An Empirical Evaluation of the Impact of
Test-Driven Development on
Software Quality

David Janzen (djanzen@ku.edu)
University of Kansas

Acknowledgements

- Committee Members
- Dr. Hossein Saiedian, Advisor
- Dr. Arvin Agah
- Dr. Perry Alexander
- Dr. John Gauch
- Dr. Carey Johnson

- EECS Department

David Janzen - August 21, 2006

Organization

- Problem Statement

- Background

- Research Methodology

- Evaluation and Results

- Conclusions and Future Work

David Janzen - August 21, 2006

Organization

- Problem Statement
- Introduction
- Context
- Research Proposal
- Results Overview

- Background

- Research Methodology

- Evaluation and Results

- Conclusions and Future Work

David Janzen - August 21, 2006

Introduction

- Observation

- Test-driven development is a popular new
method for designing and testing software

- Problem

- No empirical evidence of TDD efficacy as a
design methodology
- Opportunity

- Poor testing is a significant contributor to
software crisis

- Can TDD improve both design and testing,
resulting in better software?

David Janzen - August 21, 2006

Mainstream Software
Development Milestones

Era Language Process

1960’s Assembly

1970’s Structured Waterfall

1980’s | Object-Oriented OOA&D

1990’s | Object-Oriented UML/CMM/RUP

2000’s | Object-Oriented Agile (XP)!

1. Rajlich, “Changing the Paradigm of Software Engineering”, Communications of the ACM, 2006

David Janzen - August 21, 2006 6

XP Practice Coupling'

on-site customer

/ 40 Hour Week

metaphor planning game

< . |
\ /S simple design
refac'Iorin , test‘i/r’lg\

short releases
air programming

coding standards

/ —~

collective ownership+ »continuous integration

1. Beck, Extreme Programming Explained: Embrace Change, 2000

David Janzen - August 21, 2006 7

XP Scale-Defined Practices!

solutions short releases

features .
acceptance testing

architecture . :
collective ownership

design _
on-site customer
class and | _ |
interfaces continuous integration

statements

and methods metaphor

test-driven development

pair programming
1. Vanderburg, “A Simple Model of Agile Software Processes”, OOPSLA, 2005

David Janzen - August 21, 2006 8

XP Practices and Time Scales!

months short releases

weeks planning game

acceptance testing
collective ownership

hours on-site customer

, continuous integration
minutes

saconds metaphor
test-driven development

pair programming
1. Vanderburg, “A Simple Model of Agile Software Processes”, OOPSLA, 2005

David Janzen - August 21, 2006 9

Extracting TDD from XP

test-driven development

short releases

planning game

acceptance testing
collective ownership

on-site customer
continuous integration
metaphor

test-driven development
pair programming

David Janzen - August 21, 2006

10

Research Objective

- Conduct empirical studies examining how TDD
affects testing and internal design quality

- Controlled experiments in academic courses
- At all levels to gauge optimal introduction point
- Semi-controlled experiments and case study in
Fortune 500 companies
- Conduct small experiment in training course

- Compare same team in transition to TDD
- Compare different teams/projects

Longitudinal studies examine voluntary TDD adoption
in subsequent projects

David Janzen - August 21, 2006 717

Summary of Results

- TDD improves internal quality aspects
- Software is smaller
- Software is less complex and more elegant
- ITDD improves testing
- Increased coverage, more test cases
- Fewer defects
- Programmer opinions

- Mature programmers prefer TDD after trying
both approaches

David Janzen - August 21, 2006 12

Additional Research Results

- Test-Driven Learning

- A pedagogical approach that integrates TDD
instruction at all levels with minimal cost

- Framework for future studies
- Results establish benchmark

- Methods, tools, and artifacts provided for
replicated studies

David Janzen - August 21, 2006

/3

Organization
- Problem Statement

- Background
- TDD Overview
- Related Research

- Research Methodology
- Evaluation and Results
- Conclusions and Future Work

David Janzen - August 21, 2006

14

Test-Driven Development (TDD)
- Disciplined development approach

- Emerged from agile methods (XP)

- Reverses traditional micro workflow

test mmp code c@ st

- More about design than testing!
. Primarily focuses on unit tests

- Supported by automated testing
frameworks such as JUnit

1. Beck, “Aim, Fire”, /EEE Software, 2001

David Janzen - August 21, 2006 5

TDD Misconception

- TDD does not mean “write all the tests,
then build a system that passes the tests”

