
CSC530-S02-Lisp Primer Page 1

A L isp Primer for C and Jav aProgrammers

1. Overview

To the CJ1 programmer, Lisp appearsdifferent. While there are many important differences between CJ and Lisp,
there are also some fundamental similarities.This primer presents the major features of Lisp, with examples that
will help the CJ programmer sort out what is really new about Lisp and what is similar to or the same as CJ.The
primer is a brief, but reasonably complete Lisp introduction.It covers all of Lisp’s basic functions, and presents a
number of examples on important Lisp programming idioms.If the reader is planning to do major programming in
Lisp, a complete Lisp reference manual is in order.

Compared to CJ, the major differences in Lisp are the following:

• The syntax

• The interpretive environment

• The lack of explicit type declarations

• The functional, list-oriented style of programming.

The syntax is a profoundlyunimportant difference between Lisp and CJ.However, since the syntax is the first fea-
ture a programmer sees, Lisp’s "unusual" structure often leads CJ programmers to have an initially negative reaction.
To avoid a prematurely negative impression, CJ programmers must be patient with Lisp’s syntactic differences.

Lisp’s interpretive environment is also different than most CJ programmer’s are likely to be familiar with. In con-
trast to Lisp’s syntax, its interpretive environment is typically received very well. This environment allows programs
to be executed and tested very easily.

Lisp is aweakly-typedlanguage. Lispfunctions and variables do have types, however their types are not explicitly

declared.2 Rather, the type of an object is determined dynamically, as a program runs.This means, for example, that
the same variable can hold an integer value at one point during execution, and a list value at some other point.
While it is possiblefor variables to change types radically in a Lisp program, it is not typical.Generally, variables in
Lisp are used in much the same way as they are in CJ. Viz., a particular variable is used to hold a particular type of
data throughout the execution of a program.The difference in Lisp is that the programmer is not required to declare
the type of usage explicitly.

The most significant difference between CJ and Lisp is the last of the four items listed above -- the functional, list-
oriented style of Lisp.Recursive functions and lists are the "bread and butter" of Lisp programming, in much the
same way that for-loops and arrays are the "bread and butter" of CJ. Also, Lisp programs are typically written as
collections of many small functions.CJ programmers who use a programming style based on lengthy functions will
find that this style is generally unsuited to Lisp.

The C/C++ programmer will notice the conspicuous absence ofpointers in Lisp. In this area, the difference between
Lisp and C/C++ is similar to the difference between Java and C/C++. Namely, pointers in Lisp and Java are "below
the surface". Lisp’s list data structure allows the programmer to define all of the structures that can be built with
pointers. For the C/C++ programmer, it will take a while to adjust from the pointer mindset to the Lisp list mindset.
It will probably take a little less adjustment for the Java programmer, since the below-the-surface treatment of refer-
ences in Java is closer to the Lisp way of thinking than the explicit-pointer style of C/C++.

1 The abbreviation "CJ" refers collectively to the family of programming languages consisting of C, C++, and Java. For the most
part, these languages can be treated as a single class in comparison to Lisp.Where appropriate, distinctions are made between
plain C, C++, or Java by referring to the languages individually instead of collectively as "CJ".

2 Common Lisp does have constructs for variable declaration, but we can safely ignore these forms here.



CSC530-S02-Lisp Primer Page 2

Having considered the major differences in between CJ and Lisp, we should also point out some major similarities.
These include:

• Overall program structure and scoping rules.

• Function invocation and conditional control constructs.

• An underlying similarity between Lisp lists and CJ’s built-in data structures.

2. An Intr oductory Session with Lisp

This section of the primer presents an introductory scenario of Lisp usage.The point of the introduction is to pro-
vide the basic idea of how to use the Lisp interpretive environment. Additionalscenario-style examples will be pre-
sented throughout the primer, to illustrate both the language and its environment.

All primer examples are based on GNU Common Lisp (GCL), which is the current distribution of the Austin dialect
of Kyoto Common Lisp (AKCL).The GCL version is 2.4.0, compiled for UNIX.Three fonts are used in the sce-
narios, as well in the examples in the remainder of the primer:

Font Usage

Bold Information produced by GCL, such as prompting characters and the results of execution.
Plain Information typed in by the user, such as commands to be executed.
Italic Explanatory scenario remarks.

Here now is the introductory scenario.

% gcl Run gcl from the UNIX prompt

GCL (GNU Common Lisp) Version(2.4.0) Thu Mar 28 16:04:54 PST 2002
Licensed under GNU Library General Public License
Contains Enhancements by W. Schelter

>(+ 2 2) GCL identifies itself, a prints a caret ’>’ as the prompt char-
acter. After the first prompt, the user types in a simple expres-
sion to be evaluated. Theexpression is(+ 2 2) which is
Lisp syntax for "2+2"

4 GCL’s response to "(+ 2 2)" i s to perform the addition and
print the result. Thisis what Lisp always does at its top-level
prompt. I.e., it reads what the user types in, evaluates it,
prints the result, and then prints another prompt. Thisis
called the "read-eval-print" loop.

>(defun TwoPlusTwo () (+ 2 2)) Here the user types in a very simple function definition.The
details of function declaration will appear later, but it should
be clear what is being defined.Namely, the user is defining a
function with no parameters that computes 2+2.

TWOPLUSTWO GCL’s response to a function definition is to print the name of
the function that was just defined.



CSC530-S02-Lisp Primer Page 3

>(TwoPlusTwo) This is a call to the function that was just defined.Lisp func-
tion calls have the general form (function-name arg

1

... arg
n
).

4 GCL’s response to the function call is to print the value com-
puted by the function.

>(defun TwoPlusXPlusY (x y) (+ 2 x y))
Here the user defines another function, this time with two
parameters named x and y. The function computes the sum of
2 + x + y.

TWOPLUSXPLUSY Again, GCL’s response to the function definition is to print its
name.

> (TwoPlusXPlusY 10 20) This is a call to the function just defined.

32 Again, GCL’s response to the function call is to print its return
value.

>(load "avg.l") Here the user decides to load a larger l isp program. Assume
that the UNIX fileavg.l contains a lisp program to compute
the average of a list of numbers.

Loading avg.l
Finished loading avg.l

T Lisp’s response to loading a file consists of three lines, which
inform the user when the loading starts and when it’s finished.
The last response line, consisting of the singleT is the final
value ofload. Even if a function does not need to return a
value, it must do so in Lisp.Further, the top-level read-eval-
print loop will always print the value of a function.Since the
load function does not care about its return value, but needs
one anyway, it chooses the valueT, which stands for true in
Lisp.

>(avg ’(1 2 3 4 5)) The user calls the just-loaded function with a list of five num-
bers.

3 GCL responds with the value computed by theavg function.

>(avg ’(a b c)) The user attempts to call the average function with non-
numeric arguments.



