
Contextual Android Education

James Reed
Intuit, Inc.

Mountain View, CA USA
jrreed84@gmail.com

David S. Janzen
Computer Science Department

California Polytechnic State University
San Luis Obispo, CA USA

djanzen@calpoly.edu

Abstract

Advances in mobile phone hardware and development platforms have drastically in-
creased the demand, interest, and potential of mobile applications. We report on devel-
opment of a new special topics software engineering course that combines the appeal
of Android application development with software engineering topics and entrepreneurial
thinking. The primary contribution of this project and the focus of this paper is a series
of detailed educational laboratory exercises that are designed to supplement the Android
documentation by providing contextual examples, activities, and tutorials. The labs were
contributed to the Google Code University under the Creative Commons license, resulting
in over 30,000 visits and nearly 100,000 pageviews in its first three months.

1. Introduction

With advances in mobile phone technology, the demand for both free and paid mobile
applications has risen dramatically. As a result, mobile phones have become a popular new
medium for application development. There are many high powered platforms to choose
from, including Blackberry, iPhone, and Android. Most of these platforms offer an open
marketplace for the sale and distribution of independently developed mobile applications
which makes it relatively easy for independent developers to get their products into the
hands of users. Awareness of this new market has not escaped the interest of computer
science (CS) and software engineering (SE) students who are often consumers of the ap-
plications themselves. With the demand for mobile applications, low barrier to entry into
the market, sophistication of mobile development platforms [1], and general interest from
the CS/SE student population, mobile application development is an excellent skill for
computing students to learn. Most of these platforms offer a wide array of documenta-
tion for learning how to develop for their platforms; however, the body of knowledge for
contextual examples and tutorials is drastically smaller in comparison. This can be trou-
blesome for some college students attempting to break onto the mobile development scene
on their own.

1



Since January 2010, California Polytechnic State University has offered a mobile de-
velopment class that teaches students how to write applications for phones running on the
Android platform. This class aims to take advantage of students’ current interest in mobile
applications. In addition to providing the students with an in-depth knowledge in mobile
development practices and the skills necessary to be successful Android application devel-
opers, the class incorporates aspects of Test Driven Development, Agile Processes, Design
Patterns, application profiling, engineering for performance, and entrepreneurial thinking
into the curriculum.

We report on a series of detailed educational laboratory exercises developed for this
course. These labs were designed to supplement the Android documentation by providing
contextual examples, activities, and tutorials. They were designed and used in coordination
with in-class lectures and a ten-week course project. The course project imposed the use
of software engineering best practices and a software engineering process on small teams.
While the practices and process encompassed many of the core SE learning objectives
of the course, this paper focues on the laboratory exercises because we believe they are
the most novel contributions of the project and will provide the primary value to CS/SE
educators. The remainder of this paper will discuss the content of the six labs, with a brief
conclusion.

2. Lab Details

The following sections overview the six labs. Some user interface examples are shown.
Complete lab specifications are available at http://sites.google.com/site/androidappcourse/.

2.1. Lab 1

The goal of the first lab was to teach students the fundamentals of developing Android
applications, from project creation to installation on a physical device. More specifically,
it was intended that students would learn how to use the basic development tools to sup-
port the application development process, as well as the major components of an Android
application itself. The lab accomplishes this by having the students setup their own de-
velopment environment from scratch, develop a basic “Hello World!” application, run the
application on the Android Emulator, and deploy it to a physical device.

2.2. Lab 2

The second lab teaches students how to work with Android’s user interface (UI) library
by creating a “Joke List” application that allows a user to view and edit a list of jokes. In
this lab, students learn the following skills:

• Executing Tests: Automated JUnit tests are distributed with the labs to help en-
sure that students are implementing the labs correctly and to provide students with
a source of instant feedback. Students are taught how to execute a single test class
from Eclipse and how to make use of the test results to identify errors.

• Referencing Resource Data: Lab 2 demonstrates how to work with Android’s sys-
tem for externalizing resources like images, strings, and UI layouts.



• Declaring Dynamic Layouts: Students learn to dynamically manipulate a UI at
runtime while getting practice working with different View classes and their inter-
faces in a familiar programmatic paradigm. In Lab 3, students are then taught how
to declare and reference UIs as externalized layout resources.

• Handling UI Events: Students learn about event-driven programming by imple-
menting event listeners and registering them with their associated View objects. They
create and register listeners for touch and key events that allow users to add jokes.

2.3. Lab 3

Figure 1. “Advanced Joke List” Application Screen Shots

Lab 3 continues Lab 2 by creating a more polished interface and adding functionality to
the “Joke List” app. Students first learn how to turn their UIs into externalized resources
by declaring them statically in XML layout files. Then students learn how to extend the
Android UI library by implementing their own custom View class that is used to display
jokes in both an expanded and collapsed mode as shown in Figure 1. Lastly, students learn
how to create menus to filter jokes and HTTP Connections to exchange jokes with a server.