~

System

David Janzen - August 21, 2006

TDD Clarified

- TDD means “write one test, write code to
pass that test, refactor, and repeat’

Test 1 BE) | Unit1 | EE) | Refactor | HE)
Test 2 BE) | Unit1 | EE) | Refactor |)
Test 3 BE) | Unit2 | EE) | Refactor |)
Test 4 B | Unit2 | EE) | Refactor | HE)
Test 5 BE) | Unit3 | BE) | Refactor | HE)

David Janzen - August 21, 2006

Related TDD Studies in Industry

Number of | Number of Quality effects | Productivity
Study? Type | cOmpanies | programmers effects
George! CE 3 24 TDD passed TDD took
(NCSU 2004) 18% more tests | 16% longer®
Maximillien? | CS 1 9 50% reduction Minimal
(NCSU 2003) in defect density | impact
Williams3 CS 1 9 40% reduction No change
(NCSU 2003) in defect density

a Studies reported less time spent debugging with TDD
b TDD group wrote many more tests than control group

1. George and Williams, “A Structured Experiment of Test-Driven Development”, /nfo & Sw Tech, 2004
2. Maximilien and Williams, “Assessing Test-Driven Development at IBM”, /CSE, 2003
3. Williams et. al., “Test-driven development as a defect-reduction practice”, Sw Rel. Eng, 2003

David Janzen - August 21, 2006 /18

Related TDD Studies in Academia

Study Type | # programmers | Quality effects Productivity effects
Edwards' CE 59 54% fewer defects | n/a

(Virginia Tech

2003)

Kaufmann? CE 8 improved 50% improvement
(Bethel 2003) information flow

Miller3 CE 19 no change, but no change
(Karlsruhe 2002) better reuse

Pancur? CE 38 no change no change
(Ljubljana 2003)

Erdogmus? CE 35 no change 28% improvement
(Torino 2005)

1. Edwards, “Rethinking Computer Science Education from a Test-first Perspective”, OOPSLA, 2003

2. Kaufmann and Janzen, “Implications of test-driven development: a pilot study”, OOPSLA, 2003

3. Muller and Hagner, “Experiment About Test-First Programming”, /EEE Software, 2002

4. Pancur et. al., “Towards Empirical Evaluation of Test-Driven Development in a University Environment”, Eurocon, 2003
5. Erdogmus, “On the Effectiveness of Test-first Approach to Programming”, /EEE Trans on SE, 2005

Background and Related Work
Published in IEEE Computer

- D. Janzen and H. Saiedian, Test-Driven

Development: Concepts, Taxonomy and

~uture Directions, /EEE Computer, 38(9), 2005

- Background study, challenges, clarifying TDD
as design approach, need for the research

- Cover feature

Computer

development £

David Janzen - August 21, 2006 20

Organization
- Problem Statement
- Background

- Research Methodology
- TDD and Design
- Hypotheses
- Experiment Design
- Metrics

- Evaluation and Results
- Conclusions and Future Work

David Janzen - August 21, 2006

21

TDD Process Flow

- Traditional test-last process

Code
High-Level Design/| | Detailed ‘ I ‘
Architecture " Design " d)de ” Umt'l'eb -
- TDD process
Design and Code
High-Level Design/| _ ‘ ‘ ‘
Architecture > &Test > Code Refa$ » Test
David Janzen - August 21, 2006 22

TDD is about Design

public class TestBank extends TestCase {
public void testCreateBankEmpty() {

Bank b = new Bank(); «
assertEquals(b.getNumAccounts(), 0);

Design decisions

} | \/

- TDD gives early focus to a unit’s
- Interface: How will | use it?
- Behavior: What does it do?