CSC530-S02-Lisp Primer Page 4

Error: C is not of type NUMBER.
. . .

Broken at +. Type :H for Help.

>>:q GCL responds to the error by printing an appropriate message
and entering the interactive debugger, signaled by the double
caret prompt. Theuser responds immediately with the:q
debugger command, which quits the debugger, returning to the
top-level.

>(help) The user calls the general help function.

Welcome to Kyoto Common Lisp (KCL for short).

Here are the few functions you should learn first. ...
GCL responds to the(help) function by typing some general
help information, not all of which is shown here. Further help
is provided if the user follows through the help instructions.
Basically, simple help descriptions are available for all GCL
functions and environment variables.

>(bye) The functionbye exits the GCL environment, back to the
UNIX shell.

This concludes the initial scenario.Additional scenario-style examples will be used throughout the primer. Table 1
summarizes the significant points of this initial scenario, in particular, how to enter and leave the environment, and
how to return to the top-level when an error occurs.For details on the use of the Lisp debugger, and other advanced

Command Meaning

% gcl Run gcl from the UNIX shell to enter the Lisp environment.

>any legal Lisp expression Typing a legal L isp expression at the top-level of L isp results
in the evaluation of the expression and the printing of its value.

>any erroneous Lisp expression Typing an erroneous Lisp expression at the top-level of L isp
results in entry to the Lisp debugger.

>>:q The command:q exits the debugger, returning to the top-level
of Lisp.

>(load "unix-file") Theload function loads a Lisp file and evaluates its contents,
as if they had been typed directly at the top level.

>(help symbol) The help function provides information about built-in lisp
symbols, which include functions and environment variables.

>(bye) Thebye function exits gcl, back to the UNIX shell.

Table 1: Summary of Important Lisp Environment Commands.



CSC530-S02-Lisp Primer Page 5

environment commands, the reader should consult a manual.

3. Lexicaland Syntactic Structure

Lisp has a very simple lexical and syntactic structure.Basically, there are two elemental forms in lisp -- the atom
and the list.An atom is one of the following:

• an identifier, comprised of one or more printable characters

• an integer or real number

• a double-quoted string

• the constants t and nil

For example, the following are legal L isp atoms:

10
2.5
abc
hi-there
"hi there"
t
nil

Notice the dash used inhi-there. In Lisp, identifiers may contain most any printable character. This is possible
because of the different form of expression syntax used in Lisp, as will be described shortly. The constantst and
nil represent the boolean values true and false, respectively. nil also represents the empty list, in addition to
boolean false. Thisoverloading ofnil is similar to the overloading of0 in C, where0 represents both boolean
false and the null pointer.

A Lisp list is comprised of zero or more elements, enclosed in matching parentheses, where an element is an atom or
(recursively) a list. For example, the following are legal l ists:

()
(a b c)
(10 20 30 40)
(a (b 10) (c (20 30)) "x")
(+ 2 2)

Note that list elements need not be the same type.That is, a list is aheterogeneouscollection of elements.Note also
the last of the examples. Itis a three-element list that is also an executable expression. Thecommonality of expres-
sions and data in Lisp is a noteworthy feature that we will examine further in upcoming examples.

3.1. Expression and Function Call Syntax

Lisp uses a uniform prefix notation for all expressions and function calls.In CJ, and most other programming lan-
guages, built-in expressions use infix notation.The purely prefix notation of Lisp may seem awkward at first to CJ
programmers. Thefollowing examples compare expressions in Lisp and CJ:

Lisp CJ Remarks

(+ a b) a + b Call the built-in addition function with operands a and b.

(f 10 20) f(10, 20) Call the function named f, with arguments 10 and 20.

(< (+ a b) (- c d)) (a + b) < (c - d) Evaluate (a+b)<(c-d).

The following is the general format of a Lisp function call, including any expression that uses a built-in operator:

(function-name arg
1

... arg
n
)

A function call is evaluated as follows:

1. Thefunction-nameis checked to see that it is bound to a function value. Suchbinding is accomplished by



CSC530-S02-Lisp Primer Page 6

defun. If the name is so bound, its function value is retrieved.

2. Eachof thearg
i
is evaluated.

3. After argument evaluation, the value of eacharg
i
is bound to the corresponding formal function parameter.

This binding is accomplished using acall-by-valueparameter discipline.3

4. Finally, after parameter binding is complete, the body of the function is evaluated, and the resulting value is
that of the last (only) expression within the function body.

This method of function evaluation is quite similar to CJ, including the fact that call-by-value is the only standard

binding discipline4.

3.2. TheQuote Function

There is a potential problem with Lisp’s ultra-simple syntax.Viz., there is no syntactic difference between a list as a
data object and a list as a function call.Consider the following example

>(defun f (x) ... ) Define a function f
F

> (defun g (x) ...) Define a function g
G

Given these definitions, what does the following Lisp form represent?

(f (g 10))

Is it

(a) A call to function f, with the two-element list argument (g 10)?
(b) A call to function f, with an argument that is the result of a call to function g with argument 10?

The answer is (b).That is, the default meaning for a plain list form in Lisp is a function call.To obtain the alternate
meaning (a) above, we must use the Lispquotefunction (usually abbreviated as a single quote character) to indicate
that we want to treat a list as a literal datum.I.e., the following form produces meaning (a) above:

(f ’(g 10))

which is equivalent to the spelled-out form

(f (quote (g 10)))

Thequote function is somewhat more general than presented above. That is,quote is used for more than distin-
guishing a list data object from a function call.Specifically, quote is the general means to prevent evaluation in
Lisp. Thereare three contexts in which Lisp performs evaluation:

1. Thetop-level read-eval-print loop performs evaluation.

2. Whena function is called, each of its arguments is evaluated.

3. Anexplicit call to theeval function performs evaluation (see Section 9.1).

Upcoming examples will further clarify the use of thequote function.

3.3. Nomain Function Necessary

In CJ, a distinguished function namedmain must be supplied as the top-level of program execution. InLisp, no
main function is necessary. Rather, the programmer simplydefun’s and/orloads as many functions as desired at

3 Section 11.6 describes how call-by-reference parameter passing can be achieved for lists, using destructive list operations.

4 In C++, as opposed to plain C and Java, there is call-by-reference, but it’s generally seen as an application of the C++ reference
mechanism as opposed to being a specific parameter-passing discipline.



CSC530-S02-Lisp Primer Page 7

the top-level of the Lisp interpreter. To start a Lisp program, any defined function can be called.

In terms of overall program structure, Lisp is similar to plain C in that a program is defined as a collection top-level
function declarations.Lisp is different from C++ and Java in that there are no class definitions; all functions are
declared as top-level entities.

4. Arithmetic, Logical, and Conditional Expressions

Lisp has the typical set of arithmetic and logical functions found in most programming languages.The following
table summarize them:

Function Meaning

(+ numbers) Return the sum of zero or more numbers. If no arguments are given, return 0.

