
Software Architecture Improvement
thru Test-Driven Development:

An Empirical Study

A Ph.D. Research Proposal

April 7, 2005

David S. Janzen
M.S., EECS, 1993

University of Kansas

Ph.D. Dissertation Committee Members

Dr. Hossein Saiedian, Professor, Chair
Dr. Arvin Agah, Associate Professor

Dr. Perry Alexander, Associate Professor
Dr. John Gauch, Associate Professor

Dr. Carey Johnson, Associate Professor

Abstract

Despite a half century of advances, the software construction industry still shows
signs of immaturity. Professional software development organizations continue to
struggle to produce reliable software in a predictable and repeatable manner. While
a variety of development practices are advocated that might improve the situation,
developers are often reluctant to adopt new, potentially better practices based on
anecdotal evidence alone. As a result, empirical software engineering has gained
credibility as a discipline that provides scientific data about practice efficacy on
which developers can make critical decisions.

This research proposes to apply empirical software engineering techniques to
evaluate a new approach that offers the potential to significantly improve the state
of software construction. Test-driven development (TDD) is a disciplined software
development practice that focuses on software design by first writing automated
unit-tests followed by production code in short, frequent iterations. TDD focuses
the developer’s attention on a software’s interface and behavior while growing the
software architecture organically.

TDD has gained recent attention with the popularity of the Extreme Programming
agile software development methodology. Although TDD has been applied sporad-
ically in various forms for several decades, possible definitions have only recently
been proposed. Advocates of TDD rely primarily on anecdotal evidence with rela-
tively little empirical evidence of the benefits of the practice. A small number of
studies have looked at TDD only as a testing practice to remove defects. However,
there is no research on the broader efficacy of TDD. This research will be the first
comprehensive evaluation of how TDD effects overall software architecture quality
beyond just defect density.

My hypothesis is that TDD improves overall software quality including charac-
teristics such as extensibility, reusability, and maintainability without significantly
impacting cost and programmer productivity. I intend to examine this hypothesis
by designing and administering a series of longitudinal empirical studies with un-
dergraduate students and professional programmers.

Controlled experiments will be conducted in a set of undergraduate courses.
Student programmers will be taught to write automated unit-tests integrated with
course topics using a new approach which I am calling test-driven learning (TDL).
Formal experiments will then compare the quality of software produced with TDD

ii

ABSTRACT iii

to software produced with a more traditional test-last development approach. A
case study or controlled experiment will also be conducted with more experienced
programmers in a professional environment. In all of the studies, programmer per-
formance, attitudes toward testing, and future voluntary usage of TDD will also be
assessed.

The combination of studies in academic and professional environments will es-
tablish external validity of the research as well as provide valuable information re-
garding the effectiveness of TDD at various levels of maturity. The research should
also produce several important by-products including pedagogical materials, a frame-
work for future studies, and observations regarding TDD’s fit in the undergraduate
computer science curriculum.

Positive results from these studies have the potential of significantly improving
the state of software construction. For the first time, professional developers will be
able to examine empirical evidence of TDD efficacy both as a testing and as a design
practice. Additionally, computer science faculty will be encouraged to incorporate
TDD into curricula, resulting in better student design and testing skills. Improved
pedagogy combined with widespread adoption of TDD offer the potential of radically
improving the software engineering community’s ability to reliably produce, reuse,
and maintain quality software.

Table of Contents

1 Problem Definition 1
1.1 State of Software Construction . 1
1.2 State of Software Research . 2

1.2.1 Empirical Software Engineering . 3
1.3 Proposed Research . 3
1.4 Introduction to Test-Driven Development 3
1.5 Significance of Expected Contributions . 4
1.6 Summary of Remaining Chapters . 5

2 Test-Driven Development in Context 6
2.1 Definitions of TDD . 6

2.1.1 Significance of “Test” in TDD . 6
2.1.2 Significance of “Driven” in TDD . 7
2.1.3 Significance of “Development” in TDD 8
2.1.4 A New Definition of TDD . 8

2.2 Survey of Software Development Methodologies 9
2.3 Historical Context of TDD . 10

2.3.1 Early Test-Early Examples . 11
2.3.2 Incremental, Iterative, and Evolutionary Development 11

2.4 Emergence of Automated Testing Tools 12
2.5 Early Testing in Curriculum . 13
2.6 Recent Context of TDD . 14

2.6.1 Emergence of Agile Methods . 15
2.6.2 Measuring Adoption of Agile Methods 15

3 Related Work 17
3.1 Evaluative Research on TDD in Industry 17
3.2 Evaluative Research on TDD in Academia 18
3.3 Research Classification . 19

3.3.1 Definition of “Topic” Attribute . 19
3.3.2 Definition of “Approach” Attribute 20
3.3.3 Definition of “Method” Attribute . 20

iv

TABLE OF CONTENTS v

3.3.4 Definition of “Reference Discipline” Attribute 20
3.3.5 Definition of “Level of Analysis” Attribute 20

3.4 Factors in Software Practice Adoption . 20

4 Research Methodology 23
4.1 TDD Example . 23

4.1.1 Java Example . 23
4.1.2 C++ Example . 29

4.2 Test-Driven Learning . 29
4.3 Experiment Design . 39

4.3.1 Hypothesis . 39
4.3.2 Observations and Data Gathering 41
4.3.3 Assessment and Internal Validity 44

5 Research Plan 46
5.1 Schedule of Research Activities . 46
5.2 Challenges to Successful Completion . 46

5.2.1 Organizational Challenges . 46
5.2.2 Technical Challenges . 50
5.2.3 Motivational Challenges . 51
5.2.4 Temporal Challenges . 51

5.3 Potential Risks . 52

6 Evaluation, Contributions, and Summary 53
6.1 Evaluation and External Validity . 53
6.2 Expected Contributions . 54

6.2.1 Empirical Evidence of TDD Efficacy 54
6.2.2 Peer-Reviewed Publications . 55
6.2.3 Framework for Empirical TDD Studies 55
6.2.4 Curriculum Materials . 56

6.3 Summary . 56

Bibliography 56

A Test-Driven Learning 63
A.1 Introduction . 63
A.2 Related Work . 65
A.3 Test-Driven Learning and Test-Driven Development 66
A.4 TDL Objectives . 68

A.4.1 Rationale behind TDL . 69
A.4.2 Teach testing for free . 69
A.4.3 Teach automated testing frameworks 69
A.4.4 Encourage the use of TDD . 69

TABLE OF CONTENTS vi

A.4.5 Improve student comprehension . 69
A.4.6 Improve software quality . 69

A.5 TDL in Introductory Courses . 70
A.6 TDL for more advanced students . 71
A.7 Assessment of TDL . 76

A.7.1 Experiment Context and Design . 76
A.7.2 Observations and Analysis . 77

A.8 Conclusions . 78

List of Figures

4.1 Television Channel Guide Use Cases . 24
4.2 Television Channel Guide Java GUI . 24
4.3 Television Channel Guide C++ Screen Shot 24
4.4 Testing Show in Java . 25
4.5 JUnit GUI - All Tests Pass . 26
4.6 Java Show Class . 27
4.7 Testing Java Exceptions . 27
4.8 JUnit Exception Failure . 28
4.9 JUnit Test . 28
4.10 Testing Events in Java GUI . 30
4.11 Testing Events in Java GUI cont. 31
4.12 Java GUI . 32
4.13 Java GUI cont. 33
4.14 Java GUI Event Handling . 34
4.15 C++ Channel Guide . 35
4.16 C++ Channel Guide cont. 36
4.17 C++ Channel Guide Tests . 37
4.18 C++ Loop Example . 38
4.19 C++ Loop Example with Tests . 40

A.1 C++ Function with Assert . 72
A.2 C++ Program with Several Tests . 73
A.3 C++ Program with Objects and Tests in Multiple Scopes 74
A.4 Java Program Demonstrating Tree Traversal with JUnit 75
A.5 TDL Quiz 1 All . 78
A.6 TDL Quiz 1 with Exam above 73 . 79

vii

List of Tables

1.1 Standish Group Comparison of IT Project Success Rates 1

3.2 Summary of TDD Research in Industry . 18
3.3 Summary of TDD Research in Academia 19
3.4 Classification of TDD Research . 21

5.5 Remaining Period in Academic Year 2004–2005 47
5.6 Academic Year 2005–2006 . 48
5.7 Academic Year 2006–2007 . 49

A.8 TDL vs. Non-TDL All Students . 77
A.9 TDL vs. Non-TDL with Exam above 73 . 77

viii

1
Problem Definition

This chapter summarizes the problem to be solved, the solution approach, and the
expected contributions of this research. It provides a brief introduction to the test-
driven development strategy, summarizes the research to be conducted, and identi-
fies the significance of the expected contributions.

1.1 State of Software Construction

Software construction is a challenging endeavor. It involves a complex mix of cre-
ativity, discipline, communication, and organization. The Standish Group has been
studying the state of software projects since 1985 and their research demonstrates
the difficulty organizations have successfully completing software projects. Ta-
ble 1.1 compares 1995 statistics [1] with those from the third quarter of 2004 [2].
The 2004 numbers result from over 9,000 software projects from all around the
world (58% US, 27% Europe, 15% other) developed by a wide-range of organizations
(45% large, 35% mid-range, 20% small) in a variety of domains. Successful projects
are those that deliver the requested functionality on-time and within budget. Chal-
lenged projects are either late, over budget, and/or deliver less than the required
features and functions. Failed projects have been canceled prior to being completed
or they were delivered and never used.

As the table demonstrates, the state of software construction has improved con-

Year Successful Projects Challenged Projects Failed Projects

1995 16.2% 52.7% 31.1%
2004 29% 53% 18%

Table 1.1: Standish Group Comparison of IT Project Success Rates

1

CHAPTER 1. PROBLEM DEFINITION 2

siderably since 1994. However, still less than one third of all projects are completed
successfully and 18% or nearly one in five projects still fail completely.

Software construction has been compared to constructing buildings, bridges, and
automobiles among others. In his 1994 Turing Award lecture, Alan Kay opined that
software construction is similar in maturity to building the ancient Egyptian pyra-
mids where thousands of workers toiled for years to build a facade over a rough
inner structure. He compared this with the efficiency of constructing the Empire
State Building which took just over one year and about seven million man hours to
complete. He noted that the process was so efficient that the steel was often still
warm from the mills in Pittsburgh when it was being assembled in New York.

While the Empire State Building is a fantastic goal for software construction, there
are clearly many differences in the nature of skyscraper construction and software
construction. Plus we might note that the Empire State Building set a record for
skyscraper construction that still stands today. The point of Dr. Kay’s discussion
is still quite clear and consistent with the Standish numbers: software construction
has much room for improvement.

1.2 State of Software Research

Improving the state of software construction is of considerable interest not just in
professional software development organizations. Much research has been and con-
tinues to be conducted. However, as Brooks points out in his classic 1987 paper [30],
most software research focuses on the wrong topics if we want to improve the state
of software construction. Brooks classifies software activities as essential and ac-
cidental tasks. Essential tasks focus on conceptual structures and mechanisms for
forming abstractions with complex software, while accidental tasks focus more on
technologies that facilitate mapping abstractions into actual programs.

In the years since Brooks’ paper, there is still much attention on accidental tasks.
Web services, modern integrated development environments, and new languages
such as Java and C# are just a few examples. Professional training courses are
still predominantly focused on new technologies, and undergraduate curriculums
continue to emphasize many technical skills while paying relatively little attention
to more conceptual and organizational skills such as software design and software
development methods.

Attention has been drawn, however, to many essential tasks such as visual model-
ing, software organization, and development methods. The context for the research
proposed in this paper in fact lies in the very iterative and evolutionary types of
development models that Brooks was advocating.

Unfortunately few new ideas are thoroughly examined. As Gibbs wrote in 1994,
“after 25 years of disappointment with apparent innovations that turned out to be
irreproducible or unscalable, many researchers concede that computer science needs

CHAPTER 1. PROBLEM DEFINITION 3

an experimental branch to separate the general results from the accidental.” [72]

1.2.1 Empirical Software Engineering

Empirical software engineering has emerged as a valuable research discipline that
examines ideas in software engineering. While empirical studies will rarely produce
absolute repeatable results, such studies can provide evidence of causal relation-
ships, implying results that will most likely occur in given contexts.

Empirical software engineering projects have received significant government
and corporate funding. Research centers have been founded such as the “NSF Center
for Empirically-Based Software Engineering” and the “Centre for Advanced Software
Engineering Research.” Many journals such as IEEE Transactions on Software En-
gineering specifically request empirical studies and Springer publishes a dedicated
journal titled “Empirical Software Engineering: An International Journal.”

1.3 Proposed Research

This research proposes to apply empirical software engineering techniques to exam-
ine a new approach that holds promise to significantly improve the state of software
construction. Test-driven development is a relatively new, unstudied development
strategy that has caught the attention of a number of prominent computer scien-
tists. Steve McConnell in his 2004 OOPSLA keynote address included test-driven
development as the only yet-to-be-proven development practice among his top ten
advances of the last decade.

The next section will briefly introduce test-driven development and the remainder
of this proposal will outline how empirical software engineering practices will be
applied to examine test-driven developments efficacy or ability to produce desirable
results. In particular this research will assess how well test-driven development
improves software design quality while also reducing defect density, and whether
these improvements come with a cost of increased effort or time.

1.4 Introduction to Test-Driven Development

Test-driven development (TDD) [16] is a software development strategy that requires
that automated tests be written prior to writing functional code in small, rapid itera-
tions. Although TDD has been applied in various forms for several decades [48] [33],
it has gained increased attention in recent years thanks to being identified as one of
the twelve core practices in Extreme Programming (XP) [15].

Extreme Programming is a lightweight, evolutionary software development pro-
cess that involves developing object-oriented software in very short iterations with

CHAPTER 1. PROBLEM DEFINITION 4

relatively little up front design. XP is a member of a family of what are termed ag-
ile methods [14]. Although not originally given this name, test-driven development
was described as an integral practice in XP, necessary for analysis, design, and test-
ing, but also enabling design through refactoring, collective ownership, continuous
integration, and programmer courage [15].

In the few years since XP’s introduction, test-driven development has received
increased individual attention. Besides pair programming [75] and perhaps refac-
toring [29], it is likely that no other XP practice has received as much individual
attention as TDD. Tools have been developed for a range of languages specifically
to support TDD. Books have been written explaining how to apply TDD. Research
has begun to examine the effects of TDD on defect reduction and quality improve-
ments in both academic and professional practitioner environments. Educators have
begun to examine how TDD can be integrated into computer science and software
engineering pedagogy. Some of these efforts have been in the context of XP projects,
but others are independent.

1.5 Significance of Expected Contributions

Test-driven development advocates claim that TDD is more about design than it is
about testing. The fact that it involves both design and testing indicates that if it
works, there are many benefits to be gained.

Software development organizations are hard-pressed to select the most effec-
tive set of practices that produce the best quality software in the least amount of
time. Empirical evidence of a practice’s efficacy are rarely available and adopting
new practices is time-consuming and risky. Such adoptions often involve a signif-
icant conceptual shift and effort in the organization including but not limited to
developer training, acquiring and implementing new tools, and collecting and re-
porting new metrics.

In 2000, Laurie Williams completed her PhD at the University of Utah. Her dis-
sertation presented the results of empirical studies she conducted on pair program-
ming. This new approach has since gained significant popularity, largely based on
the empirical evidence. Williams has gone on to publish widely on pair programming
and related topics, and she has been very successful in attracting both government
and corporate funding for her work.

This research should contribute empirical results perhaps even more beneficial
than Williams’ results on pair programming. While pair programming has been
shown to improve defect detection and code understanding, TDD stands to do the
same with the advantage of also improving software designs. The results from this
study will assist professional developers in understanding and choosing whether
to adopt test-driven development. For the first time, it will reveal the effects on
software design quality from applying TDD. It will explore many important quality

CHAPTER 1. PROBLEM DEFINITION 5

aspects beyond defect density such as reusability and maintainability.
In addition, this research will make important pedagogical contributions. The

research will contribute a new approach to teaching that incorporates teaching with
tests called “test-driven learning.” The research will demonstrate whether under-
graduate computer science students can learn to apply TDD, and it will examine at
what point in the curriculum TDD is best introduced.

If TDD proves to improve software quality at minimal cost, and if this research
shows that students can learn TDD from early on, then this research can have a
significant impact on the state of software construction. Software development or-
ganizations will be convinced to adopt TDD in appropriate situations. New text-
books can be written applying the test-driven learning approach. As students learn
to take a more disciplined approach to software development, they will carry this
into professional software organizations and improve the overall state of software
construction.