- Reuse: Multiple clients (test and source)
- Coupling: Units need to be tested in isolation
- Cohesion: Testable units have one purpose

David Janzen - August 21, 2006

23

Hypothesis

Null hypothesis

- Software constructed using the test-driven development
approach will have similar quality at higher cost to develop
when compared to software constructed with a traditional
test-last approach

Independent variable
- Use of test-driven (test-first) versus test-last development

Dependent variables

- Software quality

- Degree of testing

- Software cost (programmer productivity)

Additional dependent variables observed
- Student performance on related assessments
- Subsequent voluntary usage of TDD

David Janzen - August 21, 2006 24

Formal Hypotheses: Internal Quality
and Testing

Name | Null Hypothesis Alternative Hypothesis

Q] IntQlty = IntQlty, IntQlty;¢ > IntQlty;,
Test-first code has higher internal
quality

Q2 IntQlty| Tested, = IntQlty|Tested,¢ >

IntQlty|Not-Tested |IntQlty|Not-Tested;

Test-first code covered by tests has
higher internal quality

T1 #Teststp = #lests #Teststp > #lests
Test-first programmers write more
tests

T2 TestCovyp = TestCovq | TestCovye > TestCovy

Test-first programmers write tests with
better code coverage

David Janzen - August 21, 2006

25

Formal Hypotheses: Productivity
and Programmer Opinions

Name | Null Hypothesis Alternative Hypothesis

P Prod{ = Prodq, Prod- > Prod;,
Test-first programmers are more
productive

Ol Op++ = Op, Op+e > Opq

Programmers perceive test-first as
better approach

02 Op|TFy = Op|TFy Op|TF > Op|TFy

Programmers who have attempted
test-first prefer test-first

David Janzen - August 21, 2006 26

CST -

CS2

SE
(undergrad)

SE
(grad)

Industry-
(in-training)

Industry-
(in-domain)

/ﬁ)D Instructio\n

/Pro'ect Phase 1\

f No-Automated-Tests)

A 7

i

27

Sample Experiment Design (CS2)

Pre-experiment
survey

~

Ve

J

]!

Individual
Profile

A 4

-

(o . ¥
Projects

Ve

Incremental h
N Projects
TDD . .
Training [Test-First]
[Test-Last]
\ /

Ul

1!

-

Post-experiment

survey

~

»

Project 1 Project 2
metrics metrics

1!

Individual
Profile

Project 3-5
metrics

David Janzen - August 21, 2006

28

Test-Driven Learning! in CS1/CS2

- Teach testing simply by example

Traditional Approach

TDL Approach

int sum(int min, int max) {
int sum = 0;
for(int i=min;i<=max;i++)
sum +=|;
return sum;
}
int main() {
cout << sum(3,7); //should print 25
cout << sum(-2,2); //should print 0
cout << sum(-4,-2); //should print -9

}

int sum(int min, int max) {
int sum = 0;
for(int i=min;i<=max;i++)

sum +=i;

return sum;

}

void runTests() {
assert(sum(3,7)==25);
assert(sum(-2,2)==0);
assert(sum(-4,-2)==-9);

}

int main() {
runTests();

}

1. Janzen and Saiedian, “Test-Driven Learning: Intrinsic Integration of Testing into the CS/SE Curriculum,”

Technical Symposium on Computer Science Education (SIGCSE’06), 2006

29

TDD Training in Industry
- Company agreed to participate in study if
author developed and delivered training
- Six-day course
- One-day on TDD

- Remainder on Spring and Hibernate

- Spring is a lightweight dependency-injection
framework that developed based on TDD

- Hibernate is an object-relational database mapping
framework

- About 500 presentation slides
- Hands-on lab exercises
- Delivered on-site in October 2005

David Janzen - August 21, 2006 30

Context
Small Projects (typically less than 3000 LOC)
- C++ and Java

- Mix of text Ul, graphical Ul, web applications,
libraries

Requirements Volatility
low high

high

Technology Familiarity

low

low

Developer Experience

317

Internal Design Quality Measures
Product Metrics
- i.e. only look at code (and tests)

Desirable Attributes
- Understandability

- Low complexity, high cohesion, simple
- Maintainability

- Low complexity, high cohesion, low coupling
- Reusability

- Low complexity, high cohesion, low coupling, inheritance
- Testability

- High cohesion, low coupling, high test coverage

- Complexity, coupling, and cohesion are cross-
cutting measures

David Janzen - August 21, 2006 32

Metrics Collection and Analysis
- Calculated nearly 100 metrics for each project
- Many calculated at multiple levels
- project, package, class, interface, method
- Acquired and evaluated twelve metrics tools