(1+ number) Returnnumber+ 1.

(- numbers) Return the difference of one or more numbers, obtained by subtracting the second and
subsequent argument(s) from the first argument. Ifone argument is given, the argument
is subtracted from 0 (i.e, the numeric negation of the argument is returned).

(1- number) Returnnumber- 1.

(* numbers) Return the product of zero or more numbers. If no arguments are given, return 1.

(/ numbers) Return the quotient of one or more numbers, obtained by dividing the second and subse-
quent argument(s) into the first argument. Ifone argument is given, the argument is di-
vided into 1 (i.e, the reciprocal of the argument is returned).

There are a host of other arithmetic, logical, and string-oriented functions in Common Lisp.Consult a Common
Lisp manual for details.

4.1. Type Predicates

While there are no type declarations in Lisp, Lisp values do have types, and it is often necessary to determine the
type of a value. Thefollowing table summarizes the important Lisp type predicates.

Function Meaning

(atomexpr) Returnt if expr is an atom,nil otherwise.(atom nil) returnst.

(listp expr) Returnt if expr is a list,nil otherwise.(listp nil) returnst.

(null expr) Returnt if expr is nil, nil otherwise.

(numberpexpr) Returnt if expr is a number, nil otherwise.

(stringpexpr) Returnt if expr is a string,nil otherwise.

(functionpexpr) Returnt if expr is a function (defined with defun),nil otherwise.

There are other type predicates in Common Lisp.Consult a manual for details.

4.2. Thecond Conditional Control Construct

Lisp has a flexible conditional expression calledcond. It has features of both if-then-else and the switch statement
in CJ. The general form ofcond is the following:

(cond ((test-expr
1
) expr

1
... expr

j
)

. . .
( (test-expr

n
) expr

1
... expr

k
)

The evaluation of cond proceeds as follows:



CSC530-S02-Lisp Primer Page 8

1. Evaluate eachtest-expr in turn.

2. Whenthe first non-niltest-expr is found, the corresponding expression sequence is evaluated.

3. Thevalue ofcond is the value of the lastexpr
i
evaluated.

4. If none of thetest-exprs is non-nil, then the value of the entirecond is nil.

Upcoming examples illustrate practical usages ofcond.

4.3. Equality Functions

Lisp has a different type of equality for each type of atomic data, and two forms of equality for lists.The following
table summarizes them

Function Meaning

= numeric equality

string= stringequality

equal generalexpression equality (deep equality)

eq same-objectequality (shallow equality)

The difference betweeneq andequal is a subtle but important one.Viz., two lists areeq if they are bound to the
same object, whereas they are equal if they hav ethe same structure.This concept will be reconsidered after we
have seen more about lists and the concept of binding.

5. FunctionDefinitions

The introductory scenario illustrated two simple function declarations.The general format of function declaration in
Lisp is:

(defunfunction-name(formal-parameters) expr
1

... expr
n

)

As an initial example, here is a side-by-side comparison of a simple function declaration in Lisp and CJ:

Lisp: CJ:

(defun f (x y) int f(int x,y) {
(plus x y) return x + y

) }

As has been noted, there are no explicit type declarations in Lisp.Hence, where CJ declares the return type of the
function and the types of the formal parameters, Lisp does not.Evidently, the parameters must be numeric (or a
least addable), since the body of the function adds them together. Howev er, the Lisp translator does not enforce any
static type requirements on the formal parameters.Any addition errors will be caught at runtime.

Notice the lack of a return statement in the Lisp function definition.This owes to Lisp being an expression language
-- i.e., every construct returns a value. Inthe case of a function definition, the value that the function returns is what-
ev er value its expression body computes.No explicit "return" is necessary. This typically takes some getting
used to for CJ programmers.

Further function definitions appear in forthcoming examples, wherein additional observations are made.

6. Listsand List Operations

As described earlier, the list is the basic data structure in Lisp.Common Lisp does support other structures, includ-
ing arrays, sequences, and hash tables.These structures provide more efficiency than lists, but no fundamentally
new expressive power over lists. SubstantialLisp applications can be and have been implemented using no data
structure other than the list.



CSC530-S02-Lisp Primer Page 9

This primer describes the important list operations, and shows how lists can be easily used to represent the major
built-in data structures of CJ -- arrays, structs, and pointer-based structures.The reader should consult a Lisp man-
ual for discussion of the other Lisp data structures.

6.1. TheThr ee Basic List Operations

There are only three fundamental list operations, from which all others can be derived:

Operation Meaning

car return the first element of a list

cdr return everything except the first element of a list

cons construct a new list, given an atom and another list

The following fundamental relationships exist between the three list primitives:

• (car (cons X Y)) = X

• (cdr (cons X Y)) = Y

The initial CJ-programmer reaction to these primitives may well be "Is that all?".In a formal sense, the answer is
"Yes". Thatis, any list operation, including operations on complicated structures, can be built upon these three
primitives. Thepractical answer to the question is of course "No".While it is theoretically possible to derive all list
operations from these primitives, it would be silly for regular Lisp programmers to do so.Hence, Common Lisp
provides a generous library of higher-level l ist functions, the important ones of which are described in the primer.

Despite the existence of higher-level functions, the primitive operations are not simply relics.They are still regu-
larly used in even sophisticated programming.In particular, there is a fundamental idiom in Lisp called "tail recur-
sion" that uses a combination of car, cdr, and recursion to iterate through a list.This tail recursion idiom is compara-
ble to array iteration in CJ, using a for- or while-loop. Considerthe following initial example:

(defun PrintListElems (l)
(cond ( (not (null l))

(print (car l)) (PrintListElems(cdr l))
)

)
)

This Lisp function is semantically comparable to the following CJ function:

void PrintArrayElems(int a[], int n) {
int i;
for (i=0; i<n; i++)

printf("9d", a[i]);5

}

Using PrintListElems as an example, the tail recursion idiom goes like this:

1. Startby checking if the list being processed is nil.

2. If so, do nothing and return from the function.If any recursive calls have been made to this point, this
"return-on-nil" check starts the recursive unwinding process, in effect terminating the list iteration.

3. If the list is non-nil, then do what needs to be done to the first element of the list (thecar), and then recurse
on the rest of the list (thecdr, a.k.a. thetail). In this case, what "needs to be done" is just printing, but in
general it could be any processing.

5 Theprintf function is C’s version ofSystem.out.println in Java. The first argument toprintf is a formating string,
the details of which are not important here.



CSC530-S02-Lisp Primer Page 10

A few other observations can be made about the CJPrintArrayElems function as compared to its Lisp counter-
part,PrintListElems. First, it is clear that the two functions are not semantically identical, in that the CJ func-
tion uses iteration to traverse the array, where the Lisp version uses recursion to traverse the list.While it is possible
to use iteration in Lisp, and in turn possible to use tail recursion in CJ, each language has its most typically used
idiomatic forms. In Lisp, recursive traversal of lists is the idiom of choice.In CJ, iterative traversal of arrays (and
other linear collections) is more typically used than recursive traversal.