1.6 Summary of Remaining Chapters

Chapter two will more thoroughly present the context in which TDD has devel-
oped and evolved. Test-driven development will be defined more precisely. Iter-
ative, incremental, and evolutionary development processes will be discussed, along
with historical references to various emerging forms of TDD. References to TDD in
academia will be noted, and particular attention will be given to the recent context
in which TDD has gained popularity.

Chapter three will survey the current state of research on TDD, independent of its
context. It will not attempt to survey XP research that may provide indirect knowl-
edge of TDD. It will attempt to provide the necessary definitions and background to
fully understand TDD. Then it will attempt to establish the current state of evalu-
ative research on TDD. Finally it will propose possible future directions for further
research on TDD, based on identified shortcomings in current research.

Chapter four presents the methods by which this research will be carried out. A
new pedagogical approach called test-driven learning (TDL) will be incorporated into
existing courses, and formal experiments will be conducted. The chapter identifies
tools and metrics that will be utilized, and discusses how the results will be analyzed
and assessed.

Chapter five outlines the research schedule and identifies potential challenges to
be overcome, possible risks, and expected contributions resulting from this research.

Chapter six discusses the significant contributions expected from this research.
It discusses how the research will be evaluated and how external validity will be
established through peer-reviewed publications and a case study with professional
programmers. The chapter ends with a summary of the work to be completed and
its potential to improve the state of software construction and pedagogy.

2
Test-Driven Development in Context

This chapter presents the context wherein test-driven development is emerging. It
surveys a variety of definitions for test-driven development, and provides a new one
for the purposes of this research. It discusses historical and recent events that have
contributed to the current understanding of test-driven development.

2.1 Definitions of TDD

Although its name would imply that TDD is a testing method, a close examination
of the name reveals a more complex picture.

2.1.1 Significance of “Test” in TDD

As the first word implies, test-driven development is concerned with testing. More
specifically it is about writing automated unit tests. Unit testing is the process of
applying tests to individual units of a program. There is some debate regarding what
exactly is a unit in software. Even within the realm of object-oriented programming,
both the class and the method have been suggested as the appropriate unit. Gener-
ally, however, we will consider a unit to be “the smallest possible testable software
component” [21] which currently [17] appears to be the method or procedure.

Test drivers and function stubs are frequently implemented to support the ex-
ecution of unit tests. Test execution can be either a manual or automated process
and may be performed by developers or dedicated testers. Automated unit testing
involves writing unit tests as code and placing this code in a test harness [21] or a
framework such as JUnit [51]. Automated unit testing frameworks can reduce the
effort of testing, even for large numbers of tests to a simple button click. In contrast,
when test execution is a manual process, developers and/or testers may be required
to expend significant effort proportional to the number of tests executed.

6

CHAPTER 2. TEST-DRIVEN DEVELOPMENT IN CONTEXT 7

Traditionally, unit testing has been applied some time after the unit has been
coded. This time interval may be quite small (a few minutes) or quite large (a few
months). The unit tests may be written by the same programmer or by a designated
tester. With TDD, however, unit tests are prescribed to be written prior to writing
the code under test. As a result, the unit tests in TDD normally don’t exist for very
long before they are executed.

2.1.2 Significance of “Driven” in TDD

Some definitions of TDD seem to imply that TDD is primarily a testing strategy. For
instance, according to [51] when summarizing Beck [17],

Test-Driven Development (TDD) is a programming practice that instructs
developers to write new code only if an automated test has failed, and to
eliminate duplication. The goal of TDD is ‘clean code that works.’ [45]

However, according to XP and TDD pioneer Ward Cunningham, “Test-first coding
is not a testing technique” [16]. In fact TDD goes by various names including Test-
First Programming, Test-Driven Design, and Test-First Design. The driven in test-
driven development focuses on how TDD informs and leads analysis, design and
programming decisions. TDD assumes that the software design is either incomplete,
or at least very pliable and open to evolutionary changes. In the context of XP, TDD
even subsumes many analysis decisions. In XP, the customer is supposedly “on-site”,
and test writing is one of the first steps in deciding what the program should do,
which is essentially an analysis step.

Another definition which captures this notion comes from The Agile Alliance [7],

Test-driven development (TDD) is the craft of producing automated tests
for production code, and using that process to drive design and program-
ming. For every tiny bit of functionality in the production code, you first
develop a test that specifies and validates what the code will do. You then
produce exactly as much code as will enable that test to pass. Then you
refactor (simplify and clarify) both the production code and the test code.

As is seen in this definition, promoting testing to an analysis and design step
involves the important practice of refactoring [29]. Refactoring is a technique for
changing the structure of an existing body of code without changing its external
behavior. A test may pass, but the code may be inflexible or overly complex. By
refactoring the code, the test should still pass and the code will be improved.

Understanding that TDD is more about analysis and design than it is about test-
ing may be one of the most challenging conceptual shifts for new adopters of the
practice. As will be discussed later, testing has traditionally assumed the existence
of a program. The idea that a test can be written before the code, and even more,
that the test can aid in deciding what code to write and what its interface should
look like is a radical concept for most software developers.

CHAPTER 2. TEST-DRIVEN DEVELOPMENT IN CONTEXT 8

2.1.3 Significance of “Development” in TDD

TDD is intended to aid the construction of software. TDD is not in itself a software
development methodology or process model. TDD is a practice, or a way of devel-
oping software to be used in conjunction with other practices in a particular order
and frequency in the context of some process model. As we will see in the next sec-
tion, TDD has emerged within a particular set of process models. It seems possible
that TDD could be applied as a micro-process within the context of many different
process models.

We have seen that TDD is concerned with analysis and design. We don’t want to
ignore the fact that TDD also produces a set of automated unit tests which provide
a number of side-effects in the development process. TDD assumes that these au-
tomated tests will not be thrown away once a design decision is made. Instead the
tests become a vital component of the development process. Among the benefits,
the set of automated tests provide quick feedback to any changes to the system. If
a change causes a test to fail, the developer should know within minutes of making
the change while it is still fresh in his or her mind. Among the drawbacks, the de-
veloper now has both the production code and the automated tests which must be
maintained.

2.1.4 A New Definition of TDD

TDD definitions proposed to date assume an unspecified design and a commit-
ment to writing automated tests for all non-trivial production code. Despite TDD’s
promise of delivering “clean code that works”, many developers seem to be reluc-
tant to try TDD. This reluctance is perhaps at least partially a result of the choice
of overall development process in an organization. Obviously an organization that
is applying XP is willing to attempt TDD. However, an organization that is using a
more traditional approach is likely unable to see how TDD can fit. This and other
factors affecting this choice will be more fully addressed in chapter three.

To expand the utility and applicability of TDD, I propose the following modifica-
tion of the Agile Alliance definition:

Test-driven development (TDD) is a software development strategy that
requires that automated tests be written prior to writing functional code
in small, rapid iterations. For every tiny bit of functionality desired, you
first develop a test that specifies and validates what the code will do. You
then produce exactly as much code as will enable that test to pass. Then
you refactor (simplify and clarify) both the code under test and the test
code. Test-driven development can be used to explore, design, develop,
and/or test software.

This definition broadens TDD’s sphere of influence by suggesting that TDD can
be used to:

CHAPTER 2. TEST-DRIVEN DEVELOPMENT IN CONTEXT 9

• explore a specified or unspecified design

• explore a new or unfamiliar component

• design software

• develop software given a design

• develop tests for software given only its interface

This definition removes the restrictions of working on an unspecified design and
working only on production code. It introduces the possibility that TDD could be
used as a prototyping mechanism for working out a potential design, without re-
quiring the tests to stick around.

2.2 Survey of Software Development Methodologies

The remainder of this chapter discusses the context that has contributed to the emer-
gence of test-driven development. This section provides a broad survey of software
development methodologies to help establish a background for understanding test-
driven development.

A software development process or methodology is a framework which defines
a particular order, control, and evaluation of the basic tasks involved in creating
software. Software process methodologies range in complexity and control from
largely informal to highly structured. Methodologies may be classified as being pre-
scriptive [63] or agile [14], and labeled with names such as waterfall [66], spiral [19],
incremental [63], and evolutionary [35].

When an organization states that it is using a particular methodology, they are of-
ten applying on a project-scale certain combinations of smaller, finer-grained method-
ologies. For example, an organization may be applying an incremental model of
development, building small, cumulative slices of the project’s features. In each in-
crement however, they may be applying a waterfall or linear method of determining
requirements, designing a solution, coding, testing, and then integrating. Depending
on the size of the increments and the time frame of the waterfall, the process may
be labeled very differently with possibly very different results regarding quality and
developer satisfaction.

If we break a software project into N increments where each increment is rep-
resented as Ii, then the entire project could be represented by the equation

∑N
i=1 Ii.

If N is reasonably large, then we might label this project as an incremental project.
However if N ≤ 2, then we would likely label this as a waterfall project.

If the increments require the modification of a significant amount of overlapping
software, then we might say that our methodology is more iterative in nature. Stated
more carefully, for project P consisting of code C and iterations I = ∑N

i=1 Ii, if Ci is

CHAPTER 2. TEST-DRIVEN DEVELOPMENT IN CONTEXT 10

the code affected by iteration Ii, then if project P is iterative, Ci ∩Ci+1 �= Θ for most
i such that 1 < i < N. Similarly, with the incremental and waterfall approaches, we
might expect a formal artifact (such as a specification document) for documenting
the requirements for that increment. If however, the artifact is rather informal (some
whiteboard drawings or an incomplete set of UML diagrams), and was generated
relatively quickly, then it is likely that we were working in the context of an agile
process. Or, the approach and perspective of the architecture and/or design might
cause us to label the process as aspect-oriented, component-based, or feature-driven.

Drilling down even further, we might find that individual software developers or
smaller teams are applying even finer-grained models such as the Personal Software
Process [42] or the Collaborative Software Process [73]. The time, formality, and
intersection of the steps in software construction can determine the way in which
the process methodology is categorized.

Alternatively, the order in which construction tasks occur influences a project’s
label, and likely its quality. The traditional ordering is requirements elicitation, anal-
ysis, design, code, test, integration, deployment, maintenance. This ordering is very
natural and logical, however we may consider some possible re-orderings. Most re-
orderings do not make sense. For instance, we would never maintain a system that
hasn’t been coded. Similarly, we would never code something for which we have
no requirements. Note that requirements do not necessarily imply formal require-
ments, but may be as simple as an idea in a programmer’s head. The Prototyping
approach [20] has been applied when requirements are fuzzy or incomplete. With
this approach, we may do very little analysis and design before coding. The disad-
vantage is that the prototype is often discarded even though it was a useful tool in
determining requirements and evaluating design options.

When we closely examine the phases such as design, code, and test, we see that
there are many finer-grained activities. For instance, there are many types of testing:
unit testing, integration testing, and regression testing among others. The timing,
frequency, and granularity of these tests may vary widely. It may be possible to
conduct some testing early, concurrent with other coding activities. Test-driven de-
velopment, however, attempts to re-order these steps to some advantage. By placing
very fine-grained unit tests just prior to just enough code to satisfy that test, TDD
has the potential of effecting many aspects of a software development methodology.

2.3 Historical Context of TDD

Test-driven development has emerged in conjunction with the rise of agile process
models. Both have roots in the iterative, incremental and evolutionary process mod-
els, going back at least as early as the 1950’s. In addition, tools have evolved and
emerged to play a significant role in support of TDD. Curriculum seems to be lagging
in its adoption of TDD, but XP in general has seen some favorable attention in the

CHAPTER 2. TEST-DRIVEN DEVELOPMENT IN CONTEXT 11

academic community.

2.3.1 Early Test-Early Examples

Research on testing has generally assumed the existence of a program to be tested [37],
implying a test-last approach. Moving tests, however, from the end of coding to the
beginning is nothing new. It is common for software and test teams to develop
tests early in the software development process, often along with the program logic.
Evaluation and Prevention Life Cycle Models [33] integrated testing early into the
software development process nearly two decades back. Introduced in the 1980s,
the Cleanroom [27] approach to software engineering included formal verification of
design elements early in the development process. There are even claims that some
form of TDD was applied as early as the 1950’s in NASA’s Project Mercury [48].

However, prior to the introduction of XP in 1998, very little if anything has been
written about the concept of letting small incremental automated unit tests drive
the software development and particularly the design process. Despite the lack of
published documentation, it is very possible that many developers have used a test
first approach informally. Kent Beck even claims he

learned test-first programming as a kid while reading a book on program-
ming. It said that you program by taking the input tape ... and typing in
the output tape you expect. Then you program until you get the output
tape you expect. [16]

One might argue then that TDD merely gives a name and definition to a practice
that has been sporadically and informally applied for some time. It seems, however,
that TDD is a bit more than this. As Beck states, XP takes known best practices and
“turns the knobs all the way up to ten.” In other words, do them in the extreme.
Many developers may have been thinking and coding in a test-first manner, but
TDD does this in an extreme way, by always writing tests before code, making the
tests as small as possible, and never letting the code degrade (test, code, refactor).
As we will see next, TDD is a practice that must fit within a process model. The
development of incremental, iterative, and evolutionary process models has been
vital to the emergence of TDD.

2.3.2 Incremental, Iterative, and Evolutionary Development

Larman and Basili [48] survey a long history of iterative and incremental development
models. Iterative development involves repeating a set of development tasks, gener-
ally on an expanding set of requirements. Evolutionary approaches as first presented
by Gilb [35] involve iterative development which is adaptive and lightweight. Being
adaptive generally refers to using feedback from previous iterations to improve and

CHAPTER 2. TEST-DRIVEN DEVELOPMENT IN CONTEXT 12

change the software in the current iteration. Being lightweight often refers to the
lack of a complete specification at the beginning of development, allowing feedback
from previous iterations and from customers to guide future iterations. Lightweight
can refer to other aspects such as the level of formality and degree of documentation
in a process. The spiral model [19] is an evolutionary approach that incorporates
prototyping and the cyclic nature of iterative development along with “risk-driven-
iterations” and “anchor point milestones”

According to Pressman [63],

The incremental model delivers a series of releases, called increments,
that provide progressively more functionality for the customer as each
increment is delivered.

It was within the context of such iterative, incremental, and evolutionary models
that TDD developed. In fact, it appears that such iterative, incremental, and/or
evolutionary approaches are prerequisite process models which are necessary for
TDD to work. As we have stated, TDD is most closely associated with XP which is
an iterative, evolutionary model. In fact, Beck claims that in order to implement
XP, you must apply all of the incumbent practices. Leaving some out weakens the
model and may cause the model to fail [15]. In order for TDD to influence software
design, TDD requires that design decisions be delayed and flexible. With each new
test, something new may be revealed about the code which requires a refactoring
and possible change to the design as determined at that point. Automated tests
give the programmer courage to change any code and know quickly if anything has
broken, enabling collective ownership.

As originally proposed, TDD requires some form of an evolutionary process
model. The converse, however, is clearly not true as many iterative, incremental,
and/or evolutionary models have been proposed without the mention of TDD.

2.4 Emergence of Automated Testing Tools

Software tools have become important factors in the development of modern soft-
ware systems. Tools ranging from compilers, debuggers, and integrated develop-
ment environments (IDEs) through modeling and computer-aided software engineer-
ing (CASE) tools have improved and hence significantly increased developer produc-
tivity. Similarly testing tools have matured over the years.

Testing tools vary in purpose and scope, and will not be reviewed here. However,
it is important to note the role that tools have played in the emergence of TDD. TDD
assumes the existence of an automated unit testing framework. Such a framework
simplifies both the creation and execution of software unit tests. Test harnesses
are basically automated testing frameworks and have existed for some time. A test
harness is a combination of test drivers, stubs, and possibly interfaces to other

CHAPTER 2. TEST-DRIVEN DEVELOPMENT IN CONTEXT 13

subsystems [21]. Often such harnesses are custom-built, although commercial tools
do exist to assist with test harness preparation [62].

JUnit [31] is an automated unit testing framework for Java developed by Erich
Gamma and Kent Beck. JUnit is an essential tool for implementing TDD with Java. In
fact, it might be argued that TDD and possibly even XP might not have received such
wide popularity if it weren’t for JUnit. JUnit-like frameworks have been implemented
for a number of different languages, and the family of frameworks is referred to as
xUnit [76].

Generally, xUnit allows the programmer to write sets of automated unit tests
which initialize, execute, and make assertions about the code under test. Individual
tests are independent of each other so that test order does not matter, and total
numbers of successes and failures are reported. xUnit tests are written in the same
language as the code under test and thus serve as first-class clients of the code.
As a result, tests can serve as documentation for the code. On the other hand,
because xUnit is implemented in the target language, the tool’s simplicity and flexi-
bility are determined somewhat by that language. For instance JUnit is very simple
and portable, partly because it takes advantage of Java’s portability through the
bytecode/virtual machine architecture, it uses Java’s ability to load classes dynam-
ically, and it exploits Java’s reflection mechanism to automatically discover tests.
In addition, it provides a nice, portable graphical user interface that has even been
integrated into popular integrated development environments like Eclipse.