Students incorporate their custom joke View class into the “Joke List” application by
using AdapterViews. AdapterViews are View objects whose child Views are determined
by an Adapter, which binds to a data source1. The Adapter creates a View object for
each piece of data. In the “Joke List” application, the AdapterView is the scrollable list
of JokeView objects. These are provided to it by a custom JokeAdapter which creates
JokeView objects for the array of Joke objects to which it is bound.

2.4 Lab 4

Lab 4 builds on Lab 3 by adding state persistence to the “Joke List” app. In previous
labs, all joke data and internal state is lost when the application is closed. For this imple-
mentation, students learn to persist joke data by using an SQLite Database, and preserve
internal state by using a combination of mechanisms supplied by the Android platform.

1http://developer.android.com/guide/topics/ui/menus.html



• Persisting Application Data: The Android platform offers each application the abil-
ity to create its own private SQLite database. Students learn how to persist data
through the use of an SQLite database adapter that has been implemented for them.
This implementation comes in the form of a closed source jar file. Once the students
understand how to use the database adapter, they learn how to implement their own.

• Maintaining Internal State: Students learn to maintain internal application state
by monitoring the lifecycle of their application and saving and restoring state at the
correct times. The students use Instance State to manually save and restore the text
in text fields. The students also use Shared Preferences to allow the application to
remember which joke filtering option was chosen by the user.

2.5 Lab 5

Figure 2. “WalkAbout” Application Screen Shots

For this lab, students develop a new GPS recording application called WalkAbout. The
purpose of the application is to allow users to record their GPS location information as
they travel. While the application records the user’s GPS data, it displays it back to the
user in the form of a path drawn on top of a Google Map. While recording data, the user
can launch a Camera Activity that will capture and store pictures on an SD-Card. When
finished recording, the application gives the user the option of storing the current GPS data
as a private application file to be loaded and displayed at a later time.

• Using Google Maps & Overlays: Students learn how to display maps by using the
MapView and MapActivity classes in the “Walk About” application. These classes
encapsulate all the viewing and gesture logic necessary for handling panning, zoom-
ing, and touching objects on a map. Students then learn how to implement their own
overlay to display a path. The path overlay the students create draws a red path on a
map for a given list of latitude and longitude points.

• Using GPS: Students interact with location-based services by adding functionality
to monitor the GPS hardware in the “Walk About” application. They record changes
in location as the user’s path which is drawn onto the map.



• Using a Camera: Students learn how to use camera-related API’s by implementing a
camera Activity that allows users to take pictures from the “Walk About” application.
This activity displays a full screen preview of what is seen through the camera.

• Working With Files: Students learn how to use internal file storage by adding func-
tionality to the “Walk About” application to save and load a user’s path as an internal
file. Then they learn how to use external storage by saving a picture taken from the
camera Activity as an external file on an SD-Card.

2.6 Lab 6

For this lab, students develop a new application named AppRater that suggests other ap-
plications for users to download and rate. The application makes use of additional Android
application components, including ContentProviders, Services, and BroadcastReceivers.

ContentProviders allow content to be shared and edited by other application components
much like a database adapter. Students learn to interact with a provided ContentProvider
that serves their “App Rater” Activity with suggested applications to display and rate. This
comes in the form of a closed source jar file. Once the students understand how to use a
ContentProvider they learn how to implement their own.

Services are used to execute code which needs to run regularly, but does not need a
user interface. They can be started from an Activity or awoken by System Notifications.
Students learn how to launch a Service that has been implemented for them which refreshes
the “App Rater” application with new applications to rate.

Intents are used by the Android platform as a System-level message passing system.
They can be used to start application components, or to pass messages between compo-
nents. Students learn how to do both by implementing a BroadcastReceiver to listen for
Intents that they broadcasted from their “App Rater” download Service.

3. Conclusions

We have presented labs that teach students about a broad range of Android topics with
enough depth to enable them to develop Android applications on their own. Based on
survey responses, students think the labs are interesting, clearly written, and challenging.
Students also feel that the labs accomplish their stated learning objectives and prepared
them to work independently. In fact, all students were required to deploy their course
project apps publicly to the Android Market. Many of these continue to exist in the Market,
and at least one has prompted the formation of a startup company. Android provided a
compelling context for discussing software engineering topics such as design patterns and
efficiency, and applying practices such as test-driven development and code reviews.

References

[1] Gronli, Tor-Morten and Hansen, Jarle and Ghinea, Gheorghita, Android vs Windows
Mobile vs Java ME: a comparative study of mobile development environments, Pro-
ceedings of the 3rd International Conference on PErvasive Technologies Related to
Assistive Environments, 45:1–45:8, New York, NY, USA, ACM, 2010