A second observation regards the need for the additional integer parameter to the CJ function.Since there is no

automatic way in C/C++6 to test for the end of an array, it is typical for array processing functions to be sent both an
array, and the number of array elements to be processed.In the tail-recursive Lisp version, reaching the end of the
list is a natural occurrence, and no additional list-length parameter is needed.

Finally, the CJ version of this example only works on arrays of integers, whereas the Lisp version works on lists of
any type. Thereason is that Lisp’s weak typing provides a high degree of function polymorphism that is not avail-
able in plain C, and available in a more limited inheritance-based form in C++ and Java. A full discussion of poly-
morphic functions is beyond the scope of this primer, but its benefits are well known to Java and C++ programmers.

6.2. cXr forms

Programming with lists frequently requires composition of basic list operations.For example,(car (cdr L)) is
a commonly-used composition.For notational convenience, Lisp provides short-hand compositions, of the form

cXr

where theX can be replaced by two, three, or foura’s and/or d’s. For example,(cadr L) is the short-hand for
(car (cdr L)).

6.3. OtherUseful List Operations

The following table summarizes particularly useful built-in list operations.

Function Meaning

(appendlists) Return the concatenation of zero or more lists.Similar tocons, but cons re-
quires exactly two arguments.

(list elements) Return the concatenation of zero or more items, where items can include atoms.
Similar toappend, but append requires all but the last argument to be a list.

(memberelement list) Return the sublist oflist beginning with the first element oflist eq to element.

(lengthlist) Return the integer length oflist. Note thatlength works on the uppermost
level of a list, and does not recursively count the elements of nested lists.E.g.,
(length ’( (a b c) (d ( e f)) )) = 2.

(reverselist) Return a list consisting of the elements in reverse order of the given list.

(nthn list) Return thenth element oflist, with elements numbered from 0 (as in CJ arrays).

(nthcdrn list) Return the result ofcdring down list n times.

(assockey alist) Return the first pair P inalist such (car P) =key. The general form of an alist is(
(key

1
value

1
) ... (key

n
value

n
) ). See section 7.2 for further discussion of alists.

(sort list) Return thelist sorted.

6 Java, of course, provides the built-in array length operator.



CSC530-S02-Lisp Primer Page 11

6.4. DotNotation and the Internal Representation of Lists

The internal representation of lists within the Lisp translator is a linked binary tree.For example, the list(a b c
d) has the internal representation shown in Figure 1.In the figure, notice that the right pointer in the rightmost ele-
ment points tonil. By convention, this is the standard internal representation of a list, and it corresponds to how a
CJ programmer might think of implementing a Lisp-style list.Among other things, the rightmost nil pointer allows
any list-based function to find the end of a list reliably. (This is akin to how strings in C/C++ are always terminated
with a null character.)

The rationale for the binary representation is that it is a generally efficient low-level representation on most standard
computer architectures.In addition, the binary-tree representation has a long history in Lisp, and it has become the
internal standard.

There is an important question related to this internal representation.Viz., is it possible to create a binary tree that
violates the convention of the rightmost pointer being nil?The answer is yes, and it is done quite easily. Specifi-
cally, we use the standardcons function. For example, Figure 1 is the internal representation of(cons ’a ’b).

The next question is, what is theexternal representation of such a value. I.e.,if (cons ’a ’b) is entered at the
top-level of L isp, what is printed as the value? Theanswer is(a . b). That is, rather than a space separating the
elements, a dot is used.Hence, the name for this form of item is adotted pair. In general, the only way that a dotted
pair can be constructed is if we provide an atomic value as the second argument tocons, or to some function that
returns the value of acons.

So, at the internal representation level, what cons actually does is allocate a single binary-tree cell that can be part of
a linked tree structure.For this reason, these cells are calledcons cellsin Lisp terminology, or justcons’s for short.

Most of the time, we can get along just fine in Lisp without ever worrying about the dotted-pair level of l ist represen-
tation. Occasionally, we may unintentionally create a dotted pair instead of a list, in which case it is useful to know
what Lisp is doing.For example, suppose we want to append an atom onto the end of a list.If we use the cons
operation like this:

(cons ’(a b c) ’d))

we obtain the potentially unexpected result

((A B C) . D)

(a b c d).Figure 1: Internal representation of the list 

a

b

c

d nil

a b

Internal representatino of Figure 2: (cons ’a ’b).



CSC530-S02-Lisp Primer Page 12

The reason, again, relates to the precise meaning ofcons. Viz., (cons x y) produces the value(x . y). If y
is a list, the value is(x . (y)), which is written in normal list notation as(x y), and hence the dot is not a visi-
ble part of the value. Onthe other hand, ify is an atom in(cons x y), then there is no high-level l ist notation
for the result, and Lisp must use dot notation to accurately describe the value.

In practice, accidental and even intentional creation of dotted pairs is typically rare in Lisp.In the circumstances
where such creations do arise, it is necessary to understand dot notation in order to be clear about the values that
Lisp is manipulating.

There is another area in which an understanding of low-level l ist structure is necessary. This is in the use of the so-
calleddestructivelist operations, which are covered in Section 11.5 below.

7. Building CJ-Lik e Data Structures with Lists

This section of the primer demonstrates how Lisp’s simple list structure can be used to represent all of the common
built-in data structures found in modern programming languages.Specifically, we show how to use lists to represent
CJ arrays, structs, linked lists, and trees.

7.1. Arrays

Given the built-in nth function, CJ arrays are trivially represented as lists.While nth is a built-in library function,
it is instructive to consider its implementation in terms of the list primitives. Hereit is:

(defun my-nth (n l)
(cond ( (< n 0) nil )

( (eq n 0) (car l) )
( t (my-nth (- n 1) (cdr l)) )

)
)

The name has been changed, so as not to replace the built-in Lisp library function namednth. The algorithm uses a
tail recursive idiom to move over the firstn-1cars, returning thenth if it exists,nil otherwise. Notethe last alter-
native of thecond in the body ofmy-nth. Usingt as the test-expression is the standard way to make the last ele-
ment of acond an "otherwise" (a.k.a. "else") clause.

7.2. Structs7

A CJ-style struct can be represented by a list with the following general format:

( (field-name
1

value
1
) ... (field-name

1
value

1
) )

That is, we use a list of pairs, where each pair represents a struct field.