A wide range of additional tools have emerged to support automated testing, par-
ticularly in Java. Several tools attempt to simplify the creation of mock objects [9]
which are essentially stubs which stand-in for needed collaborating objects so that
one can only test a particular object. Other tools such as Cactus [10] and Derby [11]
can be used in conjunction with JUnit to automate tests which involve J2EE compo-
nents or databases respectively.

The proliferation of software tools supporting TDD seems to be an indicator that
TDD has widespread support and may be on its way to becoming an established
approach. A significant factor in the use of TDD particularly in the Java community
seems to be the simplicity and elegance of the JUnit tool. Programmers can develop
unit-tests easily, and large suites of tests can be executed with a single click of a
button, yielding quick results on the state of the system.

2.5 Early Testing in Curriculum

One indicator of the widespread acceptance of a software practice might be the
undergraduate curriculum in computer science and software engineering. In some
cases, academia has led practice in the field. In others, academia has followed.
Software Engineering, iterative development and TDD seem to all fall in with the
latter model.

CHAPTER 2. TEST-DRIVEN DEVELOPMENT IN CONTEXT 14

Although much software engineering research has originated in academia, and
found its way into common practice, the undergraduate curriculum in computer sci-
ence and software engineering has tended to reflect and lag behind common prac-
tice in industry. Programming Language choice has commonly followed the needs of
businesses. Process models have developed in practice and then later been reflected
in curriculums.

The 1991 ACM Curriculum Guidelines [5] recommended that a small amount of
lecture and lab time be given to iterative development processes (SE2) and verifica-
tion and validation (SE5) (portions of eight hours each). The 2001 ACM Curriculum
Guidelines [6] recommended that a perhaps even smaller amount of time be given
to development processes (SE4) and software validation (SE6) (two and three hours
respectively).

Undergraduate texts give little attention to comparative process models. Texts
have limited coverage of software design and often have minimal coverage of test-
ing techniques. The topics of software design and testing are often relegated to a
software engineering course which may not even be required of all students.

There is much debate regarding the place of Extreme Programming in undergrad-
uate education. Some [39] argue strongly in favor of using XP to introduce software
engineering to undergraduates. Others [67] argue that XP and agile methods are only
beneficial on a very limited basis. Still others [59] report mixed experiences.

Despite the mix of opinions on using XP in the undergraduate curriculum, TDD
is receiving some limited exposure at this level. Some educators have called for in-
creased design and testing coverage for some time. Some see TDD as an opportunity
to incorporate testing throughout the curriculum, and not relegate it to an individual
course [22].

TDD tools have found their way into early programming education. BlueJ [47], a
popular environment for learning Java has incorporated JUnit and added helps for
building test cases at an early stage in a programmer’s learning cycle [61]. JUnit
has been advocated for early learning of Java because it abstracts the bootstrapping
mechanism of main(), allowing the student to concentrate on the use of objects early.

TDD, however, is still far from being widely accepted in academia. Faculty who
don’t specialize in software engineering are still unlikely to have much familiarity
with TDD. Instructional materials on TDD targeted at undergraduate courses are
basically non-existent. As we will discuss in section five, several steps need to take
place before TDD finds its place in the undergraduate curriculum.

2.6 Recent Context of TDD

Test-driven development has emerged in the context of agile methods. This section
notes the significance of agile methods and considers attempts to measure how many
development groups are applying agile methods.

CHAPTER 2. TEST-DRIVEN DEVELOPMENT IN CONTEXT 15

2.6.1 Emergence of Agile Methods

The early years of the twenty-first century have seen significant attention given to
what are deemed agile methods. Agile methods clearly have roots in the incremental,
iterative, and evolutionary methods discussed earlier. Abrahamsson et al. [4] provide
an evolutionary map of nine agile methods, and describe such methods as focusing
primarily on simplicity and speed, emphasizing people over processes [3].

Extreme Programming (XP) [15] is probably the most well-known agile method,
and in fact XP is often used in combination with other agile methods such as Scrum.
XP proposes the use of TDD as an integral component of developing high-quality
software. There is an interesting conflict between the highly disciplined practice of
TDD and the simple, lightweight nature of agile processes. In fact, one of the pri-
mary concerns of potential adopters of TDD seems to be the overhead or cost/time
of writing and maintaining the unit tests. Although he concedes that automated
unit tests are not necessary for absolutely everything (some things are still hard to
automatically test), Beck insists that TDD is necessary for XP to work. It seems that
TDD may provide the “glue” that holds the process together.

2.6.2 Measuring Adoption of Agile Methods

It is hard to measure the use of a particular software development methodology.
Many organizations may be using the methodology, but not talking about it. Others
might claim to be using a methodology, when in reality they may be mis-applying
the methodology, or worse yet, advertising its use falsely. Surveys might be con-
ducted to gauge a methods use, but often only those who are enthusiastic about the
methodology (either in favor or opposed) will respond.

A 2002 survey [65] reported that out of 32 survey respondents across ten industry
segments, fourteen firms were using an agile process. Of these, five of the firms were
categorized in the E-business industry. Most of the projects using agile processes
were small (ten or fewer participants) and lasting one year or less. Another 2003
survey [68] reported 131 respondents claiming they were using an agile method. Of
these, 59% claimed to be using XP, implying that they were using TDD. Both surveys
revealed positive results from applying agile methods with increases in productivity
and quality, and reduced or minimal changes in costs.

A substantial body of literature regarding XP has accumulated since its inception.
Most of this literature admittedly involves promotion of XP or explanations of how to
implement XP. Many experience reports present only anecdotal evidence of benefits
and drawbacks of XP. However, their existence indicates that XP is being adopted in
many organizations. It is not clear yet if these same organizations will continue to
use XP over time, or if they have or will move on to other (or old) methods.

We are unaware of any measure of how widespread is the use of TDD. The pop-
ularity of XP, however, seems to imply a growing adoption of TDD. It is possible

CHAPTER 2. TEST-DRIVEN DEVELOPMENT IN CONTEXT 16

that organizations are adopting XP without adopting all of the practices, or they are
applying some practices inconsistently. Rasmusson reports on a project at Thought-
Works, an early adopter of XP, in which he estimates that one-third of the code was
developed using TDD [64]. In the same report, though, he states,

If I could only recommend one coding practice to software developers,
those who use XP or otherwise, it would be to write unit tests.

In this ThoughtWorks project, 16,000 lines of automated unit tests were written
for 21,000 lines of production code. It appears that many tests were written in both
a test-first and test-last manner.

Despite the possibility of adopting XP without TDD, TDD seems to be a core prac-
tice in XP and anecdotal evidence seems to indicate that TDD is commonly included
when only a subset of XP is adopted.

Another possible indicator of the use of TDD is the use of the xUnit testing frame-
works. JUnit was the first such framework and it has enjoyed widespread popularity.
As Martin Fowler stated regarding JUnit,

Never in the field of software development was so much owed by so many
to so few lines of code [31].

No adoption statistics are directly available for JUnit. However, JUnit is included
in the core distribution of Eclipse, a popular integrated development environment
which is primarily used for Java development. A February, 2004 press release [23]
states that the Eclipse platform has recorded more than 18 million download re-
quests since its inception. Although duplicate requests likely occur from the same
developer requesting new releases, the figure is still substantial. Certainly not all
Eclipse developers are using JUnit, nor are all JUnit adopters using TDD, but it seems
likely that the combination of XP, JUnit, and Eclipse popularity implies some degree
of TDD adoption.

3
Related Work

Since the introduction of XP, many practitioner articles and several books [12,17,51]
have been written describing how to apply TDD. Relatively little evaluative research,
however has been published on the benefits and effects of TDD.

The sections below will summarize and classify the research discovered to date
that specifically evaluates TDD. There are a number of publications on XP and agile
methods, many anecdotal and some empirical. However, this discussion will exclude
research on XP or agile methods as a whole. Such research might prove informative
when examining TDD, but it fails to prove any individual merits or shortcomings of
TDD.

Research on TDD can be categorized broadly by context. In particular, TDD re-
search will be classified as “Industry” if the study or research was primarily con-
ducted with professional software practitioners. Alternatively, the research will be
classified as “Academia” if the software practitioners are primarily students and the
work is in the context of a course or some academic setting. Studies in which stu-
dents work on a project for a company but as the requirements and in the context
of some course will be classified with “Academia”.

3.1 Evaluative Research on TDD in Industry

A very limited number of evaluative research studies have been conducted on TDD
with professional practitioners. North Carolina State University (NCSU) seems to
be the only source of such studies to date. Researchers at NCSU have performed
at least three empirical studies on TDD in industry settings involving fairly small
groups in at least four different companies [34, 52, 74]. These studies primarily
examined defect density as a measure of software quality, although some survey
data indicated that programmers thought TDD promoted simpler designs. In the
George study, programmer experience with TDD varied from novice to expert, while

17

CHAPTER 3. RELATED WORK 18

No. of No. of Quality Productivity
Study Type Companies Programmers Effects Effects

George [34] CE 3 24 TDD passed
18% more
tests

TDD took
16% longer

Maximilien [52] CS 1 9 50% reduc-
tion in defect
density

minimal im-
pact

Williams [74] CS 1 9 40% reduc-
tion in defect
density

no change

Table 3.2: Summary of TDD Research in Industry

the other studies involved programmers new to TDD.
These studies revealed that programmers using TDD produced code which passed

between 18% and 50% more external test cases than code produced by the corre-
sponding control groups. The studies also reported less time spent debugging code
developed with TDD. Further they reported that applying TDD had from minimal im-
pact to a 16% decrease in programmer productivity. In other words, applying TDD
sometimes took longer than not using TDD. In the case of that took 16% more time,
it was noted that the control group also wrote far fewer tests than the TDD group.

These studies are summarized in Table 3.2. Each experiment is labeled as either
a case study (CS) or a controlled experiment (CE).

3.2 Evaluative Research on TDD in Academia

A number of studies are reported from academic settings. Most of these examine XP
as a whole, but a few specifically focus on TDD. Although many of the publications
on TDD in academic settings are primarily anecdotal [13, 56], five were discovered
which report empirical results. When referring to software quality, all but one [46] of
the empirical studies focused on the ability of TDD to detect defects early. Two [25,
46] of the five studies reported significant improvements in software quality and
programmer productivity. One [26] reported a correlation between number of tests
written and productivity. In this study, students using test-first wrote more tests
and were significantly more productive. The remaining two [57, 60] reported no
significant improvements in either defect density or productivity. All five studies
were relatively small and involved only a single semester or less. In all studies,
programmers had little or no previous experience with TDD.

Although not included here, the anecdotal studies are also beneficial to examine.
For instance, the Barriocanal study reports that only 10% of the 100 students involved

CHAPTER 3. RELATED WORK 19

No. of Quality Productivity
Study Type Programmers Effects Effects

Edwards [25] CE 59 54% fewer de-
fects

n/a

Kaufmann [46] CE 8 improved
information
flow

50% im-
provement

Müller [57] CE 19 no change,
but better
reuse

no change

Pančur [60] CE 38 no change no change
Erdogmus [26] CE 35 no change improved

productiv-
ity

Table 3.3: Summary of TDD Research in Academia

actually wrote unit tests, indicating that motivation is a serious concern.
The empirical studies are summarized in Table 3.3. All studies involved con-

trolled experiments (CE).

3.3 Research Classification

Vessey et al. [36, 70] present a classification system for the computing disciplines.
This system provides classification of research by topic, approach, method, reference
discipline, and level of analysis. The previously mentioned studies are summarized
in Table 3.4. This table applies the Vessey classification system, and the table con-
tents are described in the following sections. This table summarizes all experimental
studies found, plus two anecdotal studies. A number of additional anecdotal studies
were discovered. Although some of these do have useful information as mentioned
in the previous section, they reveal little concerning classification and thus are not
included here.

3.3.1 Definition of “Topic” Attribute

This research concentrates solely on the topic of TDD which fits in category 3.0
Systems/Software Concepts and subcategory 3.4 Methods/techniques.

CHAPTER 3. RELATED WORK 20

3.3.2 Definition of “Approach” Attribute

Research approaches may be descriptive, evaluative, or formulative. A number of
publications were referenced in previous sections which originally presented and
explained TDD. These would be considered formulative and descriptive research.
This research focuses primarily on evaluative research of the TDD software method.
Such research attempts to evaluate or assess the efficacy of TDD.

Evaluative approaches may be divided into the following four sub-categories: de-
ductive (ED), interpretive (EI), critical (EC), or other (EO). From Table 3.4 one can see
all of these studies are classified as evaluative-deductive.

3.3.3 Definition of “Method” Attribute

Nineteen research methods are proposed ranging from Conceptual Analysis through
Simulation. The research under consideration was determined to use either Case
Study (CS), Laboratory Experiment - Human Study (LH), or Field Study (FS).

3.3.4 Definition of “Reference Discipline” Attribute

Research bases its theories on other disciplines. In the case of the computing dis-
ciplines, computer science and particularly software engineering have been found
to overwhelmingly be self-referential. In other words, most computing research is
based on other computing research, and it borrows little from other disciplines such
as Cognitive Psychology, Science, Management, or Mathematics. This trend is true
with TDD as well as all of the research under consideration is considered to be Self-
Reference (SR).

3.3.5 Definition of “Level of Analysis” Attribute

The final area of classification deals with the “object on which the research study
focused.” [36] These objects determine the level of analysis which is almost the
granularity of the object. Levels are grouped into technical and behavioral levels.
These studies focused on Project (PR), Group/Team (GP), or Individual (IN) which
are all behavioral levels. It might be argued that the research also focused on the
technical levels of Abstract Concept (AC) because we are looking at software quality,
and Computing Element (CE) because we are looking at unit tests.

3.4 Factors in Software Practice Adoption

A variety of factors play into the widespread adoption of a software practice. Moti-
vation for change, economics, availability of tools, training and instructional mate-

CHAPTER 3. RELATED WORK 21

Reference Level of
Study Context Approach Method Discipline Analysis

George [34] Industry ED LH SR GP
Maximilien [52] Industry ED FS SR PR
Williams [74] Industry ED FS SR PR
Barriocanal [13] Academia ED CS SR IN
Mugridge [56] Academia ED CS SR GP
Edwards [24] Academia ED LH SR IN
Kaufmann [46] Academia ED LH SR IN
Müller [57] Academia ED LH SR IN
Pančur [60] Academia ED LH SR IN
Erdogmus [26] Academia ED LH SR IN

Table 3.4: Classification of TDD Research

rials, a sound theoretical basis, empirical and anecdotal evidence of success, time,
and even endorsements of the practice by highly regarded individuals or groups can
all influence the decision on whether or not to adopt a new practice.

The current state of TDD is mixed regarding this list of factors. With regard to
some factors, TDD seems to be poised for growth in adoption. The state of software
development practice provides a clear motivation for change. Software development
is a complex mix of people, process, technology, and tools which continues to strug-
gle to find consistency and predictability. Projects continue to run over schedule
and budget, and practitioners seem eager to find improved methods.

As was noted in earlier sections, tools such as JUnit, MockObjects, and Cactus are
mature and widely available. Although much of the tool development has targeted
the Java Programming Language, Java is an increasingly popular language both in
commercial applications and academia. Further, tool support for TDD is good and
improving for most modern languages.

Economic models have considered XP and TDD [58] and note the potential for
positive improvements, but recognize that additional research is needed. As was
seen in the previous section, empirical and anecdotal evidence is still quite sparse,
and limited to fairly small, disparate studies. This research will extend the exam-
ination of TDD extensively first by looking at software quality more broadly, and
second by looking at a much larger, more diverse population over a longer period of
time.

The interplay of acceptance between academics and industry practitioners is a
very interesting one. Some reports indicate that it takes five to fifteen years for
research developments to make it into commercial practice. The reverse pathway
seems to be similar. Some research has shown how TDD can improve programming
pedagogy, yet there are few instructional resources available. JUnit incorporation

CHAPTER 3. RELATED WORK 22

into BlueJ and the corresponding programming textbook indicates that improve-
ments may be on the way in this area.

There are a number of challenges to adopting TDD. Perhaps first and foremost is
that TDD requires a good deal of discipline on the part of the programmer. Hence
programmers may require compelling reasons before they are willing to give it a try.
Secondly, TDD is still widely misunderstood. Perhaps its name is to blame, but many
still erroneously think that TDD is only about testing, not design. Third, TDD doesn’t
appear to fit in every situation. Section three described iterative, incremental, and
evolutionary process models which work best with TDD. Developers and managers
must then determine when to apply TDD and when to do something else.

