pointers can
wreak. InJava, reference misuse wreaks lesgdwathan is possible in Cub Java rogrammers must still be mind-
ful of the side d&cts caused by changinglues through referencekven though Ja's pointer manipulation is less
syntactically &plicit than in C/C++, Ja's pointerbased processing is still fundamentally destwecin the Lisp
sense.

The destructie list operations in Lisp totallyxpose the pointelevel representation of Lisp listsThe indiscrimi-
nant use of these operations can easily reduce the design, implementation,ugigihdedf Lisp programs to the
awfulest levels of CJ. This is indeed a saday to use an otherwisevdy functional language.