- Selected CCCC, Eclipse Metrics, JavaNCSS, JStyle, Krakatau,
Clover, Cobertura

- Custom-built Ant scripts and Java programs
- Invoke metrics tools
- Extract metrics
- Count asserts in code
- Parse xml files produced by metrics tools

Extensive spreadsheet and statistical analysis
- Web-based and paper survey collection

David Janzen - August 21, 2006 33

Metrics

Complexity - McCabe’s Cyclomatic Complexity - #Children
- Halstead Complexity - Specialization Index
- LOC/method - #Overridden Methods
- Weighted Methods per Class (WMC) | - Nested Block Depth
- Number of Parameters - Response for Class
- Depth of Inheritance Tree

Coupling - Coupling between Objects - Instability
- Fan-in, Fan-out - #Interfaces

(Afferent/Efferent Coupling)

- Information Flow

Cohesion - Lack of Cohesion of Methods
- Weighted Methods per Class
- LOC/Method

David Janzen - August 21, 2006

34

Metrics

Size - LOC (source and test) - LOC/Module
- #Modules - LOC/Method
- #Classes - LOC/Class
- #Methods - #Attributes
- #Interfaces - #Static Attributes
- Weighted Methods per Class - #Packages
Reusability - Depth of Inheritance Tree - Abstractness
- #Children (bigger is good) - Instability
- Fan-in - #0Overridden Methods
- Specialization Index - #Interfaces
- Distance from Main
Testability - #Asserts - Response for Class
- Line Coverage - Depth of Inheritance Tree
- Branch Coverage - #Children
- Method Coverage - #0verridden Methods
- Total Coverage

David Janzen - August 21, 2006

35

Subjective Metrics
- CS1 and CS2

. Correctness score (lack of defects)
- Style (design quality, standards conformance)
- Source: TA Reviewers

- Industry Projects

Design Review Scorecard
- Understandability: simplicity, architectural clarity/consistency
- Maintainability: low coupling, high cohesion
- Reusability/Extensibility: use of design patterns
- Testability: use of dependency inversion, small cohesive modules

- Overall Design Quality
- Source: Peer Reviewers

David Janzen - August 21, 2006 36

Organization
- Problem Statement

- Background
- Research Methodology

- Evaluation and Results
- Sample Detailed Results
- Summary Results

- Conclusions and Future Work

David Janzen - August 21, 2006

37

Undergrad SE Experiment Design

Programming Project

< -)) . g
Test-First/ . - .
survey) _ Training | Team 2: Test-Last N il y

Individual k\Tea_m 3: Test—FlrstJ y Indivic.JIuaI
Profile u u Profile
Intermediate Final

metrics metrics

David Janzen - August 21, 2006 38

Productivity Results!

Features Completed

14
12 -
10 |

onNn ~AO
[[

Test-First No-Tests Test-Last

Test-First No-Tests Test-Last

- Test-First spent 88% less effort/feature than No-Tests
- Test-First spent 57% less effort/feature than Test-Last
-Only Test-First completed both phases

1. Janzen and Saiedian, “On the Influence of Test-Driven Development on Software Design,”
Conference on Software Engineering Education and Training (CSEE&T’06), 2006

David Janzen - August 21, 2006 39

Code Size and Test Density
- Code size (Source only)

of classes LOC #methods methods/class LOC/class LOC/method LOC/feature

Test-First 13 1053 87 6.69 81.00 12.10 87.75
No-Tests 7 995 36 5.14 142.14 27.64 199.00
Test-Last 4 259 35 8.75 64.75 7.40 43.17

- Code size (Test only) and Test Coverage

Test LOC 9% Classes Tested Assertions/SLOC Test Coverage (lines) Test Coverage (branches)
Test-First 168 38.46% 0.077 19.00% 39.00%

No-Tests 0] 0.00% 0.000 0.00% 0.00%
Test-Last 38 25.00% 0.045 29.00% 23.00%
Test-First wrote more but, coverage
tests per LOC was mixed

David Janzen - August 21, 2006 40

Code Size and Test Density (No GUI)

. Test-first project included an extensive GUI
- GUI’s are traditionally difficult to test
- Code size (source only without GUI)

of classes LOC #imethods methods/class LOC/class LOC/method LOC/eature

Test-First 11 670 57 5.18 60.91 11.75 55.83
No-Tests 7 995 36 5.14 142.14 27.64 199.00
Test-Last 4 259 35 8.75 64.75 7.40 43.17