It is not clear how widespread TDD will be adopted. Additional research and the
availability of training and instructional materials may play an important role. Such
work is the topic of the next section.

4
Research Methodology

This chapter presents the test-driven development approach and details how this
research will examine it. In the first section, TDD will be introduced with a small
sample application, giving an examples in Java. Particular attention will be given to
how TDD informs design decisions.

Next, test-driven learning (TDL) will be introduced with an example of how it
might be incorporated into the undergraduate curriculum.

Finally, the design of the formal experiment will be detailed.

4.1 TDD Example

This section will present an example of how developing an application with TDD
might proceed. The application to be developed is a television channel guide as
described by the use cases in Figure 4.1. We will only start the application assuming
that there is only one channel and the user can only move left and right. In other
words, we will not attempt the use case “Shift Channel Selection Up/Down”.

In the Java implementation, the application should provide a graphical user in-
terface that displays a window of maybe three hours worth of shows. It allows the
user to select a show and scroll the window of shows to the left and right with the
arrow keys.

The C++ implementation will provide a character-based user interface and allow
the user to move left and right by entering 4 and 5 respectively. Screen shots of
possible Java and C++ implementations are given in Figure 4.2 and Figure 4.3.

4.1.1 Java Example

First we will do a Java example. As discussed in chapter 2, JUnit is the de facto stan-
dard testing framework for Java so our example will use JUnit and TDD to develop

23

CHAPTER 4. RESEARCH METHODOLOGY 24

Figure 4.1: Television Channel Guide Use Cases

Figure 4.2: Television Channel Guide Java GUI

8:00 9:00 10:00 10:30
+==============++==============++======++======+
|Sesame Street ||Cyber Chase ||Zoom ||Arthur|
+==============++==============++======++======+
Enter 4 to move left one show, 5 to move right one show, and -1 to quit.

Figure 4.3: Television Channel Guide C++ Screen Shot

CHAPTER 4. RESEARCH METHODOLOGY 25

import junit . framework . TestCase ;
public class TestShow extends TestCase {

public void testShowConstructor () {
Show oneShow = new Show("Sesame Street " ,60 ,8 ,0) ;
assertEquals (oneShow . getTit le () , "Sesame Street ") ;
assertEquals (oneShow . getDuration () , 6 0) ;
assertEquals (oneShow . getStartHr () , 8) ;
assertEquals (oneShow . getStartMins () , 0) ;

}
}

Figure 4.4: Testing Show in Java

this application. To get started, the first test might be to instantiate a television show
and access appropriate members. In so doing, we have identified that Show is a likely
object and we must specify the interface for inserting and retrieving members. The
first test might look something like the code listed in Figure 4.4.

Immediately we see the structure of a JUnit test. We gain access to the JUnit
package through the import statement. Then we create a subclass of TestCase and
write methods that begin with “test”. Tests are executed with the assertEquals()
method. We will see that there are a number of assertXXX() methods available to us
in JUnit.

At this point, our program will not even compile because the Show class has not
been written. Because we have only specified very simple methods to this point, we
can go ahead and implement the constructors and four accessor methods, then run
JUnit to see if they all pass the test. We would not implement multiple methods at
once with TDD, except when they are as trivial as these. A screen shot of JUnit after
all tests completed successfully is given in Figure 4.5. At this point the code for
Show might look like that in Figure 4.6.

Once the Show class has been implemented and the test passes, we might write
another test to see how Show handles bad input. We might specify in the test that
we want Show to throw an exception if the duration, start hour, or start minutes
is out of range. Exceptional behavior can be difficult to test with integration and
functional tests, but JUnit enables simple exception testing. The JUnit approach is
as follows:

• Force an exception to be thrown

• Follow with a fail statement to detect if the exception is not thrown

• Catch the exception and assert that it was caught

The test in Figure 4.7 specifies that the constructor should throw the exception.
Notice the use of the fail method following the line that is expected to throw the

CHAPTER 4. RESEARCH METHODOLOGY 26

Figure 4.5: JUnit GUI - All Tests Pass

exception. This technique ensures that the exception was thrown and execution did
not reach the fail method. In the exception handler, the assertTrue method may be
unnecessary, but it provides documentation that execution should reach this point.

Because we have not yet implemented this functionality, this test will fail as
shown in Figure 4.8. We would now proceed to implement the desired exception
throwing and check to see if we need to refactor to improve either the code or the
tests. We would continue to repeatedly write a test, write the code to make the test
pass, and refactor until we are satisfied that the Show class has the interface and
behavior that we desire.

Next we consider whether the Show class was the correct place to start. It was
the first thing that came to mind, but maybe we were thinking at too low a level.
After reviewing the use cases, we might decide to tackle the “Load Channel Listing”
use case. We might start with the test shown in Figure 4.9.

In this test we have defined the file format, identified the ChannelGuide class,
and specified a constructor that accepts the name of the file containing the television
show listings. We might step back and consider how the test drove us to make the
filename a parameter to this class. Had we been designing with a UML class diagram,
we likely would have included a filename member in this class, but we may not have
considered passing the name as a constructor parameter. Because we are thinking of
how to use and test the class from the beginning, the class is naturally more testable.

As development progresses one might notice the emphasis placed on the un-
derlying model of the application. Because the graphical user interface is difficult
to test automatically, TDD encourages placing as much functionality as possible in
the model, minimizing what will exist in the GUI. We will conclude this example by

CHAPTER 4. RESEARCH METHODOLOGY 27

public class Show {
public Show() { }
public Show(String t i t l e , int hr , int min , int duration) {

this . t i t l e = t i t l e ;
this . duration = duration ;
this . startHr = hr ;
this . startMins = min ;

}
public String getTit le () {

return t i t l e ;
}
public int getDuration () {

return duration ;
}
public int getStartHr () {

return startHr ;
}
public int getStartMins () {

return startMins ;
}
private String t i t l e ;
private int duration ;
private int startHr ;
private int startMins ;

}

Figure 4.6: Java Show Class

public void testBadMins () {
try {

Show oneShow = new Show("Cyber Chase " ,30 ,7 ,70);
f a i l ("Non−default constructor should throw an Exception i f the\n"

+ " minutes parameter is greater than 59 or less than 0") ;
}
catch (Exception expected) {

assertTrue (true) ;
}

}

Figure 4.7: Testing Java Exceptions

CHAPTER 4. RESEARCH METHODOLOGY 28

Figure 4.8: JUnit Exception Failure

public void testChannelGuideFromFile () {
try {

PrintWriter dout = new PrintWriter (
new Fi leWriter (" tv l i s t ings . txt ")) ;

dout . println ("Sesame Street :8 :0 :60 ") ;
dout . println ("Cyber Chase :9:0 :30 ") ;
dout . println ("Zoom:9:30:30 ") ;
dout . println (" Caillou :10:0:30 ") ;
dout . println ("Mr . Rogers:10:30:30 ") ;
dout . println ("Zooboomafoo:11:0:30 ") ;
dout . println ("Arthur :11:30:30 ") ;
dout . close () ;

} catch (IOException e) { System . out . println (e) ; }

ChannelGuide cg = new ChannelGuide (" tv l i s t ings . txt ") ;
assertEquals (cg .numShows() , 7) ;

}

Figure 4.9: JUnit Test

CHAPTER 4. RESEARCH METHODOLOGY 29

looking at some of the event handling code in the GUI.
The GUI needs to react to two types of events: pressing the right arrow key

should shift the television listing one show to the right, and pressing the left arrow
key should shift the listing one show to the left. Prior to even writing the GUI code,
we can write tests for the event handlers. The code in Figure 4.10 and Figure 4.11
utilizes the setUp() method to create a test file prior to each test. The first test called
testMoveRight() creates the GUI with the specified file, then checks to see if the first
show is the first one about to be displayed by the GUI (“Sesame Street”). Next the
test forces the action of pressing the right arrow key to be performed by extracting
the MoveRightAction object from the GUI and performing the action. Finally the
test checks to see if the new first show is what used to be the second show (“Cyber
Chase”).

The code under test is given in Figure 4.12 and Figure 4.13 along with the event
handling code in Figure 4.14. Notice that no GUI components are tested directly.
The ChannelGuideGUI object is a JFrame, but it is instantiated and tested without
actually showing it. We do observe some improvements that could be made. For
instance, the MoveRightAction and the MoveLeftAction classes are so similar that
they could probably be combined, perhaps in a common parent that implements
the Template Method [32] design pattern. The tests give us courage to refactor to
such a pattern. We can make small, incremental changes such as changing a class
name, adding a method parameter, or eliminating a class, using the tests to quickly
determine if we have broken anything.

4.1.2 C++ Example

Next we will do a C++ example. Unlike with Java, there is no de facto standard unit
testing framework for C++. There may be a number of reasons for this [69], not least
of which is the lack of reflection capabilities like that in Java.

In CS2 and above I propose using the CxxTest [71] framework as it seems to
have the simplest interface. CxxTest is to be included with the standard libraries.
Unfortunately it does require an installation of perl and an extra step in compilation.

To minimize the intrusion to the learning programmer, In CS1 I propose using
simple assert statements from the standard library cassert. The example in Fig-
ure 4.15 and Figure 4.16 demonstrates a CS1 appropriate implementation where
students only know about classes, arrays, and assert. The class declarations, main(),
and three tests are given in Figure 4.17.

4.2 Test-Driven Learning

This section will introduce a novel approach to teaching programming concepts.
Unit tests will be used to present new concepts. Students will then write unit tests

CHAPTER 4. RESEARCH METHODOLOGY 30

public class TestChannelGuideGUI extends TestCase {
public void setUp () {

try {
PrintWriter dout = new PrintWriter (

new Fi leWriter (" tv l i s t ings . txt ")) ;
dout . println ("Sesame Street :8 :0 :60 ") ;
dout . println ("Cyber Chase :9:0 :30 ") ;
dout . println ("Zoom:9:30:30 ") ;
dout . println (" Caillou :10:0:30 ") ;
dout . println ("Mr . Rogers:10:30:30 ") ;
dout . println ("Zooboomafoo:11:0:30 ") ;
dout . println (" Arthur :11:30:30 ") ;
dout . close () ;

} catch (IOException e) { System . out . println (e) ; }
}
public void testMoveRight () {

ChannelGuideGUI cgui = new ChannelGuideGUI (" tv l i s t ings . txt ") ;
L i s t I t e ra tor i t = cgui . cg . currentStart I terator () ;
assertEquals (((Show) i t . next ()) . getTit le () , "Sesame Street ") ;

// create move right action
cgui . showPanel . getActionMap () . get (" panel . r ight ") .

actionPerformed (new ActionEvent (this , 0 , " ")) ;
i t = cgui . cg . currentStart I terator () ;

// ver i fy new star t
assertEquals (((Show) i t . next ()) . getTit le () , "Cyber Chase ") ;

// ver i fy button text
assertEquals (cgui . showButtons [0] . getText () , " 9:00 Cyber Chase ") ;

}
public void testMoveLeft () {

ChannelGuideGUI cgui = new ChannelGuideGUI (" tv l i s t ings . txt ") ;
L i s t I t e ra tor i t = cgui . cg . currentStart I terator () ;
assertEquals (((Show) i t . next ()) . getTit le () , "Sesame Street ") ;

// create move l e f t action
cgui . showPanel . getActionMap () . get (" panel . l e f t ") .

actionPerformed (new ActionEvent (this , 0 , " ")) ;
i t = cgui . cg . currentStart I terator () ;

// ver i fy s tar t didn ’ t change
assertEquals (((Show) i t . next ()) . getTit le () , "Sesame Street ") ;

// ver i fy button text
assertEquals (cgui . showButtons [0] . getText () , " 8:00 Sesame Street ") ;

} . . .
}

Figure 4.10: Testing Events in Java GUI

CHAPTER 4. RESEARCH METHODOLOGY 31

public void testMoveLeft2 () {
ChannelGuideGUI cgui = new ChannelGuideGUI (" tv l i s t ings . txt ") ;
L i s t I t e ra tor i t = cgui . cg . currentStart I terator () ;
assertEquals (((Show) i t . next ()) . getTit le () , "Sesame Street ") ;
cgui . showPanel . getActionMap () . get (" panel . r ight ") .

actionPerformed (new ActionEvent (this , 0 , " ")) ;
i t = cgui . cg . currentStart I terator () ;
assertEquals (((Show) i t . next ()) . getTit le () , "Cyber Chase ") ;
cgui . showPanel . getActionMap () . get (" panel . r ight ") .

actionPerformed (new ActionEvent (this , 0 , " ")) ;
i t = cgui . cg . currentStart I terator () ;
assertEquals (((Show) i t . next ()) . getTit le () , "Zoom") ;
cgui . showPanel . getActionMap () . get (" panel . l e f t ") .

actionPerformed (new ActionEvent (this , 0 , " ")) ;
i t = cgui . cg . currentStart I terator () ;
assertEquals (((Show) i t . next ()) . getTit le () , "Cyber Chase ") ;

}

Figure 4.11: Testing Events in Java GUI cont.

to explore these concepts. This approach was inspired by the Explanation Test [17]
and Learning Test [17] testing patterns proposed by Kent Beck, Jim Newkirk, and
Laurent Bossavit. These patterns were suggested as mechanisms to coerce profes-
sional programmers to adopt TDD.

Test-driven learning (TDL) expands significantly on this idea both in its approach
and its audience. Novice programmers will be presented with unit tests as examples
to demonstrate how programming concepts are implemented. Further, program-
mers will be taught to utilize automated unit tests to explore new concepts. Typ-
ically, novice programmers use some form of direct input and output to test their
programs, and relatively little attention is usually given to individual unit testing.
TDL replaces input/output statements with automated unit tests.

For example, if a student is learning to write for loops in C++, they might be
presented with the program in Figure 4.18. Notice how simple assert functions from
the standard C library are used, rather than a full-featured testing framework as
discussed earlier. This approach minimizes the barriers to introducing unit testing.
Of course there are disadvantages to this approach. For instance, if a test/assert
fails, no further tests are executed. Also, there is no support for independent tests
or test suites. However, because the programs at this level are so small, I think the
simplicity of assert statements is the better choice.

To continue the example, in a lab setting, the student might then be asked to
write additional unit tests to understand the concept. For instance, they might add

CHAPTER 4. RESEARCH METHODOLOGY 32

public class ChannelGuideGUI extends JFrame {
public s ta t ic void main (String [] args) {

ChannelGuideGUI cgui = new ChannelGuideGUI (" tv l i s t ings . txt ") ;
cgui . setDefaultCloseOperation (JFrame . EXIT_ON_CLOSE) ;
cgui . show () ;

}
public ChannelGuideGUI (String fn) {

cg = new ChannelGuide (fn) ;
setTi t le ("Channel Guide ") ;
setSize (WIDTH, HEIGHT) ;
showPanel = new JPanel () ;
showPanel . setLayout (new FlowLayout (FlowLayout . LEFT)) ;
showButtons = new JButton [5] ;
for (int a=0;a<5;a++) {

showButtons [a] = new JButton () ;
showPanel . add (showButtons [a]) ;

}
Container contentPane = getContentPane () ;
contentPane . add (showPanel) ;
addActions () ;
displayShows () ;

}
public s ta t ic f inal int WIDTH = 600;
public s ta t ic f inal int HEIGHT = 80;
ChannelGuide cg ;
JPanel showPanel ;
JButton [] showButtons ;

Figure 4.12: Java GUI

CHAPTER 4. RESEARCH METHODOLOGY 33

private void addActions () {
InputMap imap =

showPanel . getInputMap (JComponent .WHEN_IN_FOCUSED_WINDOW) ;
imap . put (KeyStroke . getKeyStroke (KeyEvent .VK_RIGHT, 0) ,

‘ ‘ panel . r ight ’ ’) ;
imap . put (KeyStroke . getKeyStroke (KeyEvent . VK_LEFT, 0) ,

‘ ‘ panel . l e f t ’ ’) ;
// associate the names with actions
ActionMap amap = showPanel . getActionMap () ;
amap. put (" panel . r ight " , new MoveRightAction (cg , this)) ;
amap. put (" panel . l e f t " , new MoveLeftAction (cg , this)) ;

}

void displayShows () {
L i s t I t e ra tor i = cg . currentStart I terator () ;
for (int a=0;a<5;a++) {

showButtons [a] . setPreferredSize (new Dimension (0 , 0)) ;
showButtons [a] . setHorizontalAlignment (SwingConstants . LEFT) ;
showButtons [a] . setMargin (new Insets (5 ,5 ,5 ,5)) ;

}
int duration = 0;
int c=0;
while (i . hasNext () && duration < 150) {

Show s = (Show) i . next () ;
int mins = s . getStartMins () ;
String t = " " + s . getStartHr () + " : " ;
i f (mins<10)

t += "0" + mins ;
else

t += " " + mins ;
t += " " + s . getTit le () ;
showButtons [c] . setText (t) ;
showButtons [c] . setPreferredSize (

new Dimension(s . getDuration ()∗3 ,30)) ;
c++;
duration += s . getDuration () ;

}
repaint () ;

}
}

Figure 4.13: Java GUI cont.