To make such structures useful, we need a couple functions to access and modify them, called getfield and setfield.
Here are their implementations:

; Return the first pair in a struct with the given field-name,
; or nil if there is no such field-name.
;
(defun getfield (field-name struct)

(cond
( (eq struct nil) nil )
( (eq field-name (caar struct)) (car struct) )
( t (getfield field-name (cdr struct)) )

)

7 For the Java-only programmer, consider a struct to be a class with all public data fields and no methods.



CSC530-S02-Lisp Primer Page 13

)

; Change the value of the first pair with the given field-name
; to the given value. No effect if no such field-name. Return
; the changed struct, without affecting the given struct.
;
(defun setfield (field-name value struct)

(cond ( (null struct) nil )
( (eq field-name (caar struct) )

(cons (cons (caar struct) (list value)) (cdr struct)) )
( t (cons (car struct) (setfield field-name value (cdr struct))) )

)
)

Thegetfield function uses a straightforward tail recursion, quite similar to themy-nth function we saw earlier.
Thesetfield function is worthy of some additional study, since it is representative of an important Lisp idiom --
non-destructive list modification.The basic strategy of thesetfield function is as follows.

a. First,make a copy of all fields up to, but not including the field to be changed.

b. Then make a new field, consisting of the old field name, and the new value.

c. Thencopy the rest of the fields following the one that was changed.

d. Assemblethe collection of copied and new fields into a list, and return the list as the value of the function.

An important property of the list operations we have seen thus far is that they are non-destructive. That is, these
operations never change the value of any list parameter. Rather, they only access existing lists, or create new lists.
The setfield function, as written above, is similarly non-destructive. Rather than change its list (i.e., struct)
parameter, it constructs a new list, according to the strategy outlined above.

Lisp does have destructivelist operations, that do change list parameters.These operations are discussed in Section
11.5 below.

While this development of CJ-like structs has been instructive, it is in fact largely unnecessary. As might be
expected, Lisp has a number of built-in functions to operate on struct-like data structures.The standard terminology
used in Lisp for such structures is thealist, which stands forassociation list. The general form of an alist is:

( (key
1

value
1
) ... (key

n
value

n
) )

That is, alists and our CJ-like structs have the same structure.The built-in assoc function performs precisely the
same function asgetfield. A destructive, i.e, in-place, form ofsetfield is considered in Section 12.6.

7.3. Linked Lists and Trees

CJ programmers generally earn their keep by building pointer-based structures8. In Lisp, any pointer-based structure
can be represented using a list, owing fundamentally to the fact that lists may recursively contain other lists, to an
arbitrary level of recursion.

This primer will not present a formal and exhaustive comparison of recursive lists and pointer-based structures.
Rather, we will look at two representative examples of pointer-based structures, by which the reader should be con-
vinced that lists can at least go quite a way towards handling pointer-based structures.

8 reference-basedstructures in Java terminology



CSC530-S02-Lisp Primer Page 14

(a (b (c d) e) (f g h) i)

a

b f i

c

d

e g h

Lisp:

Corresponding
         Graphic:

Figure 3: Sample Lisp Representationof an N-Ary Tree.

7.3.1. Linked Lists

CJ-style singly-linked lists are trivial in Lisp. Viz., they are just plain lists.And, if we consider the underlying dot-
notation level, Lisp lists are in fact implemented using pointers, in a way that pointers are typically used to imple-
ment lists in CJ.

7.3.2. N-AryTr ees

An n-ary tree can be represented using a recursive list of the following form:

( root subtree
1

... subtree
n

)

For example, Figure 3 shows an example n-ary tree, and its corresponding graphic representation.It is left as an
exercise for the reader to design some basic tree access and manipulation functions.Since tree data structures are
one place in CJ where recursion is used regularly, the Lisp implementation of tree functions will have some notice-
able similarity to tree implementations in CJ, except in Lisp things are a bit simpler.

While it is possible to generalize the n-ary tree structure to cover a wide range of pointer-based structures, there is
one important class that cannot be covered easily -- cyclic structures.While it is possible to represent cyclic struc-
tures without non-destructive list processing, it is rather cumbersome to do so.Hence, the complete coverage of
pointer-based structures relies on the list operations discussed in Section 11.5 below.

8. A Multi-Function List-Pr ocessing Example

As an illustration of typical list programming style, a multi-function example is shown if Figure 4. The collection of
functions performs a merge sort on a list that contains orderable elements, where orderable means they can be com-
pared with the< operator. The lines of the program are numbered for reference in the discussion that follows.

Line 1 defines the topmost function of the collection,merge-sort, that takes one list argument. Lines2 through 5
are the recursive implementation ofmerge-sort. Line 3 is a typical end-of-recursion check for an empty list.
Line 4 is the base case, where we are trivially sorting a list of length 1, which means we return the list itself.Line 5
is the crux of the merge sort algorithm.Here a two-way recursion is used, in contrast to the one-way tail recursion
we have seen in previous list-processing examples. Thelogic of line 5 should read reasonably easily. Viz., the
recursive task is to subdivide the input list into two halves, sort each, and them merge them back together using the
auxiliary functionmerge-lists.

merge-lists is also a fundamental part of the algorithm.It is a tail-recursive function that merges two sorted
lists by taking each element of the first list and inserting it in its proper ordered position in the second list.The tail
recursion, on line 11, is used to iterate through the elements of the first list.As the iteration takes place, the auxil-
iary functionordered-insert is called.

ordered-insert is another simple tail-recursive function. Itstask is to insert an element in the its proper ordi-
nal position within a list.Its processing is similar to thesetfield function discussed earlier. Viz., ordered-



CSC530-S02-Lisp Primer Page 15

1 (defun merge-sort (l)
2 (cond
3 ((null l) nil)
4 ((eq (length l) 1) l)
5 (t (merge-lists (merge-sort (1st-half l)) (merge-sort (2nd-half l))))
6 )
7 )
8
9 (defun merge-lists (l1 l2)
10 (cond ((null l1) l2)
11 (t (merge-lists (cdr l1) (ordered-insert (car l1) l2)))
12 )
13 )
14
15 (defun ordered-insert (i l)
16 (cond ((null l) (list i))
17 ((< i (car l)) (cons i l))
18 (t (cons (car l) (ordered-insert i (cdr l))))
19 )
20 )
21
22 (defun 1st-half (l)
23 (1st-half1 l (floor (/ (length l) 2)))
24 )
25
26 (defun 1st-half1 (l n)
27 (cond ((eq n 0) ’())
28 (t (cons (car l) (1st-half1 (cdr l) (- n 1))))
29 )
30 )
31
32 (defun 2nd-half (l)
33 (nthcdr (floor (/ (length l) 2)) l)
34 )
35
36

Figure 4: Collection of Functions to Perform Merge Sort of a List.

insert takes in a single element and a sorted list as inputs.For its return value, it constructs a new list composed
of all elements less than the input element,cons’d with the input element,cons’d with the rest of the input list.