- Code size (test only) and test coverage

Test LOC 9% Classes Tested Assertions/SLOC Test Coverage (lines) Test Coverage (branches)

Test-First 168 38.46% 0.086 31.00% 43.00%
No-Tests 0o 0.00% 0.000 0.00% 0.00%
Test-Last 38 25.00% 0.045 29.00% 23.00%

Test-First tests covered
more source code

David Janzen - August 21, 2006 4]

Design Quality: Method-level Metrics

Undergrad SE Method Metrics

oS
PAR (NOB
NBD @
MLOC —
6O A "
i D)
o

Q indicates statistically significant difference with p<.05

David Janzen - August 21, 2006 42

Design Quality: Class-level Metrics

- Comparable/acceptable levels for most
metrics: DIT, NOC, LCOM, ...

- NIl only metric w/ statistically significant diff

- Tested code was simpler
Cyclomatic Conplexity

Test-First No-Tests Test-Last

David Janzen - August 21, 2006 43

Design Quality: Class-level Metrics

Information Flow/module Coupingbetween Chjects

Testfirst NoTess TestLast
Test-First No-Tests Test-Last

0 Information Flow indicates Higher coupling in Test-First
procedural/flat design in
No-Tests and Test-Last teams

David Janzen - August 21, 2006 44

Test-First Team Micro-evaluation

- Evaluated differences in methods tested versus

those without tests

5.00

Tested vs. Untested Code in Test-First Project

4.50
4.00 -
3.50
3.00
2.50
2.00
1.50
1.00
0.50

@ Tested Code

0.00 -

0O Untested Code

Conrplexity Coupling

- About 28% of the methods were tested directly
- These methods had ~43% lower complexity average
- Not statistically significant at p=.08

. Classes that had some methods tested directly
had an average coupling that was ~104% lower

David Janzen - August 21, 2006

45

Programmer Opinions

Undergrad SE Programmer Opinions

Choice

BestApproach

ThoroughTesting

Correctness
Sinmpler
FewerDefects

Characteristic

0% 20% 40% 60% 80% 100%
% Choosing

@ Test-First B Test-Last

David Janzen - August 21, 2006

46

Student Perceptions!

Opinion of {(Pre-Experiment) Opinion of (Post-Experiment)
5.00 5.00
4.00 u 1 4.00 » ;
v 3.00 i " 5 3.00 -
[»] % = I
. = 2.00 S 2.00 &
Test-First | « 1.0 1.00 I
0.00 . . 0.00 | .
Test-First No-Tests Test-Last Test-First No-Tests Test-Last
Team Team

Opinions of TF improved 27% - paired t-test was statistically significant

Opinion of Test-Last (Pre-Experiment) Opinion of Test-Last (Post-Experiment)
5.00 5.00
4.00 - x ——— 4.00 i] *
S 3.00 Ly ! 5 3.00 s i L,
Test-Last F 200 5 200 :
1.00 - 1.00
0.00 ‘ ‘ 0.00 : :
Test-First No-Tests Test-Last Test-First No-Tests Test-Last
Team Team

Opinions of TL declined 19% - paired t-test not statistically significant
1. Janzen, “Software Architecture Improvement through Test-Driven Development,” OOPSLA, 2005

David Janzen - August 21, 2006 47

Testing Results

Test-last is better(a—=) Test-first is better

T|_<:| |:,‘>T¢_9I§tii:ng Metrics TL<:T:|estin et-rli-clsf

Industry 1 (No-
Tests/TF)

CS2 Spr 2006 P3

Industry 2 (TL/TF) CS2 Spr 2006 P2

Industry 3 (TF/TL) CS2 Spr 2006 P1

Industry Case Study

CS2 Fall 2005 P3

Experiment

Industry Bowling CS2 Fall 2005 P2 |

Grad SE

CS2 Fall 2005 P1

Undergrad SE (Text
uly

F‘“L A b

CS1 Fall 2005 P5

Undergrad SE

|

CS1 Fall 2005 P4 |

-200% 0% 200% 400% 600% 800% 1000% 1200% 1400% 1600%
% Difference -150% -100% -50% 0% 50% 100% 150% 200% 250% 300% 350%