CHAPTER 4. RESEARCH METHODOLOGY 34

class MoveRightAction extends AbstractAction {
MoveRightAction (ChannelGuide cg , ChannelGuideGUI c) {

this . cg = cg ;
comp = c ;

}
public void actionPerformed (ActionEvent a) {

cg . advanceOne () ;
comp. displayShows () ;

}
private ChannelGuide cg ;
private ChannelGuideGUI comp;

}

class MoveLeftAction extends AbstractAction {
MoveLeftAction (ChannelGuide cg , ChannelGuideGUI c) {

this . cg = cg ;
comp = c ;

}
public void actionPerformed (ActionEvent a) {

cg . backupOne () ;
comp. displayShows () ;

}
private ChannelGuide cg ;
private ChannelGuideGUI comp;

}

Figure 4.14: Java GUI Event Handling

CHAPTER 4. RESEARCH METHODOLOGY 35

class Show
{

public :
Show() : startHrs (0) , startMins (0) , duration (0)

{ strcpy (t i t l e , " ") ; }
Show(char [] , int , int , int) ;
Show(istream &) ;
void getTit le (char []) ;
int getStartHours () ;
int getStartMins () ;
int getDuration () ;
void displayTimeHeaders (ostream& out) ;
void displayTopBottomLine(ostream& out) ;
void displayMiddleLine (ostream& out) ;

private :
char t i t l e [21] ;
int startHrs ;
int startMins ;
int duration ;

} ;

class List ing
{

public :
L ist ing () { }
L ist ing (istream &) ;
int getNumShows () ;
void setCurrent (int , int) ;
Show getCurrent () ;
Show getNext () ;
Show getPrev () ;
bool hasNext () ;
bool hasPrev () ;

private :
int getShowIndex (int , int) ;
Show shows [20] ;
int numShows;
int current ; // index of current show

} ;

Figure 4.15: C++ Channel Guide

CHAPTER 4. RESEARCH METHODOLOGY 36

class ChannelGuide
{

public :
ChannelGuide () ;
void display () ;
void move(int) ;

private :
L ist ing l i s t in g ;

} ;

int main ()
{

run_tests () ;
ChannelGuide cg ;
int input=0;
do
{

cg . display () ;
cout << " Enter 4 to move l e f t one show, "

<< "5 to move right one show, "
<< "and −1 to quit " << endl ;

cin >> input ;
cg .move(input) ;

} while (input >=0);
return 0;

}

Figure 4.16: C++ Channel Guide cont.

CHAPTER 4. RESEARCH METHODOLOGY 37

void run_tests ()
{
{ // t e s t 1
Show showOne(" Seinfeld " ,9 ,0 ,60) ;
char t [20] ;
showOne. getTit le (t) ;
assert (strcmp (t , " Seinfeld ") == 0) ;
assert (showOne. getStartHours () == 9) ;
assert (showOne. getStartMins () == 0) ;
assert (showOne. getDuration () == 60) ;

}
{ // t e s t s with input f i l e
ofstream out ;
out . open (" test2 . out ") ;
assert (! out . f a i l ()) ;
ifstream in ;
in . open(" test2 . out ") ;
assert (! in . f a i l ()) ;
out << " Arthur 9 0 60" << endl

<< " Barney 10 0 30" << endl
<< "Zoom 10 30 30" << endl ;

L ist ing channelOne (in) ;
{ // t e s t 2
assert (channelOne .getNumShows() == 3) ;
char t [20] ;
channelOne . setCurrent (10 ,0) ;
Show curShow = channelOne . getCurrent () ;
curShow. getTit le (t) ;
assert (strcmp (t , " Barney") == 0) ;
assert (curShow . getStartHours () == 10) ;

}
{ // t e s t 3 t e s t s gett ing a show already in progress
channelOne . setCurrent (9 ,30) ;
Show curShow = channelOne . getCurrent () ;
char t [20] ;
curShow. getTit le (t) ;
assert (strcmp (t , " Arthur ") == 0) ;
assert (curShow . getStartHours () == 9) ;
assert (curShow . getStartMins () == 0) ;

}
}

}

Figure 4.17: C++ Channel Guide Tests

CHAPTER 4. RESEARCH METHODOLOGY 38

#include <iostream>
#include <cassert >
using namespace std ;

int sum(int min, int max) ;

int main ()
{

assert (sum(3 ,7)==25) ;

cout << "No errors encountered " << endl ;
return 0;

}

// This function sums the integers from min to max inc lus ive .
// Pre : min < max
// Post : return−value = min + (min+1) + . . . + (max−1) + max
int sum(int min, int max)
{

int sum = 0;
for (int i =min ; i <=max; i ++)
{

sum += i ;
}
return sum;

}

Figure 4.18: C++ Loop Example

CHAPTER 4. RESEARCH METHODOLOGY 39

the assert statements

assert (sum(−2 ,2)==0);

assert (sum(−4,−2)==−9);

Then they might be asked to write unit tests for a new, unwritten function. In doing
so, they will have to design the function signature and implement a function stub.
This makes them think about what they are going to do before they actually do it.

Once the programmer ventures beyond the lab into larger programming projects,
tests can be isolated into a separate function like that shown in Figure 4.19.

I believe test-driven learning is a powerful pedagogical approach because it ac-
complishes multiple goals simultaneously. TDL focuses students on design, testing,
and behavior early-on. TDL encourages a rigorous, Design by Contract [55]-like ap-
proach to learning to program. It could be tailored to either a test-first or test-last
approach.

Although the primary focus of this research is on the efficacy of test-driven devel-
opment, it is possible that test-driven learning will be a powerful side-effect worthy
of significant further development, refinement, and study. A separate paper that
expands the idea of test-driven learning and documents a small formal experiment
is attached in the appendix. This paper was recently submitted for acceptance at
the 2005 OOPSLA conference Educator’s Symposium.

4.3 Experiment Design

This section will outline the details of the formal experiment. It will discuss the
hypothesis, independent and dependent variables, and the methods of making and
analyzing observations. Comments on the possibility of conducting a case study
for external validity will be presented. The chapter will end with a discussion on
methods likely to be used to analyze the experiment data and likely conclusions to
be drawn.

4.3.1 Hypothesis

The null hypothesis of this experiment is:

software constructed using the test-driven development approach will
have similar quality at higher cost to develop when compared to software
constructed with a traditional test-last approach.

The independent variable is the use of test-driven versus test-last development.
The dependent variables are software quality and software cost. Additional depen-
dent variables will be observed such as student performance on related assessments

CHAPTER 4. RESEARCH METHODOLOGY 40

#include <iostream>
#include <cassert >
using namespace std ;

int sum(int min, int max) ;
void runTests () ;

int main ()
{

runTests () ;

return 0;
}

// This function sums the integers from min to max inc lus ive .
// Pre : min < max
// Post : return−value = min + (min+1) + . . . + (max−1) + max
int sum(int min, int max)
{

int sum = 0;
for (int i =min ; i <=max; i ++)
{

sum += i ;
}
return sum;

}

// This function executes a l l of the unit t e s t s .
void runTests ()
{

assert (sum(3 ,7)==25) ;
assert (sum(−2 ,2)==0);
assert (sum(−4,−2)==−9);

cout << "No errors encountered " << endl ;
}

Figure 4.19: C++ Loop Example with Tests

CHAPTER 4. RESEARCH METHODOLOGY 41

and subsequent voluntary usage of TDD. Additional qualitative data will be gathered
such as student attitudes toward testing and TDD.

It is expected that the hypothesis will be proven incorrect in the context of larger
programming projects. Because small projects such as those developed in early
programming courses have relatively little opportunity to vary significantly in design
and number of defects, it is expected that test-driven development will have little or
no effect at these levels. I conjecture that student discipline, maturity, and ambition
are more significant factors than development approach with novice programmers.

4.3.2 Observations and Data Gathering

Undergraduate students from three computer science courses, CS1/CS101 (Com-
puter Programming 1), CS2/CS102 (Computer Programming 2 /Data Structures), and
SE/CS391 (Software Engineering) will simultaneously participate in this study. Stu-
dents in each course will take a pre-experiment aptitude test and will complete a pre-
experiment survey on their attitudes toward software testing. The pre-experiment
survey will request demographic information so that results can be analyzed for
significant differences in women and minority population groups [28]. Students will
then be divided into control and study groups within each class, subject to the con-
straints of the course.

Course-adjusted instructional materials on software testing and test-driven de-
velopment will be incorporated into the lab sections of these three courses. Both the
control and the study groups will complete the same set of labs on testing, writing
unit tests, and using automated test frameworks. The study group will complete
additional labs on test-driven development. The instructional materials will be re-
viewed by a set of faculty with experience in CS1, CS2, and SE education and/or
test-driven development.

The instructional materials will include incremental lab-based exercises that teach
software testing in the context of other course-appropriate topics. Each course (CS1,
CS2, SE) will include the same set of instructional module topics, but with course-
specific examples. For instance, students in CS1 may be taught how to use automated
testing frameworks when first learning about functions, whereas students in CS2 will
be learning about automated testing frameworks as they investigate the operations
on a stack abstract data type.

Some instructional materials, data gathering, and assessment tools will be pilot-
tested in one course prior to the full experiment. The students in the pilot test will
not be included in the full experiment the following semester. Several faculty will
be asked to provide advice and guidance in the development, administration, and
assessment of the study.

Students will then be required to complete two programming assignments. The
study group will be asked to use test-driven development techniques while the con-
trol group will be asked simply to test their programs with no indication to exactly

CHAPTER 4. RESEARCH METHODOLOGY 42

when. The assignments will be as large as possible within the constraints of the
course and the abilities of the students, and the second assignment will build on or
reuse significant parts of the first.

At the beginning of the second project, students will be provided a solution to the
first project that includes a full set of automated unit tests. In the second project,
students may choose to build on either their own solution, or the solution provided.

Students will be required to submit all of the code that they have completed to
date at multiple points throughout the project. This code will be evaluated to deter-
mine the degree of testing, the degree of reuse, and the quality of code. Some code
will likely not compile, but even this will be a good indicator of the use (or non-use)
of test-driven development. At the end of the project all code will again be evaluated
for testing, reuse, and code quality, but also it will be subjected to full integration
and acceptance tests to determine unit- test quality. Some unit tests will be eval-
uated for code coverage to complete the examination of unit-test quality. During
the coding process, a random sample of students will be observed and interviewed
regarding their use of test-driven development.

Students will also be required to track the amount of time they spend on program-
ming projects. Some mechanism will be provided to simplify the collection of effort
information. This may be a web-based time tracking tool, or perhaps some kind of
automated logging scripts associated with logon/logoff and compilation. Aggregate
information may be provided to all students correlating use of tests with software
quality and student effort.

At the end of the semester, students will be asked to complete a survey indicat-
ing their attitudes toward testing and test-driven development. Student exam and
course grades will then be compared to determine if any correlation exists between
test-driven development and academic performance.

The following semester or year, a sample of students from both the control and
study groups will again be examined to determine the voluntary use of test-driven
development in course programming assignments. Students from CS1 will be exam-
ined in CS2. Students from CS2 will be examined in the SE course. Students from the
SE course will be examined in a subsequent course if a significant enough number
of them enroll in a common programming-based course.

Selecting Study Groups

A pre-experiment aptitude test will be conducted to inform the selection of the study
and control groups. Using results from the aptitude test, the student population will
be grouped into three tiers, with random selection separating the three tiers into the
control group and the study group. Some boundaries of the course structure may
also influence the composition of the two groups.

CHAPTER 4. RESEARCH METHODOLOGY 43

Ratio of Unit-Tests

Code samples will be gathered at multiple points in the development process to
determine if tests are being developed along with the production code or as an after
thought. Unit-test per class, unit- test per member function, and unit-test per lines-
of-code ratios will be calculated for each student. Because the cycle of test, then
code is very short (minutes or even seconds), this study will determine if students
are actually writing tests immediately before rather than immediately after writing
production code through random direct observation.

Testing ratios will be determined by counting test cases in an automated test-
ing framework such as cppunit or cppunit lite [54]. Code samples will be examined
to determine whether students properly utilized the testing framework, or imple-
mented informal tests. Efforts will be made to count all unit-tests even if they do
not conform to testing specifications or are not written using the testing framework.

Software Metrics

Project submissions will be evaluated by a set of dynamic and static software metrics.
Defect density will be measured through a set of dynamic black-box acceptance tests.

Software quality will be measured by calculating a set of static metrics. To de-
termine software quality, code samples will be examined with currently available
software metrics tools such as CCCC (C and C++ Code Counter) [49]. Traditional
and object-oriented metrics will be examined including code size, McCabe’s Cyclo-
matic Complexity [53], and particularly fan-out (i.e. number of other modules the
current module uses), fan-in (number of other modules which use the current mod-
ule), and the Information Flow measure suggested by Henry and Kafura [41], which
combines these to give a measure of coupling for the module.

Reuse will be measured statically. Many reuse metrics focus on reuse through
inheritance. Although this will be examined, I do not anticipate a significant degree
of reuse through inheritance especially in the CS1 and CS2 courses. Software will
be evaluated for methods and classes reused with and without modification from
one project to the next. If possible, such metrics will be calculated from one version
to the next in the same project. This will help determine the degree to which the
software evolves and the software’s stability.

Student Attitude Survey

Student attitudes towards testing and test-driven development will be evaluated
through pre- and post- experiment surveys conducted with both the control and
the study groups. In the pre-experiment survey, students will be asked to report
on how they perceive the value of testing, how they currently test their programs,
if they know what test-driven development is, and how open they are to learning to
use test-driven development. In the post-experiment survey, students will be asked

CHAPTER 4. RESEARCH METHODOLOGY 44

to report again on how they perceive the value of testing, whether they feel like they
understand test-driven development, whether they used test-driven development in
their assignments, and whether they intend to use the test-driven development ap-
proach in the future both in course work, or in any professional programming they
may do. Results of the control and study groups will be compared and interpreted
in the context of other results.

Subsequent Voluntary Use of Test-Driven Development

A key indicator in whether students agree with the merits of test-driven development
is whether they choose to use it. It is anticipated that many students, even if they
see significant value in the test-driven development approach, will choose not to
use it on course assignments because they do not foresee having to maintain or
reuse these assignments. Although students will hopefully see benefits to using test-
driven-development in the short-term, in our experience, students will most often
take the shortest path to completing an assignment. The shortest path typically
involves minimal testing. The value of test-driven development will probably best be
realized in long-term projects that will entail future enhancements and maintenance.
Nevertheless, programming samples will be collected from both the control and
the study groups for programming projects completed after the initial two study
projects. These samples will be evaluated to again determine use of automated
software tests and software quality.

Student Performance Evaluation

Both project, exam, and overall course grades will be examined to determine if any
significant differences exist between the control and the study groups.

4.3.3 Assessment and Internal Validity

Data collected from the experiments will be reported and analyzed statistically. Ap-
propriate graphs such as box plots will be produced to report the data. Statistical
tests such as the two-sample t -test will be employed to determine if differences be-
tween the control and experimental groups are statistically significant.

Student performance will only be reported in aggregate. In fact, training and ap-
proval for the experiments will need to be obtained from the University of Kansas
Human Subjects Committee - Lawrence Campus (HSCL) prior to conducting the stud-
ies.

A sample analysis of a small experiment conducted on the test-driven learning
approach is documented in the paper attached in Appendix A. The lab materials and
assessment instruments from this study are also included in Appendix B. These can

CHAPTER 4. RESEARCH METHODOLOGY 45

serve as an example of how TDL can be integrated into the current curriculum, and
how this experiment can be conducted and analyzed, albeit on a much larger scale.

The experiment design and corresponding results should establish internal va-
lidity of the experiments. As mentioned earlier, care will be taken to ensure that
the control and experimental groups are homogeneous and random. Both groups
will be presented with the same instructional material to ensure that no bias is in-
troduced. External validity of the experiments will be also be examined. External
validity will be addressed in the last chapter. In particular, though, peer reviewed
publications and a case study or small experiment with professional programmers
will be conducted to enforce the claims of external validity.

5
Research Plan

The previous chapter summarized the research to be conducted. This chapter out-
lines a proposed schedule for completing the research and identifies particular chal-
lenges and risks anticipated.

5.1 Schedule of Research Activities

The following schedule, shown in Tables 5.5–5.7, is proposed for the completion of
major milestones in this research.