Lines 22 through 30 illustrate a typicalfunction/function1idiom. This form of function pairing is used in cases
where a single property is needed to help with further recursive processing. For example, in this case it is easier to
to compute the first half of a list if we know how many elements there are in it.Hence, the1st-half function on
lines 22 through 23 computes how many elements are in the half, and passes the work on to1st-half1. 1st-
half1 uses simple recursion to cons up the the firstn elements of its given list, wheren is provided by1st-half.

Finally, the one-liner2nd-half uses the librarynthcdr function directly (line 33).

9. BasicInput and Output

The following table summarizes the basic Lisp I/O functions:



CSC530-S02-Lisp Primer Page 16

Function Meaning

(read [stream]) Read from the given stream, if specified, or from stdin otherwise.

(print expr [stream]) Print a newline followed by the value ofexpr to the given stream, if specified, or
to stdout otherwise.

(princexpr [stream]) Like print, but without the leading newline.

(terpri [stream]) Print a single newline tostreamor stdout; (highly anachronistic name).

(pprintexpr [stream]) "Pretty" print the value of expr to the give stream; "pretty" means format the
parenthesized structure of a large value in human-readable form.

(openfilename) Return a stream (usable in functions above) open on the given filename, which is
specified as a string.

10. Programs as Data

As noted earlier, Lisp lists and function calls are syntactically identical.For example, the expression "(+ 2 2)"
can be regarded in two equally valid ways: a three-element data list, containing the atoms ’+’, 2, and 2; a function
call that applies the operator ’+’ to the arguments 2 and 2.In the first form, the list is "data", whereas in the second
form it is a "program".

Not only do programs and data look alike in Lisp, they can be manipulated interchangeably. To this end, Lisp pro-
vides functions that evaluate a list data object as a program.

A l imited form of the programs-as-data concept is available in C/C++ through the use of function pointers, and in
Java through the use of reflection.In C/C++, the value of a function can be assigned to a variable or passed as an
actual parameter to another function.In Java, functions (a.k.a., methods) can be treated as first-class objects using
the facilities of thejava.lang.reflect package. Ifwe think of a function pointer (method value) as a "pro-
gram", then assigning it to a variable is treating it as "data".

Lisp takes the concept of programs-as-data to its logical conclusion.In Lisp, anyexpression can be treated equally
well as programor data. Lispprovides two functions to explicitly evaluate a data object --eval andapply.
These functions take data objects that look like programs and evaluate them as such.

10.1. Eval

The callableeval function is exactly the same as theeval in Lisp’s top-level read-eval-print loop. eval is an
extremely powerful function in Lisp, since it effectively puts the power of the full Lisp translator at the disposal of
the programmer. We can construct any leg al L isp expression, and then give it to eval to be executed. Ifwe had the
equivalent power in CJ, we would be able to build a piece of CJ program at runtime, call the CJ compiler (as a func-
tion) to compile it, and then execute the result of the compilation, all while the original program is still running.

As an illustration of the power of eval, suppose we would like to build a simple desk calculator program, where the
user could input the name of a calculator operation (such as + or -), followed by the values to be operated on.Here
is a functioncalc that illustrates how eval could be used in such a calculator program.

>(defun calc ()
(print "Input the name of an operation and its two operands:")(terpri)
(eval (list (read) (read) (read))))

>(calc)
Input the name of an operation and its two operands:
+ User input for first read
2 User input for second read
2 User input for third read

4 Result of the call to calc



CSC530-S02-Lisp Primer Page 17

What happens here is that a list is constructed out of the three inputs that are read in.Since this list is the legal
expression(+ 2 2), it can be given to eval for evaluation.

The reader should consider how the function calc could be written in CJ.It is considerably longer than three lines.

10.2. Apply

When the full power ofeval is not needed, there is a "junior" function namedapply. Apply is slightly less pow-
erful thaneval, in thatapply takes the name of a function and a list of its arguments, and applies the function to
them. E.g.,

(apply ’+ ’(2 2))

produces 4.

apply provides a capability similar to that available in C/C++ with invocation through function pointers, and in
Java via Method.invoke. Howev er, Lisp’sapply is a good deal more powerful than function invocation in CJ,
since built-in as well as user-defined functions can be given to apply in the first argument. InCJ, only user-defined
function names or function pointer (method) variables can be applied to arguments.

11. Scopingwith Let

Common Lisp provides two scoping constructs similar to the curly-brace scoping block in CJ.The constructs are
let andprog. Thelet block is described here andprog is defined in the next section on imperative features.
Thelet expression has the following general format:

(let ( [ [ (]var
1

[val
1
)] ... [(]var

n
[val

n
)] ] ) expr

1
... expr

n
)

The square brackets indicate optional constructs, so that the elements of the first let subexpression can be either sin-
glevars or (var val) pairs.

The evaluation oflet proceeds as follows:

1. Eachof theval
i
is evaluated and bound to the correspondingvar

i
.

2. Thesebindings are done "in parallel", not in left-to-right sequential order.

3. If any val
i
is missing, then thevar

i
is bound to nil.

4. After the bindings are are completed, theexpr
i
are evaluated sequentially.

5. Thevalue of the let is the value ofexpr
n
.

As an example, here is a side-bye-side comparison of a Lisplet expression and a comparable CJ block:

Lisp: CJ:

(let {
( i  int i;
(j 10) int j = 10;
(k 20) ) int k = 20;

expr
1

stmt
1

... ...
expr

n
stmt

n

) }

The placement oflet in Lisp is essentially the same as the placement of curly-brace blocks in CJ.That is,let is
most typically used as a function body, but is not limited to this usage.A let may appear anywhere an expression
is legal in Lisp, in the same way that a block may appear anywhere that a statement is legal in CJ.



CSC530-S02-Lisp Primer Page 18

As explained above, the binding oflet variables is carried out in parallel.In particular, this means that noval
expression can use the result of a preceding binding in the samelet. For example, if variablex has no previous
global binding, then the following let is erroneous, since the binding ofx is not available for use in bindingy:

(let ( (x 10) (y x) ) ... )

In some circumstances, it might well be useful to have let evaluate the bindings sequentially, rather than in paral-
lel, so that this example would in fact work (i.e.,y would be bound to 10).This behavior is available in thelet*
expression. Specifically, let* evaluates the same aslet except that var/val bindings are performed sequentially
rather than in parallel.

In the terminology of functional programming, thelet expression is asingle assignmentconstruct. Without the use
of assignment statements within the body of thelet expression, thelet variables are only bound (i.e., assigned to)
a single time, at the beginning of thelet. This means that thelet construct itself is side-effect free, in contrast to
the imperative features of Lisp we are about to discuss.

12. Imperative Features

The Lisp features presented thus far provide all the power that is necessary to write serious Lisp programs.These
features comprise the what is called thefunctionalor pure subset of lisp.A detailed discussion on the difference
between functional and imperative languages is beyond the scope of this primer. What can be said is that there are a
number of compelling advantages to using only, or primarily, Lisp’s functional constructs.