% Difference

OT/S Ratio ELineCoverage = OCondCoverage [O#Asserts
M #Asserts/LOC O #Asserts/Module B #Asserts/Class O#Asserts/Method O#Asserts @ #Asserts/LOC O#Asserts/Module O#Asserts/Class B #Asserts/Method

Experiment

Testing Results

Test-last is better(a—=) Test-first is better

T|_ <::| ETestlng Metrics

Industry 1 (No
Tests/TF)

Industry

Indusiry 3 (TF/TL)

Industfy Case Study

—

[F wrot

em

ore

Grad SE

with /hig

her

coVv

Undergrad
uly

(Text

/

Undergrad SE]

pp - w*mwm

-200% 0%
% Difference

OT/S Ratio
M #Asserts/LOC

ELineCoverage = OCondCoverage
O#Asserts/Module E#Asserts/Class

O#Asserts
O #Asserts/Method

200% 400% 600% 800% 1000% 1200% 1400% 1600%

CS2 Spr P3

CS2 Spr 2006 P2

CS2 Spr 2 1

CS2 Fall

-150% -

CS2 Fall 2005 P2 |

Testin etrlcs
TL

Too few TF
to compare

5/
F
o

g

0% 50% 100% 150% 200% 250% 300% 350%
% Difference

O#Asserts @ #Asserts/LOC O#Asserts/Module O#Asserts/Class B #Asserts/Method

Experiment

Complexity Results

Test-first is less complex =) Test-lastis less complex

z%utlﬂrlcs | | TFﬁolﬂlty Metrlcrsﬂ o

CS2 Spr 2006 P3

Industry 1 (No-
Tests/TF)

Industry 2 (TL/TF) CS2 Spr 2006 P2

CS2 Fall 2005 P3

Industry 3 (TF/TL)

Industry Case Study |

Experiment

Industry Bowling | CS2 Fall 2005 P2

Grad SE | CS2 Fall 2005 P1

Undergrad SE (Text

ul) CS1 Fall 2005 P5

Undergrad SE | CS1 Fall 2005 P4

il fu 0k

-150% -100% -50% 0% 50% 100% 150% 200% 250% 300% -100% -50% 0% 50% 100% 150% 200% 250% 300%
% Difference % Difference

OVv(G) BV(G) Class OWMC OPL EAHL OVOC EVOL OPD MEFF BBUG ONBD OVv(G) BV'(G) OeV(G) OWMC BOC OAHL BVOC OVOL mPD BEFF OBUG ONBD

Experiment

Complexity Results

Test-first is less complex =) Test-lastis less complex

Industry 1 (No- CS2 Spr 2006 P3

Tests/TF)
Industry 2 (TL/TF) CS2 Spr 2006 P2
==
| ——
Industry Case Study . CS2 Fall 2005 P3
c
Q
(g Df\f‘ll NniNM TE ALV e
‘ 5 bCcgirnmmmg i /IVIU
-3 o
| >
Industry Boviing | i B 552 Fall 2005 P2 more complex code
Mature TF wrote
| e
Grad SE| | g €S complex code CS2 Fall 2005 P1
Undergrad SE (Text CS1 Fall 2005 P5
ul) ‘J
Undergrad SE | -%/ CS1 Fall 2005 P4
i N
-150% -100% -50% 0% 50% 100% 150% 200% 250% 300% -100% -50% 0% 50% 100% 150% 200% 250% 300%
% Difference % Difference

OVv(G) BV(G) Class OWMC OPL EAHL OVOC EVOL OPD MEFF BBUG ONBD OVv(G) BV'(G) OeV(G) OWMC BOC OAHL BVOC OVOL mPD BEFF OBUG ONBD

Metric

Size Results

Test-first is smaller (=) Test-last is smaller

Academic Code Size Metrics

TFIETL
#methods
e

#classes

NOV
CS2 includes tests

NOS
-100% -50% 0% 50% 100% 150% 200% 250% .