5.2 Challenges to Successful Completion

A number of challenges are anticipated with this research. This section describes
these challenges and suggests strategies for meeting them. It categorizes the chal-
lenges as organizational, technical, motivational, and temporal.

5.2.1 Organizational Challenges

Empirical software engineering requires the cooperation of a number of people. Un-
like much computing research which may require hardware and labs but involves
only a few people, empirical studies require a population to be studied and the ap-
proval to conduct the study.

This research proposes to conduct experiments in approximately seven courses
(three in SE, two in CS2, one in CS1, one in a later senior course). Faculty approval and
cooperation will be required in all courses. Faculty and Graduate Teaching Assistants
will be asked to participate in the studies by presenting new materials, by aiding in

46

CHAPTER 5. RESEARCH PLAN 47

Table 5.5: Remaining Period in Academic Year 2004–2005

Term Activities

Spring 2005

• Develop and pilot test-driven development lab
exercises in a course with students who will not
participate in full study

• Plan and schedule experiments for Summer and
Fall 2005 courses

• Adapt and implement data gathering and assess-
ment tools

• Complete HSCL training and apply for HSCL ap-
proval

• Collaborate with reviewers

Summer 2005

• Refine instructional and assessment materials

• Conduct pilot controlled experiment in SE

CHAPTER 5. RESEARCH PLAN 48

Table 5.6: Academic Year 2005–2006

Term Activities

Fall 2005

• Conduct controlled experiments in undergradu-
ate courses: CS1, CS2, SE

– Conduct pre-learning attitude and aptitude
surveys

– Deliver test-driven development instruction

– Collect code samples

– Complete initial assessment results and dis-
seminate to students

– Conduct post-learning attitude and apti-
tude surveys

• Analyze and disseminate early results

Spring 2006

• Conduct longitudinal study in undergraduate
courses: CS2, SE, one other course

– Conduct attitude surveys

– Track voluntary usage of test-driven devel-
opment

– Collect code samples

– Complete initial assessment results and dis-
seminate to students

• Revise and improve instructional and assess-
ment materials if needed

Summer 2006

• Analyze results

• Prepare reports

• Prepare instructional and assessment materials
for dissemination

CHAPTER 5. RESEARCH PLAN 49

Table 5.7: Academic Year 2006–2007

Term Activities

Fall 2006

• Submit reports for publication

• Possibly refine and publish instructional and as-
sessment materials

Spring 2007

• Complete dissertation

• Present final oral exam

creating and differentiating the control and experiment groups, and providing access
to appropriate artifacts such as program submissions and exam scores.

Students will be asked to cooperate by applying the test-first or test-last meth-
ods in labs and on programming projects. Students will also be asked to complete
surveys at the beginning and end of their courses. In order to track students over
two semesters, enrollment information will be needed from faculty or department
personnel. Approval will also be needed from the Kansas University Human Subjects
Committee - Lawrence Campus (HSCL).

A number of steps have already been taken to approach these challenges. David
Hann, the HSCL administrator, has been contacted and fast track approval has al-
ready been granted. The process involves an on-line training course, paperwork, and
about a one-week approval time.

As is documented in the appendix, I have recently conducted a short formal
experiment on test-driven learning in “EECS 138 Computer Programming - C++”. This
pilot experiment has helped to clarify the types of instructional materials needed,
the cooperation needed from instructors, the types of artifacts and observations
involved, and the kind of analysis that can be performed.

Dr. Saiedian will be teaching “EECS 448 Software Engineering” this summer and
he has offered to allow me to conduct a first experiment there. We have also applied
for a grant from the university General Research Fund to support this work over the
summer.

I am hopeful that faculty in the department will be receptive to conducting this
research in their courses. I will attempt to isolate the new material primarily to labs,
and I am hopeful that if I work closely with the professors and I do all the work of
developing the lab materials, there will be no objections. If possible, I hope to serve

CHAPTER 5. RESEARCH PLAN 50

as a teaching assistant in the CS1 and CS2 courses both semesters.
If possible, a case study or small formal experiment will also be conducted with

professional programmers. I have already gained approval from Engenio Informa-
tion Systems, Inc. (formerly LSI Logic Storage Systems) in Wichita, Kansas to conduct
such a study. Engenio has a software development group of around two hundred
people, with applications developed in embedded real-time C/C++ systems with Java
user interfaces. I have a good relationship with Engenio after providing software
training courses to them for the past five years. In general Engenio has not at-
tempted test-driven development, however one of their satellite groups in Tucson,
AZ has experimented with it.

Alternatively, it may be possible to conduct a small experiment with students
from one or several of the software engineering courses offered at the Edwards
Campus. Many of these students work as professional programmers and may be
open to participating in such an experiment.

5.2.2 Technical Challenges

A couple of technical challenges are present with this research. The primary one
is the introduction of the xUnit testing frameworks. JUnit is widely used, fairly
simple to install, and I have a good deal of experience with it. However, CS1 and
CS2 are currently taught in C++ at the University of Kansas. As described earlier,
assert statements from the standard cassert library can be used to some extent,
but a more mature framework such as CxxTest might be preferred in CS2. CxxTest
can be installed as a standard library on departmental servers, but if students opt
to develop programs elsewhere, they will need to complete the installation. It is
unlikely that students will be willing to do this unless it is absolutely required.

The second technical challenge identified is in gather artifacts. Students will be
asked to submit code and tests at regular intervals. They will also be asked to track
the time they spend on the projects. A variety of mechanisms could be created
to aid in this area. Login and logout scripts could be provided that record when
students are on the department servers. However we can’t be sure they are working
on this course or even this project. Plus some students will choose to work on other
machines. A better option may be to provide a web application that facilitates code
submissions and that provides a time tracking tool for students to record the time
they spend on the project.

A third technical challenge involves selecting and interpreting metrics. There are
a wide range of potential metrics and tools for calculating such metrics. Cost and
language support may limit tool options. Some metrics were mentioned earlier as
important measures of software quality, but there is little consensus in the industry
regarding quality metrics. A variety of metrics will be calculated and compared, but
there may be some disagreement on which metrics are most valuable.

CHAPTER 5. RESEARCH PLAN 51

5.2.3 Motivational Challenges

Perhaps the most significant challenge may be motivating students to write tests.
Students often do not see the long-term benefits of developing quality software be-
cause they know they are unlikely to have to enhance or maintain the software they
develop in courses. Not only this, but when students are asked to write tests for
their code, they may see this as unnecessary and unreasonably time-consuming.
Test-driven development is a more disciplined approach to programming. Such dis-
cipline may be unreasonable to expect from novice programmers.

There seem to be a couple of approaches that might overcome these motiva-
tional challenges. The first obvious approach is to make tests a part of student
grades. Stephen Edwards [24] reports on his experience with determining grades on
programming projects as the product of test coverage, tests passed, and acceptance
test pass rates. By multiplying the three, in order to get a high score students must
not only write a solution that passes the instructors tests, but they must write tests
that cover their entire code.

Since grading criteria is a faculty decision and thus cannot be guaranteed. An-
other option is to find ways to make testing so compelling that students are con-
vinced of its merits. It is unlikely that students will be so compelled at the beginning
of a course, but as the course progresses, they may become convinced. In particular
if testing is modeled well in the classroom, labs and examples as described in the
paper on test-driven learning, then students may be more likely to write their own
tests.

Another strategy is to give two projects where the second one builds on the first.
At the end of the first project, students could be provided with a solution with
tests. On the second project the students may recognize how the tests help them
be catching any defects they inject quickly. Plus by measuring student effort and
success on subsequent projects, we may be able to report that students who use tests
spend less time and have better success than those who don’t. This information may
be too late for changes in the first semester, but may influence voluntary usage of
testing in the second semester.

5.2.4 Temporal Challenges

The final set of challenges deals with time constraints. Test-driven development is a
practice that likely develops over time. Novice programmers may struggle to know
how to write good tests. Short projects completed individually may not provide
compelling motivation for writing tests. The longitudinal aspect of this study will
help to measure student testing ability. Maturity will also be an interesting factor.

On a much smaller scale, even when tests are written, it will be very hard to
measure when the tests were actually written (just before or just after the production
code). By looking at the code submissions during the project development, test to

CHAPTER 5. RESEARCH PLAN 52

code ratios can help determine if tests were written along with the code or at the
very end. Random observations and surveys will be used to get an idea of whether
students actually write tests first or last.

Finally there is the challenge of trying to complete studies in all three courses
simultaneously and in subsequent semesters. I will be very busy developing instruc-
tional materials, then delivering and conducting the studies. I hope to offer my
time to teach as many of the TDD-based labs as possible, minimizing the burden on
faculty and GTA’s, plus providing incentive for them to participate in the studies.
Ideally I will be able to serve as a GTA in one lab section of CS1 and one lab section
of CS2 each semester which will help keep me involved in the courses.

5.3 Potential Risks

A project of this scale involves a number of risks. The following events could have
significant impact on the success of this research:

• professors won’t let me conduct experiments in their classes

• system administrators won’t install JUnit or CxxTest

• achieving consistent instruction

• achieving unbiased separation into control and experimental groups

• students/programmers don’t write tests first

• instructional modules and projects not ready in time

• technical difficulties with automated unit testing tools (e.g. don’t support ex-
ceptions or templates)

• negative impacts of TDD on student performance prompt early termination of
study

• managing lots of data (code, surveys, grade info)

• failure to foresee needed data (survey questions, ...)

• inconsistent code submission tools

Risk avoidance and risk mitigation strategies will be employed to minimize the
possibility and impact of these risks. In particular, a number of the most critical
risks are already being addressed or will be addressed as early as possible. One
advantage is that several of the faculty on my committee will be teaching courses
to contain the studies. Hopefully this will improve awareness of the value of the
studies and improve the success of the studies.

6
Evaluation, Contributions, and Summary

This final chapter will discuss how this research will be evaluated, and the expected
contributions resulting from the research. It will end with a brief summary of the
proposal.

6.1 Evaluation and External Validity

External validity involves demonstrating that results discovered in one study can
be reproduced elsewhere, and that the results generalize to broader environments.
Three approaches will be taken to evaluate this research. First, while the research
is still being designed and conducted, reviews will be requested from a number of
sources. Computer science faculty and committee members at the University of
Kansas will have the opportunity to review the studies in the oral comprehensive
exam, as the experiments are being integrated into the courses, and at the end of
the first experiment. Additional advice and reviews will be requested from Laurie
Williams at North Carolina State University due to her experience with studying pair
programming.

The second evaluation of this research will occur with the case study in a profes-
sional environment. Similar results in the academic and industry environments will
strengthen the results. Differing results will also be valuable, likely leading to new
questions exploring environmental, maturity, and possibly product lifetime ques-
tions.

The third evaluation of this research will involve peer-review as the results are
submitted for publication. Publications and conference presentations will serve as
the primary means of disseminating the research results. Reviewer comments and
publication acceptance will serve as a meaningful confirmation of the research’s
validity.

53

CHAPTER 6. EVALUATION, CONTRIBUTIONS, AND SUMMARY 54

6.2 Expected Contributions

This research should contribute empirical results from the controlled and longitu-
dinal studies to resolve or at least inform five questions:

• Does test-driven development produce higher quality software?

• Can undergraduate students be taught and motivated to use test-driven devel-
opment?

• Does test-driven development improve immediate student academic perfor-
mance?

• Are there significant differences in acceptance, use, and effects of test-driven
development in the women and minority populations?

• Where is the most appropriate point in the undergraduate programming cur-
riculum to teach test-driven development?

6.2.1 Empirical Evidence of TDD Efficacy

The primary contribution of this research will be empirical evidence of the effects
that applying TDD has on software design quality. This research will explore many
important quality aspects beyond defect density such as reusability and maintain-
ability.

Quantitative Evidence

Design quality will be measured with a variety of software metrics. Unfortunately
there is no common consensus on what constitutes good design. As a result, a
number of metrics will be calculated and reported. These metrics will include, but
not be limited to:

• fan-in

• fan-out

• information flow

• lines of code per method

• methods per class

• lines of code outside all classes

• cyclomatic complexity

CHAPTER 6. EVALUATION, CONTRIBUTIONS, AND SUMMARY 55

• methods reused without modification

• methods reused with modification

• defect density

• ratio of unit tests to production code

Additional metrics such as development effort (in hours) and student project and
exam scores will be calculated.

Qualitative Evidence

A number of qualitative measures will also be examined. Instruments such as pre-
and post-experiment surveys will be developed and administered. Questions will
cover topics such as:

• attitudes toward testing

• programming experience

• academic performance

• demographics (gender, race, nationality)

6.2.2 Peer-Reviewed Publications

Following each semester, I plan to publish the results of that semester’s experiments.
These publications will include a statistical analysis of the experimental results. An
initial publication on test-driven learning has already been submitted to the OOPSLA
Educator’s Symposium (see appendix). Future papers may be submitted to Commu-
nications of the ACM, IEEE Software, IEEE Transactions on Software Engineering, Em-
pirical Software Engineering: An International Journal, and/or the computer science
education journal SIGCSE Bulletin. I also will target presentations at the Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA) Educator’s
Symposium, the International Conference on Software Engineering, the Conference
on Software Engineering Education and Training, and/or the SIGCSE annual techni-
cal symposium. Additional venues could include professional conferences such as
Agile 2006.

6.2.3 Framework for Empirical TDD Studies

A valuable by-product of this research will be a framework for conducting future
studies of TDD efficacy. It is unlikely that a single set of studies can explore all
aspects of a development approach. Plus as was noted earlier, additional studies

CHAPTER 6. EVALUATION, CONTRIBUTIONS, AND SUMMARY 56

will be necessary to provide external validity. By documenting how this study was
conducted and providing instruments, tools, and methods, future studies can be
completed more efficiently.

All assessment tools including the aptitude test, pre- and post- experiment atti-
tude surveys, and software quality collection and analysis tools will be made avail-
able on the web. I am not aware of a current home for test-driven development
education so it is possible that this project will create a wiki-based web site to fa-
cilitate the community-driven communication of ideas on test-driven development,
particularly in undergraduate education.

6.2.4 Curriculum Materials

In addition, this research will produce instructional materials that incorporate the
“test-driven learning” approach into CS1, CS2, and SE courses. These materials could
be adapted into other curriculums, or they could be extended extensively, even to
the point of producing complete lab or course text books.

6.3 Summary

Despite many significant advances, software construction is still plagued with many
failures. Development organizations struggle to make intelligent development method
adoption decisions due to a lack of maturity and a general lack of empirical evidence
of what methods are best in what contexts. While some individual programmers and
organizations have learned to value and apply disciplined, yet flexible methods, stu-
dents do not generally graduate with these skills.

Test-driven development is a disciplined development practice that promises to
improve software design quality while reducing defects with no increased effort.
This research proposes to carefully examine the potential of TDD to deliver these
benefits. Empirical software engineering methods will be applied in a set of formal
controlled longitudinal studies with undergraduate students at the University of
Kansas.

If TDD proves to improve software quality at minimal cost, and if this research
shows that students can learn TDD from early on, then this research can have a
significant impact on the state of software construction. Software development or-
ganizations will be convinced to adopt TDD in appropriate situations. New textbooks
can be written applying the test-driven learning approach. As students learn to take
a more disciplined approach to software development, they will carry this approach
into professional software organizations and improve the overall state of software
construction.

Bibliography

[1] The CHAOS Report. Technical report, Standish Group International, Inc., 1995.

[2] 2004 third quarter research report. Technical report, Standish Group Interna-
tional, Inc., 2004.

[3] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta. Agile software devel-
opment methods: Review and analysis. Technical Report 478, Espoo, Finland:
Technical Research Centre of Finland, 2002.

[4] P. Abrahamsson, J. Warsta, M.T. Siponen, and J. Ronkainen. New directions on
agile methods: A comparative analysis. In Proceedings of the 25th International
Conference on Software Engineering (ICSE-03), pages 244–254, Piscataway, NJ,
May 3–10 2003. IEEE Computer Society.

[5] ACM. ACM curricula recommendations volume i: Computing curric-
ula 1991: Report of the ACM/IEEE-cs joint curriculum task force, 1991.
http://www.acm.org/education/curricula.html.

[6] ACM. Final report of the joint ACM/IEEE-cs task force
on computing curricula 2001 for computer science, 2001.
http://www.acm.org/education/curricula.html.

[7] Agile Alliance, 2004. http://www.agilealliance.org.

[8] Steven K. Andrianoff and David B. Levine. Role playing in an object-oriented
world. In SIGCSE ’02: Proceedings of the 33rd SIGCSE technical symposium on
Computer science education, pages 121–125. ACM Press, 2002.

[9] Apache. http://www.mockobjects.com.

[10] Apache. http://jakarta.apache.org/cactus/.

[11] Apache. http://incubator.apache.org/derby/.

[12] David Astels. Test Driven Development: A Practical Guide. Prentice hall PTR,
2003.