Since CJ is an imperative language, the imperative features of Lisp make it a much more "CJ-like" language.In fact,
using these imperative features, it is possible to write programs in a style very much like CJ. However, such a style
may be counter-productive in many cases. For example, it is frequently more natural to use recursion in Lisp to iter-
ate through the elements of a list, rather than the more CJ-like do loop described below. In any case, it is a mistake
for the CJ programmer to cling tightly to the CJ-like imperative features of Lisp, since much of the power and ele-
gance of Lisp will be lost in doing so.

12.1. AssignmentStatements

Thesetqfunction is the Lisp assignment statement.For example, the following Lisp expression

(setq x (+ 2 2))

is equivalent to the CJ assignment statement:

x = 2 + 2;

Since variables are not declared in Lisp, the first assignment to a variable serves to declare it, as well as initialize it.
In Lisp terminology, the assignment of a value to a variable is calledbinding. Hence,setq is said tobind the value
of its second argument to the variable in its first argument.

A more general form of assignment in Common Lisp is available through thesetf function. It is more general
sincesetq must have an atom as its first argument, whereas the first argument tosetf can be an arbitrary l-value.
That is,setf can be used to assign to any place in a cons cell.Consider the following example:

>(setq x ’(a b c))
(A B C)

>(setf (cadr x) 10)
10

>X
(A 10 C)

As can be seen in the resulting value of x, thesetf functions results in a permanent (a.k.a., destructive) change to
the cadr of x. To accomplish change,setf has accessed the pointer-level representation of the value of x, and
changed (destructively) the second element.Given this behavior, setf belongs in the category of destructivelist
operations, defined below.



CSC530-S02-Lisp Primer Page 19

12.2. Detailsof Scope and Binding

There are no explicit declarations for global variables is Lisp.Whenever a variable is bound at the top-level of the
Lisp interpreter, it becomes a global variable. Considerthe following example.

>(defun f (x y) (+ x y z))
F

>(setq x 1) Bind x at top-level, making it global.
1

>(setq y 2) y is global
2

>(setq z 3) z is global
3

>(f 10 20)
33

In functionf, x andy are the formal parameters.Just as in CJ, all function parameters have local scope. Hence,as
in CJ, the references tox andy within the body of functionf are to the parameters, not to the globally boundx and

y. Also as in CJ, references within a function to non-locals are references to globally-bound variables9. Thus, when
functionf is called in the above example,x is locally bound to 10,y is locally bound to 20, andz is globally bound
to 3.

In Lisp terminology, the variablez is said to befree in functionf. Because there are no explicit declarations in
Lisp, there is a subtle but important difference between a free variable in a Lisp and a global variable in CJ.Namely,
in Lisp, a free variable need not exist when a function that references it is declared.For example, the functionf
above is declared before its free variablez is ever bound. Freevariables must be bound before a referring function
is evaluated. If not, then an "unbound variable" error occurs.

12.3. Prog

The Lispprog expression is a more imperative version of thelet expression described earlier. Using prog in
Lisp, it is possible to write very CJ-like sequences of expressions, including the use ofgotos as in C/C++. There
are no actual "statements" in Lisp, only expressions, the difference being that an expression always returns a value
whereas a statement does not.Given the imperative nature of expressions likesetq andgo, they can be used effec-
tively like statements within aprog. The general format of a Lispprog is the following:

(prog ((var
1

val
1
)) ... (var

n
val

n
) expr

1
... expr

k
)

The first argument toprog is a possibly empty list of local variable bindings.Before theprog is executed, each
val

i
is bound to the correspondingvar

i
. The scope of these variables is entirely local to the prog.Once the locals are

bound, eachexpr
i
is evaluated.

The CJ analog of Lisp’s prog is the compound statement.Here is a side-by-side example that illustrates the similar-
ity between Lisp prog and CJ compound block:

9 Java programmers may delude themselves that Java does not have truly global variables in the raw sense of C or C++; such is
indeed a delusion, given that a static public data field is just a "dot away" from being as global as it gets.



CSC530-S02-Lisp Primer Page 20

Lisp: CJ:

(prog {
((i 10) int i = 10;
(j 20.5) float j = 20.5;
(k "xyz")) char* k = "xyz"

(setq i (+ i 1)) i = i + 1;
(setq j (1+ j)) j += 1;
(print (+ i j)) printf("20d", i + j);

) }

The default value of aprog expression isnil. It is possible to have a prog return a value other thannil using the
Lisp return function. It is important for CJ programmers not to confuse Lisp’s return with CJ’s. Thetwo are sim-
ilar, but not identical.Specifically, areturn in Lisp can only appear within an enclosingprog, not in a general
function body. When Lisp evaluates(return expr), it terminates theprog within which it is contained, and the
entireprog returns the value of thereturn expr. Lisp return’s will look much like CJ return’s, if a function
body consists of just a singleprog. Howev er, the Lispreturn returns from aprog NOT from a function.

The finalprog-related function isgo, which acts like a statement in C/C++.A simple example easily illustrates the
use of go:

(defun read-eval-print-loop ()
(prog ()

loop
(princ ">")
(print (eval (read)))
(terpri)
(go loop)

)
)

This istheread-eval-print loop for Lisp’s top-level. Nasty, but slick.

12.4. Iterative Control Constructs

There is a very CJ-like iteration function in the imperative Lisp trick bag. It is calleddo, and it is a lot like CJ’s for
loop. Thegeneral format ofdo is:

(do ((var
1

val
1

rep
1
) ... (var

n
val

n
rep

n
)) exit-clause expr

1
... expr

k
)

Each (var
i
val

i
rep

i
) triple is similar to the semi-colon separated control expression of a CJ for loop.When thedo is

initially started, eachvar
i
is initialized to the correspondingval

i
.

After thevar
i
initialization, theexit-clauseis examined. Itis of the general form:

([test[exit
1

... exit
m
]])

If the entire exit clause isnil, then thedo terminates immediately. Otherwise, thetestexpression is evaluated, as
anuntil test. Thatis, if test is non-nil, then thedo is ready to terminate.Just prior to termination, theexit

p
expres-

sions are executed in order, and the value of the last one of these is the return value of thedo.

If the until test is nil, then the body of thedo is executed, where the body consists of theexpr
j
. When the body

completes one cycle of execution, eachvar
i
is rebound to the correspondingrep

i
, and the test cycle of the preceding

paragraph is repeated.