% Difference

OUndergrad SE
O Industry Bowling

B Undergrad SE (Text Ul) OGrad SE
B CS2 Fall 2005 P1

OCS2 Fall 2005 P2

Experiment

T FC(Elize M riSFL

Industry 1 (No-
Tests/TF)

Industry 2 (TL/TF)

Industry 3 (TF/TL)

Industry Case Study

Grad SE

Undergrad SE (Text
ul)

Undergrad SE

CS2 Fall 2005 P2

CS2 Fall 2005 P1

memmmd%m

-100% -50% 0% 50%

% Differences

100%

OLOC/Mod EWMC OMLOC

Metric

Size Results

Test-first is smaller (=) Test-last is smaller

Cogle Size Metrics
I @ TL

Academic Code Size Metrics

TEI) TL

\ Industry 1 (No- E
Tests/TF)
#methods
Industry 2 (TL/TF)
\ 1 {
. |
E TL wrote fewer units Indusiry 3 (TF/TL) ﬂ
#classes
J Industry Case Study E
l TF wrote
] 2 smaller units
5 Grad SE
b : | __—
NOV Undergrad SE (Text \ E/
ul)

7

Undergrad SE

CS2 includes tests

CS2 Fall 2005 P2

it

NOS
TL wrote larger units
CS2 Fall 2005 P1
-100% -50% 0% 50% 100% 150% 200% 250% .
o Difference -100% -50% 0% 50% 100% 150% 200%
% Differences
OUndergrad SE B Undergrad SE (Text Ul) OGrad SE

O Industry Bowling B CS2 Fall 2005 P1 OCS2 Fall 2005 P2 OLOC/Mod EWMC OMLOC

Experiment

Coupling Results

Test-first has lower coupling = —) Test-last has lower coupling

Coupling Metrics

TFIEDTL

Industry 1 (No-
Tests/TF)

Industry 2 (TL/TF)

Industry 3 (TF/TL)

Industry Case Study

Grad SE

Undergrad SE (Text
ul)

Undergrad SE

CS2 Fall 2005 P2

CS2 Fall 2005 P1

-100% -50% 0% 50% 100% 150% 200% 250% 300% 350%
% Difference

OCBOavg EFOAvg

Metric

Additigpal Coupling Metrics
TR TL

PAR

RFC

-150% -100% -50% 0% 50% 100% 150% 200% 250% 300% 350%
% Difference

0O CS2 Fall 2005 P1 @ CS2 Fall 2005 P2 OUndergrad SE
OUndergrad SE (Text Ul) BGrad SE OIndustry Case Study
E Industry 3 (TF/TL) OlIndustry 2 (TL/TF) M Industry 1 (No-Tests/TF)

Experiment

Coupling Results

Test-first has lower coupling = —) Test-last has lower coupling

Industry 1 (No-
Tests/TF)

Industry 2 (TL/TF)

Industry 3 (TF/TL)

Industry Case Study

Grad SE

Undergrad SE (Text
ul)

Undergrad SE

CS2 Fall 2005 P2

CS2 Fall 2005 P1

TL
Thway increase coug
-100% -50% 0% 50% 100% 150% 200% 250% 300%

C
TF(

oupling Metrics

% Difference

OCBOavg EFOAvg

ling

Metric

350%

Additigpal Coupling Metrics
TR TL

\\
PAR
TF had more interaction
between objects/met S‘ods
IF
7z
_/
RFC
-150% -100% -50% 0% 50% 100% 150% 200% 250% 300% 350%

0O CS2 Fall 2005 P1

% Difference

@ CS2 Fall 2005 P2

OUndergrad SE (Text Ul) BGrad SE

B Industry 3 (TF/TL)

OlIndustry 2 (TL/TF)

OUndergrad SE

OIndustry Case Study
M Industry 1 (No-Tests/TF)

Abstractness Results

Test-last is more abstract (=) Test-first is more abstract

Abgtractness\Metrics
TLAEDTF

Industry 1 (No-
Tests/TF)

Industry 2 (TL/TF) L

Industry 3 (TF/TL)

Industry Case Study

Experiment

Grad SE

Undergrad SE (Text
ul)

Undergrad SE

150 -100 -50% 0% 50% 100% 150% 200% 250% 300% 350%
%% % Difference

ORMAavg ENII ONOlavg ONOAavg

Abstractness Results

Test-last is more abstract (=) Test-first is more abstract

Abgtractness\Metrics
TLAEDTF

Industry 1 (No- —\

Tests/TF)

Industry 2 (TL/TF) L

| TF may be more abstract;
Industry 3 (TF/TL) Higher|coupling with higher abstractness
may mean better reuse and maintainability

Industry Case Study

Experiment

Grad SE

Undergrad SE (Text
ul)