57

BIBLIOGRAPHY 58

[13] E.G. Barriocanal, M.S. Urb’an, I.A. Cuevas, and P.D. P’erez. An experience in
integrating automated unit testing practices in an introductory programming
course. ACM SIGCSE Bulletin, 34(4):125–128, December 2002.

[14] K. Beck and et al., 2001. http://www.agilemanifesto.org.

[15] Kent Beck. Extreme Programming Explained. Addison-Wesley Longman, Inc.,
2000.

[16] Kent Beck. Aim, fire. Software, 18(5):87–89, Sept.-Oct. 2001.

[17] Kent Beck. Test Driven Development: By Example. Addison-Wesley, 2003.

[18] Joseph Bergin, Richard Kick, Judith Hromcik, and Kathleen Larson. The object
is objects. In SIGCSE ’02: Proceedings of the 33rd SIGCSE technical symposium
on Computer science education, pages 251–251. ACM Press, 2002.

[19] B. Boehm. A spiral model of software development and enhancement. In Pro-
ceedings of the International Workshp on Software Process and Software Envi-
ronments. ACM Press, 1985.

[20] F. Brooks. The Mythical Man-Month. Addison-Wesley, 1975.

[21] Ilene Burnstein. Practical Software Testing. Springer-Verlag, 2003.

[22] Henrik Baerbak Christensen. Systematic testing should not be a topic in the
computer science curriculum! In Proceedings of the 8th annual conference
on Innovation and technology in computer science education, pages 7–10. ACM
Press, 2003.

[23] Eclipse. http://www.eclipse.org/org/press-release/feb2004foundationpr.html.

[24] S.H. Edwards. Rethinking computer science education from a test-first perspec-
tive. In Proceedings of the 18th Annual ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications: Educators’ Sym-
posium, pages 148–155, 2003.

[25] S.H. Edwards. Using test-driven development in the classroom: Providing stu-
dents with automatic, concrete feedback on performance. In Proceedings of the
International Conference on Education and Information Systems: Technologies
and Applications EISTA’03, August 2003.

[26] H. Erdogmus. On the effectiveness of test-first approach to programming. IEEE
Transactions on Software Engineering, 31(1):1–12, January 2005.

[27] H. Mills et al. Cleanroom software engineering. Software, pages 19–25, Sept.
1987.

BIBLIOGRAPHY 59

[28] Allan Fisher and Jane Margolis. Unlocking the clubhouse: the carnegie mellon
experience. SIGCSE Bull., 34(2):79–83, 2002.

[29] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, 1999.

[30] Jr. Frederick P. Brooks. No silver bullet: essence and accidents of software
engineering. Computer, 20(4):10–19, 1987.

[31] E. Gamma and K. Beck. http://www.junit.org.

[32] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlisside. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, Mas-
sachusetts, 1995.

[33] D. Gelperin and B. Hetzel. The growth of software testing. Communications of
the ACM, 31(6):687–695, 1988.

[34] Boby George and Laurie Williams. A structured experiment of test-driven de-
velopment. Information and Software Technology, 46(5):337–342, 2004.

[35] T. Gilb. Software Metrics. Little, Brown, and Co., 1976.

[36] R.L. Glass, V. Ramesh, and I. Vessey. An analysis of research in computing
disciplines. Communications of the ACM, 47(6):89–94, June 2004.

[37] J.B. Goodenough and S.L. Gerhart. Toward a theory of test data selection. IEEE
Transactions on Software Engineering, 2:156–173, June 1975.

[38] Paul Hamill. Unit Test Frameworks. O’Reilly, 2004.

[39] Görel Hedin, Lars Bendix, and Boris Magnusson. Introducing software engineer-
ing by means of extreme programming. In Proceedings of the 25th International
Conference on Software Engineering, pages 586–593. IEEE Computer Society,
2003.

[40] Hasko Heinecke and Christian Noack. Integrating Extreme Programming and
Contracts. Addison-Wesley Professional, 2002.

[41] S. Henry and D. Kafura. Software structure metrics based on information flow.
IEEE Transactions on Software Engineering, 7(5):510–518, 1981.

[42] Watts Humphrey. Introduction to the Personal Software Process. Addison-
Wesley, 1997.

[43] Sun Microsystems Inc., 2004. http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Class.html.

[44] Sun Microsystems Inc., 2005. http://java.sun.com/docs/books/tutorial/uiswing/components/

BIBLIOGRAPHY 60

[45] R. Jeffries.

[46] Reid Kaufmann and David Janzen. Implications of test-driven development:
a pilot study. In Companion of the 18th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, pages 298–
299. ACM Press, 2003.

[47] Michael Kölling and John Rosenberg. Guidelines for teaching object orienta-
tion with java. In Proceedings of the 6th annual conference on Innovation and
technology in computer science education, pages 33–36. ACM Press, 2001.

[48] Craig Larman and Victor R. Basili. Iterative and incremental development: A
brief history. IEEE Computer, 36(6):47–56, June 2003.

[49] Tim Littlefair. C and c++ code counter, 2003. http://cccc.sourceforge.net.

[50] Robert C. Martin. Agile Software Development: Principles, Patterns, and Prac-
tices. Pearson Education, Inc., 2003.

[51] Vincent Massol and Ted Husted. JUnit in Action. Manning, 2004.

[52] E. Michael Maximilien and Laurie Williams. Assessing test-driven development
at IBM. In Proceedings of the 25th International Conference on Software Engi-
neering (ICSE-03), pages 564–569, Piscataway, NJ, May 3–10 2003. IEEE Com-
puter Society.

[53] T.J. McCabe. A complexity measure. IEEE Transactions on Software Engineering,
2:308–320, Dec 1976.

[54] Object Mentor, 2004. http://www.objectmentor.com/resources/downloads/index.

[55] Bertrand Meyer. Applying “Design by Contract". Computer, 25(10):40–51, 1992.

[56] R. Mugridge. Challenges in teaching test driven development. In Proceedings of
XP 2003, pages 410–413, May 2003.

[57] M.M. Müller and O. Hagner. Experiment about test-first programming. IEEE
Proceedings-Software, 149(5):131–136, 2002.

[58] M.M. Müller and F. Padberg. On the economic evaluation of XP projects. In
Proceedings of ESEC/FSE’03, pages 168–177, Sept 2003.

[59] James Noble, Stuart Marshall, Stephen Marshall, and Robert Biddle. Less ex-
treme programming. In Proceedings of the sixth conference on Australian com-
puting education, pages 217–226. Australian Computer Society, Inc., 2004.

BIBLIOGRAPHY 61

[60] Mataž Pančur, Mojca Ciglarǐc, Matej Trampuš, and Tone Vidmar. Towards em-
pirical evaluation of test-driven development in a university environment. In
Proceedings of EUROCON 2003. Computer as a Tool. The IEEE Region 8, vol-
ume 2, pages 83–86, 2003.

[61] Andrew Patterson, Michael Kölling, and John Rosenberg. Introducing unit test-
ing with BlueJ. In Proceedings of the 8th annual conference on Innovation and
technology in computer science education, pages 11–15. ACM Press, 2003.

[62] R. Poston. Automating Specification-Based Software Testing. IEEE Computer
Society Press, 1996.

[63] R.S. Pressman. Software Engineering: A Practitioner’s Approach, Sixth Edition.
McGraw Hill, 2005.

[64] Jonathan Rasmusson. Introducing XP into greenfield projects: Lessons learned.
IEEE Software, 20(3):21–28, 2003.

[65] D.J. Reifer. How good are agile methods? Software, 19:16–18, Jul/Aug 2002.

[66] W. Royce. Modeling the development of large software systems. In Proceedings
of Westcon, pages 328–339. IEEE CS Press, 1970.

[67] Jean-Guy Schneider and Lorraine Johnston. extreme programming at universi-
ties: an educational perspective. In Proceedings of the 25th International Con-
ference on Software Engineering, pages 594–599. IEEE Computer Society, 2003.

[68] Unknown. Agile methodologies survey results, January 2003.
http://www.shinetech.com/download/attachments/98/ShineTechAgileSurvey2003-
01-17.pdf?version=1.

[69] Unknown. Why so many cplusplus test frameworks, 2004.
http://c2.com/cgi/wiki?WhySoManyCplusplusTestFrameworks.

[70] I. Vessey, V. Ramesh, and R.L. Glass. A unified classification system for research
in the computing disciplines. Technical Report TR-107-1, Indiana University,
2002.

[71] Erez Volk, 2005. http://cxxtest.sourceforge.net/.

[72] W. Wayt Gibbs. Software’s chronic crisis. Scientific American (International
Edition) 271,, 271(3):72–81, 1994.

[73] L. Williams. The Collaborative Software Process. PhD thesis, The University of
Utah, August 2000.

BIBLIOGRAPHY 62

[74] L. Williams, E.M. Maximilien, and M. Vouk. Test-driven development as a defect-
reduction practice. In Proceedings of the 14th IEEE International Symposium on
Software Reliability Engineering, pages 34–45, Nov. 2003.

[75] Laurie Williams and Robert Kessler. Pair Programming Illuminated. Addison-
Wesley Longman, Inc., 2002.

[76] XProgramming.com. http://www.xprogramming.com/software.htm.

A
Test-Driven Learning

Test-driven learning (TDL) is an approach to teaching computer programming that
involves introducing and exploring new concepts through automated unit tests. TDL
offers the potential of teaching testing for free, of improving programmer compre-
hension and ability, and of improving software quality both in terms of design quality
and defect density.

This paper introduces test-driven learning as a pedagogical tool. It will provide
examples of how TDL can be incorporated at multiple levels in computer science
and software engineering curriculum for beginning through professional program-
mers. In addition, the relationships between TDL and test-driven development will
be explored.

Initial evidence indicates that TDL can improve student comprehension of new
concepts while improving their testing skills with no additional instruction time. In
addition, by learning to construct programs in a test-driven manner, students are
expected to be more likely to develop their own code with a test-driven approach,
likely resulting in improved software designs and quality.

A.1 Introduction

Programmers often learn new programming concepts and technologies through ex-
amples. Instructors and textbooks use examples to present syntax and explore se-
mantics. Tutorials [44] and software documentation [43] regularly present examples
to explain behaviors and proper use of particular software elements. Examples, how-
ever, typically focus on the use or the interface of the particular software element,
without adequately addressing the behavior of the element.

Consider the following example from the Java API documentation [43]:

void printClassName(Object obj)

63

APPENDIX A. TEST-DRIVEN LEARNING 64

{
System.out.println("The class of " + obj +

" is " + obj.getClass().getName());
}

While this is a reasonable example of how to access an object’s class and corre-
sponding class name, it only reveals the desired interface. It teaches nothing about
the underlying behavior. To see behavior, one must compile and execute the code.
While it is desirable to encourage students to try things out on their own, this can be
time consuming if done for every possible example, plus it significantly delays the
presentation/feedback loop.

As an alternative, we can introduce a simple test that demonstrates both the in-
terface and the expected behavior. For instance, we could replace the above example
with the following example which uses the assert keyword1.

void testClassName1()
{
ArrayList al = new ArrayList();
assert al.toString().equals("[]");
assert al.getClass().getName()

.equals("java.util.ArrayList");
}

This example shows not only the same interface information as the original ex-
ample in roughly the same amount of space, but it also shows the behavior by doc-
umenting the expected results.

A second example below demonstrates the same interface using an Integer. No-
tice how these two examples also reveal the toString() results for an empty ArrayList
(“[]”) and an Integer (“5”).2

void testClassName2()
{
Integer i = new Integer(5);
assert i.toString().equals("5");
assert i.getClass().getName()

.equals("java.lang.Integer");
}

1Although assert has existed in many languages for some time, the assert keyword was intro-
duced in Java with version 1.4 and requires extra work when compiling and running:
javac -source 1.4 ClassTest.java
java -ea ClassTest

2If the toString() information is deemed distracting, this first assert could simply be left out of
the example.

APPENDIX A. TEST-DRIVEN LEARNING 65

These examples demonstrate the basic idea of test-driven learning:

• Teach by example

• Present examples with automated tests

• Start with tests

Teaching by example has a double meaning in TDL. First TDL encourages instruc-
tors to teach by presenting examples with automated tests. Second, by holding tests
in high regard and by writing good tests, instructors model good practices that con-
tribute to a number of positive results. Students tend to emulate what they see
modeled. So as testing becomes a habit formed by example and repetition, students
may begin to see the benefits of developing software with tests and be motivated to
write tests voluntarily.

The third aspect of TDL suggests a test-first approach. TDL could be applied in
either a test-first or a test-last manner. With a test-last approach, a concept would
be implemented, then a test would be written to demonstrate the concept’s use and
behavior. With a test-first approach, the test would be written prior to implementing
the concept of interest. By writing a test before implementing the item under test,
attention is focused on the item’s interface and observable behavior. This is an
instance of the test-driven development (TDD) [16] approach that will be discussed
later. Although early research reports mixed results [25, 46, 57, 60], TDD seems to
have the potential of producing higher quality software.

A.2 Related Work

Test-driven learning is not a radical new approach to teaching computer program-
ming. It is a subtle, but potentially powerful way to improve teaching, both in terms
of efficiency and quality of student learning, while accomplishing several important
goals.

TDL builds on the ideas in Meyer’s work on Design by Contract [55]. Automated
unit tests instantiate the assertions of invariants and pre- and post-conditions. While
contracts provide important and rigorous information, they fail to communicate
and implement the use of an interface in the efficient manner of automated unit
tests. Contracts have been suggested as an important complement to test-driven
development [40]. The same could be said regarding TDL and contracts.

TDL was more directly inspired by the Explanation Test [17] and Learning Test [17]
testing patterns proposed by Kent Beck, Jim Newkirk, and Laurent Bossavit. These
patterns were suggested as mechanisms to coerce professional programmers to
adopt test-driven development [16].

The Explanation Test pattern encourages developers to ask for and provide ex-
planations in terms of tests. The pattern even suggests that rather than explaining

APPENDIX A. TEST-DRIVEN LEARNING 66

a sequence diagram, the explanation could be provided by “a test case that contains
all of the externally visible objects and messages in the diagram." [17]

The Learning Test pattern suggests that the best way to learn about a new facility
in an externally produced package of software is by writing tests. If you want to use
a new method, class, or API, first write tests to learn how it works and ensure it
works as you expect it to.

TDL expands significantly on the Explanation and Learning Test ideas both in its
approach and its audience. Novice programmers will be presented with unit tests
as examples to demonstrate how programming concepts are implemented. Further,
programmers will be taught to utilize automated unit tests to explore new concepts.
Typically, novice programmers use some form of direct input and output to test their
programs, and relatively little attention is usually given to individual unit testing.
TDL replaces input/output statements with automated unit tests.

While the former idea of using automated tests as a primary teaching mechanism
is believed to be a new idea, the latter approach of requiring students to write tests
in lab and project exercises has a number of predecessors. Barriocanal [13] doc-
umented an experiment in which students were asked to develop automated unit
tests in programming assignments. Christensen [22] proposes that software testing
should be incorporated into all programming assignments in a course, but reports
only on experiences in an upper-level course. Patterson [61] presents mechanisms
incorporated into the BlueJ [47] environment to support automated unit testing in
introductory programming courses.

A.3 Test-Driven Learning and Test-Driven Development

Test-driven development (TDD) [16] is a software development strategy that requires
that automated tests be written prior to writing functional code in small, rapid it-
erations. Proponents claim that TDD improves software quality both in terms of
design quality and defect density [17, 74]. Although TDD has been applied in var-
ious forms for several decades [33, 48], it has gained increased attention in recent
years thanks to being identified as one of the twelve core practices in Extreme Pro-
gramming (XP) [15].

Extreme Programming is a lightweight, evolutionary software development pro-
cess that involves developing object-oriented software in very short iterations with
relatively little up front design. XP is a member of a family of what are termed ag-
ile methods [14]. Although not originally given this name, test-driven development
was described as an integral practice in XP, necessary for analysis, design, and test-
ing, but also enabling design through refactoring, collective ownership, continuous
integration, and programmer courage [15].

Some definitions of TDD seem to imply that TDD is primarily a testing strategy.
For instance, according to [51] when summarizing [17],

APPENDIX A. TEST-DRIVEN LEARNING 67

Test-Driven Development (TDD) is a programming practice that instructs
developers to write new code only if an automated test has failed, and to
eliminate duplication. The goal of TDD is ‘clean code that works.’ [45]

However, according to XP and TDD pioneer Ward Cunningham, “Test-first coding
is not a testing technique” [16]. In fact TDD goes by various names including Test-
First Programming, Test-Driven Design, and Test-First Design. The driven in test-
driven development focuses on how TDD informs and leads analysis, design and
programming decisions. TDD assumes that the software design is either incomplete,
or at least very pliable and open to evolutionary changes. In the context of XP, TDD
even subsumes many analysis decisions. In XP, the customer is supposedly “on-site”,
and test writing is one of the first steps in deciding what the program should do,
which is essentially an analysis step.