Here is a side-by-side comparison of a Lispdo and a comparable CJfor loop:



CSC530-S02-Lisp Primer Page 21

(do
    ((i 1
     (1+ i)))
    ((> i 10))
  (print i)
)

for
    (i = 1;
     i <= 10;
     i++) {
  printf("\n%d", i);
}

Lisp: CJ:

Note that the use of the parentheses in the Lispdo may seem a bit tricky at first. It is easy to forget the extra set of
parentheses around the binding triples and exit clause. For example, the following is a reasonable looking but erro-
neous version of the preceding example:

(print i))

missing parens missing parens

(do (> i 10)(i 1 (1+ i))

12.5. Destructive List Operations

Several sections above alluded to the so-called "destructive" l ist operations.Simply put, these operations provide
direct access to the internal pointer-based implementation of Lisp lists.The two primitive list destructors are
rplaca andrplacd, which stand for "replace car" and "replace cdr", respectively. Here is a summary of these
two, as well as some higher-level destructive operations:

Function Meaning

(rplacacons-cell expr) Destructively replace the car of thecons-cellwith expr and return the result.
(rplacdcons-cell expr) Destructively replace the cdr of thecons-cellwith expr and return he result.
(nconclists) Destructively change the last cons-cell of each of the given lists to point to the

next of the given lists. nconc is the destructive version ofappend.
(setfcons-cell expr) Destructively change the contents of the given cons-cellto the given expr, and

return the value ofexpr.

Here is a telling scenario of what can be done with these destructive operations:

>(setq x-safe ’(a b c))
(A B C)

>(setq y-safe x-safe)
(A B C)

>(setq x-safe (cons ’x (cdr x-safe)))
(X B C)

>y-safe Non-destructive change to x-safe does not affect y-safe.
(A B C)

>(setq x-unsafe ’(a b c))
(A B C)

>(setq y-unsafe x-unsafe)
(A B C)

>(rplaca x-unsafe ’x)
(X B C)

>y-unsafe Destructive change to x-unsafedoeseffect y-unsafe
(X B C)



CSC530-S02-Lisp Primer Page 22

>(setf (cadr y-unsafe) ’y) Another destructive change
Y

>x-unsafe
(X Y C)

>y-unsafe
(X Y C)

12.6. Call-by-Reference Parameters

Destructive list operations make it possible to achieve call-by-reference parameter passing, even though the Lisp
function evaluation mechanism only supports call-by-value. Any list passed to a function can be effectively treated
as a call-by-reference parameter by performing a destructive operation on it.

As an illustrative example, here is an alternative implementation of thesetfield function, defined earlier in the
primer. Here it is called dsetfield, to indicate its destructive semantics.

(defun dsetfield (field-name value struct)
(setf (cdr (assoc field-name struct)) (list value)))

12.7. Pointers Fully Revealed

In order to cope effectively with the power of destructive list operations, we must fully understand how Lisp man-
ages its list structures at the pointer level. Specifically, we must understand:

a. Exactlywhen new cons cells are allocated.

b. How pointers are used during variable and parameter binding.

c. How pointers are used in both destructive and non-destructive list functions.

New cons cells are allocated in one of two ways: (1) explicit application ofcons or a non-destructive constructor
function derived from cons; (2) the appearance of a literal list value anywhere in a program.

Whenever a list value is bound to a variable or formal parameter, the binding is via pointer copy. The process of
binding itself never creates new cons cells.For example, in an assignment such as

(setq x ’(a b c))

it is the creation of the literal list value that allocates the cons cells.What is assigned tox is a pointer to the list con-
taininga, b, and c. Whenever the list value of one variable is assigned to another variable, it is the pointer value
that is assigned, not a copy of the list. For example, variablesx, y, andz all point to the same list after the follow-
ing sequence of assignments is evaluated:

(setq x ’(a b c))
(setq y x)
(setq z y)

All list access functions, whether destructive or non-destructive, access lists via pointer manipulation, and they do
not allocate new cons cells. The critical distinction between destructive versus non-destructive functions is that a
non-destructive function never changes the value of a pointerinsidea cons cell, whereas a destructive function does.

To illustrate the above points in a succinct example, consider the following scenario:

>(setq x ’(a b c))
(A B C)

>(defun f (i j k)
(setf (cdddr k) (cdr j))
(setf (cadr j) i)
(setf (cdr j) k)
(setq z k)



CSC530-S02-Lisp Primer Page 23

nil
)
F

>(f x (cdr x) ’(a b c))
NIL

The three parts of Figure 5 show the following three snapshots of the list space as this scenario proceeds:

a. afterthe assignment tox, but before functionf has been called;

b. after f has been called, its parameters bound, but before its body has been executed;

c. afterthe execution off has finished.

It should be clear from this example that it is possible to make arbitrary spaghetti out of the list space using destruc-
tive list operations.One of the more unhappy aspects of building cyclic structures such as the one shown in Figure
4c is that all standard print functions will infinitely traverse them.This is in fact why the last line in the body of
functionf is nil. If that line is omitted, then the output off is k, becausek is the value of the last expression in
the body off. Sincek is an entry point into the cyclic structure, the read-eval-print loop will choke when attempt-
ing to print the return value off. As noted earlier, all standard list functions rely on the nil-termination structure of
lists in order to behave sensibly. When this structure is violated via destructive list manipulation, the programmer
must be keenly aware of the consequences.

An important consequence of Lisp’s internal pointer manipulation is that non-destructive operations are more effi-
cient than they might appear. For example, one invocation ofcons only takes enough time to allocate a single two-
element memory block, and copy two pointers into it.Hence, a cons operation such as this

(cons huge-list1 huge-list2)

takes the same (small) amount of time as any other cons operation.This is because cons, and its non-destructive
derivatives, do not copy all of their arguments to make new lists, just pointers to the arguments.

12.8. Caveat CJ Hack

While some Lisp programmers find destructive list operations indispensable, many others utterly decry their use.
For example, Robert Wilensky (author of the widely-usedCommon LISPcraft) does not introduce destructive list
operations until page 265 of his book, and he does so under the subheading "The Evil ofrplaca andrplacd".

Having seen Lisp’s imperative constructs, and the destructive list operations in particular, the die-hard CJ hack may
well be thinking "At last, something in Lisp I can sink my teeth into!".The most appropriate response to this is

a

b

c nil

a

b

c nil

a

b

c nil

xx i

j

k

a

b

c

a

b

nil

x z

a b c

Figure 5: Three Snapshots of the List Space.



CSC530-S02-Lisp Primer Page 24

"You better have strong teeth".C/C++ die-hards are well acquainted with the havoc that the misuse of pointers can
wreak. InJava, reference misuse wreaks less havoc than is possible in C, but Java programmer’s must still be mind-
ful of the side effects caused by changing values through references.Even though Java’s pointer manipulation is less
syntactically explicit than in C/C++, Java’s pointer-based processing is still fundamentally destructive in the Lisp
sense.

The destructive list operations in Lisp totally expose the pointer-level representation of Lisp lists.The indiscrimi-
nant use of these operations can easily reduce the design, implementation, and debugging of Lisp programs to the
awfulest levels of CJ. This is indeed a sad way to use an otherwise lovely functional language.