Another definition which captures this notion comes from The Agile Alliance [7],

Test-driven development (TDD) is the craft of producing automated tests
for production code, and using that process to drive design and program-
ming. For every tiny bit of functionality in the production code, you first
develop a test that specifies and validates what the code will do. You then
produce exactly as much code as will enable that test to pass. Then you
refactor (simplify and clarify) both the production code and the test code.

As is seen in this definition, promoting testing to an analysis and design step
involves the important practice of refactoring [29]. Refactoring is a technique for
changing the structure of an existing body of code without changing its external
behavior. A test may pass, but the code may be inflexible or overly complex. By
refactoring the code, the test should still pass and the code will be improved.

Understanding that TDD is more about analysis and design than it is about test-
ing may be one of the most challenging conceptual shifts for new adopters of the
practice. Testing has traditionally assumed the existence of a program. The idea
that a test can be written before the code, and even more, that the test can aid in de-
ciding what code to write and what its interface should look like is a radical concept
for most software developers.

In the few years since XP’s introduction, test-driven development has received in-
creased individual attention. A number of respected computer scientists [16,31,50]
have endorsed TDD as a best practice. Tools such as JUnit [31] have been developed
for a range of languages specifically to support TDD. Books have been written ex-
plaining how to apply TDD. Research has begun to examine the effects of TDD on
defect reduction and quality improvements in both academic and professional prac-
titioner environments. As is seen in this work, educators have begun to examine how
TDD can be integrated into computer science and software engineering assignments
and now pedagogy.

APPENDIX A. TEST-DRIVEN LEARNING 68

Software testing is perhaps viewed as one of the least exciting topics for many
software developers, and particularly for students. There may be many explanations
for this perspective, not least of which is the relative lack of attention to testing in
the typical undergraduate computer science curriculum. Students are notoriously
bad at testing their programs. Perhaps because they know they are not likely to need
to maintain or reuse their programs, they often take the shortest path to complet-
ing their programs. Rarely does this include thorough testing, much less writing
automated tests.

TDD is a very disciplined development approach that on the surface seems to be
difficult to teach. How do we motivate students to apply TDD? Edwards [24] has sug-
gested an approach that incorporates testing into project grades, and he provides an
example of an automated grading system that provides useful feedback. TDL pushes
automated testing even earlier, to the very beginning in fact. In addition to serving
as an improved teaching strategy, TDL has the promise of encouraging students to
adopt TDD. As testing becomes a habit formed by example and repetition, students
will be motivated to apply TDD voluntarily.

A.4 TDL Objectives

Teaching software design and testing skills can be particularly challenging. Un-
dergraduate curriculums and industry training programs often relegate design and
testing topics to separate, more advanced courses, leaving students perhaps to think
that design and testing are either hard, less important, or optional.

This paper introduces test-driven learning as a mechanism for teaching and mo-
tivating the use of testing as both a design and a verification activity, by way of
example. TDL can be employed starting in the earliest programming courses and
continuing through advanced courses, even those for professional developers. Fur-
ther TDL can be applied in educational resources from textbooks to software docu-
mentation.

Test-driven learning has the following objectives:

• Teach testing for free

• Teach automated testing frameworks simply

• Encourage the use of test-driven development

• Improve student comprehension and programming abilities

• Improve software quality both in terms of design and defect density

APPENDIX A. TEST-DRIVEN LEARNING 69

A.4.1 Rationale behind TDL

Some have suggested that if objects are the goal, then we should start by teach-
ing objects as early as the first day of the first class [8, 18]. TDL takes a similar
approach. If writing good tests is the goal, then start by teaching with tests. If it
is always a good idea to write tests, then write tests throughout the curriculum. If
quality software design is the goal, then start by focusing on habits that lead to good
designs. Test-first thinking focuses on an object’s interface, rather than its imple-
mentation. Test-first thinking encourages smaller, more cohesive and more loosely
coupled modules. [17]

A.4.2 Teach testing for free

Examples with tests take roughly the same effort to present as examples with in-
put/output statements or explanations. As a result, TDL adds no extra strain on
a course schedule, while having the benefit of introducing testing and good test-
ing practices. It is possible that the instructor will expend extra effort moving to a
test-driven approach, but once mastered, the instructor may find the new approach
simpler and more reusable because the examples contain the answers.

A.4.3 Teach automated testing frameworks

By introducing the use of testing frameworks gradually in courses, students will gain
familiarity with them. As will be seen later, tests can use simple mechanisms such
as standard assert statements, or they can utilize powerful frameworks that scale
and enjoy widespread professional support.

A.4.4 Encourage the use of TDD

See section three.

A.4.5 Improve student comprehension

When students observe both the interface and behavior in an example with tests, they
are likely to understand a concept more quickly than if they only see the interface in
a traditional example. Further, if students get into the habit of thinking about and
writing tests, they are expected to become better programmers.

A.4.6 Improve software quality

If TDL encourages TDD, and TDD encourages better quality software, then TDL im-
proves software quality.

APPENDIX A. TEST-DRIVEN LEARNING 70

A.5 TDL in Introductory Courses

Test-driven learning can be applied from the very first day of the very first program-
ming course. Textbooks often begin with a typical “Hello, World!” example or the
declaration of a variable, some computation and an output statement. The following
is a possible first program in C++:

#include <iostream>
using namespace std;

int main()
{
int age;
cout << "What is your age in years?" << endl;
cin >> age;
cout << "That means you are at least "

<< age * 12
<< " months old!" << endl;

return 0;
}

This approach requires the immediate explanation of the language’s input/output
facilities. While this is a reasonable first step, a TDL approach to the same first
program might be the following:

#include <cassert>
using namespace std;

int main()
{
int age = 18;
int ageInMonths;
ageInMonths = age * 12;
assert(ageInMonths == 216);
return 0;

}

Notice how simple assert functions from the standard C library are used, rather
than a full-featured testing framework. Many languages contain a standard mecha-
nism for executing assertions. Assertions require very little explanation and provide
all the semantics needed for implementing simple tests. The assert approach mini-
mizes the barriers to introducing unit testing. Of course there are disadvantages to
this approach. For instance, if there are multiple assert statements and one fails, no

APPENDIX A. TEST-DRIVEN LEARNING 71

further tests are executed. Also, there is no support for independent tests or test
suites. However, because the programs at this level are so small, the simplicity of
assert statements seems to be a reasonable choice.

As a later example, suppose a student is learning to write for loops in C++. They
might be presented with the program in Figure A.1.

In a lab setting, the student might then be asked to write additional unit tests to
understand the concept. For instance, they might add the assert statements

assert(sum(-2,2)==0);
assert(sum(-4,-2)==-9);

Then they might be asked to write unit tests for a new, unwritten function. In
doing so, they will have to design the function signature and implement a function
stub. This makes them think about what they are going to do before they actually
do it.

Once the programmer ventures beyond the lab into larger programming projects,
tests can be isolated into a separate function like those in Figure A.2.

Tests can be at least partially isolated from each other by placing them in inde-
pendent scopes. The example in Figure A.3 demonstrates the use of independent
scopes and tests using objects.

A.6 TDL for more advanced students

Test-driven learning is applicable at all levels of learning. Advanced students and
even professional programmers in training courses can benefit from the use of tests
in explanations.

As students gain maturity, they will need more sophisticated testing frameworks.
Fortunately a wonderful set of testing frameworks that go by the name xUnit [38]
have emerged following the lead of JUnit [31]. The frameworks generally support
independent execution of tests (i.e. execution or failure of one test has no effect on
other tests), test fixtures (common test set up and tear down), and mechanisms to
organize large numbers of tests into test suites.

The example in Figure A.4 demonstrates the use of TDL when exploring Java’s
DefaultMutableTreeNode class. Such an example might surface when first introduc-
ing tree structures in a Data Structures courses, or perhaps when a more advanced
programmer is learning to construct trees for use with Java’s JTree class. Notice the
use of the breadthFirstEnumeration method and how the assert statements demon-
strate not just the interface to an enumeration, but also the behavior of a breadth
first search. A complementary test could be written to explore and explain depth
first searches. In addition, notice that this example utilizes the JUnit framework.

APPENDIX A. TEST-DRIVEN LEARNING 72

#include <iostream>
#include <cassert>
using namespace std;

int sum(int min, int max);

int main()
{
assert(sum(3,7)==25);

cout << "No errors encountered" << endl;
return 0;

}

// This function sums the integers
// from min to max inclusive.
// Pre: min < max
// Post: return-value = min + (min+1) + ...
// + (max-1) + max
int sum(int min, int max)
{
int sum = 0;
for(int i=min;i<=max;i++)
{

sum += i;
}
return sum;

}

Figure A.1: C++ Function with Assert

APPENDIX A. TEST-DRIVEN LEARNING 73

#include <iostream>
#include <cassert>
using namespace std;

int sum(int min, int max);
void runTests();

int main()
{
runTests();
return 0;

}

// This function sums the integers from
// min to max inclusive.
// Pre: min < max
// Post: return-value = min + (min+1) + ...
// + (max-1) + max
int sum(int min, int max)
{
int sum = 0;
for(int i=min;i<=max;i++)
{

sum += i;
}
return sum;

}

// This function executes all of the unit tests.
void runTests()
{
assert(sum(3,7)==25);
assert(sum(-2,2)==0);
assert(sum(-4,-2)==-9);

cout << "No errors encountered" << endl;
}

Figure A.2: C++ Program with Several Tests

APPENDIX A. TEST-DRIVEN LEARNING 74

#include <cassert>
using namespace std;

class Exams
{
public:

Exams();
int getMin();
void addExam(int);

private:
int scores[50];
int numScores;

};

void run_tests();

int main()
{
run_tests();
return 0;

}

void run_tests()
{
{ //test 1 Minimum of empty list is 0

Exams exam1;
assert(exam1.getMin() == 0);

} //test 1

{ //test 2
Exams exam1;
exam1.addExam(90);
assert(exam1.getMin() == 90);

} //test 2
}

//Exams function definitions go here

Figure A.3: C++ Program with Objects and Tests in Multiple Scopes

APPENDIX A. TEST-DRIVEN LEARNING 75

import javax.swing.tree.DefaultMutableTreeNode;

import junit.framework.TestCase;

public class TreeExploreTest extends TestCase {
public void testNodeCreation() {
DefaultMutableTreeNode node1 =

new DefaultMutableTreeNode("Node1");
DefaultMutableTreeNode node2 =

new DefaultMutableTreeNode("Node2");
DefaultMutableTreeNode node3 =

new DefaultMutableTreeNode("Node3");
DefaultMutableTreeNode node4 =

new DefaultMutableTreeNode("Node4");
node1.add(node2);
node2.add(node3);
node1.add(node4);
Enumeration e = node1.breadthFirstEnumeration();
assertEquals(e.nextElement(),node1);
assertEquals(e.nextElement(),node2);
assertEquals(e.nextElement(),node4);
assertEquals(e.nextElement(),node3);

}
}

Figure A.4: Java Program Demonstrating Tree Traversal with JUnit

APPENDIX A. TEST-DRIVEN LEARNING 76

A.7 Assessment of TDL

To assess the efficacy of test-driven learning, a short formal experiment was con-
ducted in two CS1 sections.

A.7.1 Experiment Context and Design

The two CS1 sections consisted of students majoring predominantly in math, physics,
and various engineering disciplines. While students were not computer science ma-
jors they generally seemed accustomed to rigorous courses.

The two sections were taught by the same instructor with one section immediately
following the other. The course covered C++ using a popular textbook and consisted
of two fifty minute lectures and one fifty minute lab each week. The first section
(experiment group) had twenty-four students and the second section (control group)
had twenty-three students.

The experiment was conducted in three lectures and one lab. The first two lec-
tures and lab contained the first introduction to classes and the final lecture was the
initial introduction to arrays. These occurred during the sixth and seventh weeks
of a fourteen week semester. Previous material included selection, looping, and
subroutine control structures, input/output, and parameter passing mechanisms.

The independent variable was the presentation and application of automated
unit tests. While both sections had been introduced earlier to the assert mechanism
from the standard C library, the first section was presented examples in a test-driven
manner, utilizing assert statements. The second section was presented examples
in a traditional manner using standard output with the instructor explaining the
expected results.

The lab presented students with a skeleton class and a main program that invoked
a set of member functions and printed the results to standard output. The skeleton
class contained three member variables, but none of the member functions. The
students in the first section were asked to write unit tests using assert statements
for each member function prior to implementing the function. The students in
the second section were asked to implement the member functions, using the main
program to test the functions by viewing the output manually.

The dependent variable was student understanding of basic class and array con-
cepts and applications. To observe the dependent variable, at the end of the ex-
periment, all students were given the same short quiz. The quiz consisted of three
questions. The first assessed student understanding of member visibility directly,
and indirectly assessed understanding of constructors, member function invocation,
and object assignment. The second question assessed student understanding of ini-
tializing, looping through, and extracting values from an array. The third question
assessed student ability to recognize out-of-bounds array references.

APPENDIX A. TEST-DRIVEN LEARNING 77

Students Exam 1 Quiz 1
100 total 10 total

TDL 15 80.26 7.33
Non-TDL 20 77.05 6.7

Table A.8: TDL vs. Non-TDL All Students

Students Exam 1 Quiz 1
100 total 10 total

TDL 13 86.15 7.84
Non-TDL 14 86.71 7.14

Table A.9: TDL vs. Non-TDL with Exam above 73

A.7.2 Observations and Analysis

At the conclusion of the lab, the instructor observed that students in the non-TDL
section seemed to move faster at first, but questions revealed slightly poorer under-
standing. Students in the TDL section moved more slowly at first because they were
writing tests as they went. However, by the end of the lab, the TDL and non-TDL
students all seemed to be at about the same place, while the TDL students appeared
to have a better understanding of the class concepts based on their questions.

Students then completed their labs outside of class and returned them one week
later. The quality of submissions between the two sections was very similar. Inter-
estingly only two of the fourteen TDL section lab submissions included any tests
beyond the examples completed in lab. Clearly motivating students to write tests is
a challenge.

On the quiz, the TDL students scored on average more than six percent better
than the non-TDL students. As is seen in Table A.8, the TDL students also scored
better on the first exam in the course which preceded the TDL experiment.

The difference in the exam scores is easily attributed to a number of very low
exam scores in the non-TDL section. In order to make the two sections homogeneous,
students who scored very poorly on the first exam were removed from the sample.
After removing the two outliers (36 and 48 out of 100) from the TDL section, the
lowest score on exam 1 was 74. When we remove all students with scores below 74 on
exam 1 in the non-TDL section, we find that the two sections are nearly identical prior
to the experiment. Table A.9 compares the exam and quiz scores of the students in
the two sections after students who scored poorly on the first exam are removed.
Here we see that the exam score averages are almost the same between the two
sections, and the TDL students scored seven percent better on the quiz.

As the box-plots in Figure A.5 and Figure A.6 demonstrate, the median values

APPENDIX A. TEST-DRIVEN LEARNING 78

0

1

2

3

4

5

6

7

8

9

10

TDL No TDL

Figure A.5: TDL Quiz 1 All

of the two sections are very close, but TDL student scores clustered more closely
around the median than the non-TDL student scores which were much more spread
out.

Using the two-sample t-test to determine the difference between the two means,
we are unable to reject the hypothesis with 95% confidence, but we come close with
p = 0.4234. The t-Statistic is 0.8155 with 22 degrees of freedom.

Even if the data had provided greater confidence, these results would be sus-
pect simply because the experiment duration was so short. Data from a complete
semester and a replicated study would provide much greater confidence in the abil-
ity of TDL to produce improved student understanding. Still the results do point to
such a potential.

A.8 Conclusions

This paper has proposed a novel method of teaching computer programming by
example using automated unit tests. Examples of using this approach in a wide range
of courses have been provided, and the approach has been empirically assessed.
Connections between this approach and test-driven development were also explored.

This research has shown that students who were taught for a short time with the
test-driven learning approach had slightly better comprehension with no additional
cost in terms of instruction time or student effort. In addition, the benefits of mod-
eling testing techniques and introducing automated unit testing frameworks have

APPENDIX A. TEST-DRIVEN LEARNING 79

0

1

2

3

4

5

6

7

8

9

10

TDL No TDL

Figure A.6: TDL Quiz 1 with Exam above 73

been noted.
Additional empirical research and experience is needed to confirm the positive

benefits of TDL without negative side-effects, but the approach seems to have merit.
It seems reasonable that textbooks, lab books, and on-line references could be de-
veloped with the test-driven learning approach.