Undergrad SE

150 -100 -50% 0% 50% 100% 150% 200% 250% 300% 350%
%% % Difference

ORMAavg ENII ONOlavg ONOAavg

Experiment

Cohesion Results

Test-first has higher cohesion(—a—)Test-last has higher cohesion

LCOM

TF <:| :> TL T|_ <:| |:,‘>I§|c_a|gemic Cohesion Metrics

Industry 1 (No-
Tests/TF)

Grad SE

Industry 2 (TL/TF)

Industry 3 (TF/TL) Undergrad SE (Text

ul)
Industry Case Study
T
£
Grad SE 5 Undergrad SE
o
X
]
Undergrad SE (Text
ul)
CS2 Fall 2005 P2
Undergrad SE
CS2 Fall 2005 P2
CS2 Fall 2005 P1
CS2 Fall 2005 P1
-150% -100% -50% 0% 50% 100% 150 0% 50% 100% 150% 200% 250%
% Difference % Difference

\l#classes E#methods OLCOM \

Experiment

Cohesion Results

Test-first has higher cohesion{——)Test-last has higher cohesion

LCOM Academic Cohesion Metrics
TR TL TLITDTE
Industry 1 (No- / ‘ \
Tests/TF) / \
Grad SE \
Industry 2 (TL/TF) LI\ TF higher cohesion
in industry
Industry 3 (TF/TL) Undergrad SE (Text
ul)
Industry Case Study [
Grad SE \ 'g Undergrad SE
& |
Undergrad SE (Text
ul)
TL higher cohesion s el 2008 P TF more units,
Undergrad SE |y academia TL higher cohesion
| In academia
CS2 Fall 2005 P2
CS2 Fall 2005 P1
CS2 Fall 2005 P1 }\/

-150% -100% -50% 0% 50% 100% 150 0% 50%
% Difference

100% 150% 200% 250%
% Difference

OLCOM O+#classes @#methods OLCOM

Subjective Evaluation Results

Test-last has higher scores (=) Test-first has higher scores

Subjective Metrics

TLCIEDTF

CS2 Fall 2005 P3

CS2 Fall 2005 P2

CS2 Fall 2005 P1 |

CS1 Fall 2005 P5

Experiment

CS1 Fall 2005 P4

-10% 0% 10% 20% 30% 40% 50% 60%
% Difference

OScore B Correctness O Style O Output Format B Error Checking

60

Subjective Evaluation Results

Test-last has higher scores (=) Test-first has higher scores

Subjective Metrics

TL(IED TF

CS2 Fall 2005 P3

TF higher scores in CS2

"

CS2 Fall 2005 P2

CS2 Fall 2005 P1

Experiment

N

CS1 Fall 2005 P5

CS1 Fall 2005 P4

-10% 0% 10% 20% 30% 40% 50% 60%
% Difference

OScore B Correctness O Style O Output Format B Error Checking

Productivity Results

Test-first was more productive(a—) Test-last was more productive

Productivity TF<:| |::> TL

Grad SE

Undergrad SE (Text
ul)

Undergrad SE

CS2 Fall 2005 P3

Experiment

CS2 Fall 2005 P2

CS2 Fall 2005 P1

CS1 Fall 2005 P5

CS1 Fall 2005 P4

-60% -50% -40% -30% -20% -10% 0% 10% 20% 30%
% Difference

62

Productivity Results

Test-first was more productive(a—) Test-last was more productive

Productivity TF<:| |::> TL

Grad SE

re productive
ture students

Undergrad SE (Text
ul)

Undergrad SE

CS2 Fall 2005 P3

Experiment

CS2 Fall 2005 P2

Mixed results with
beginning students

CS2 Fall 2005 P1

CS1 Fall 2005 P5

CS1 Fall 2005 P4

-60% -50% -40% -30% -20% -10% 0% 10% 20% 30%
% Difference

63

Programmer Opinions

Beginning Programmer Opinions
Choice |
B BestApproach | |
% ThoroughTesting | |
g Correctness | | |
Simpler | |
FewerDefects ‘ ‘
0% 10% 20% 30% 40% 50% 60% 70% 80% 9N0% 100%
% Choosing
O Test-First B Test-Last
Mature Programmer Opinions
Choice |
B BestApproach
% ThoroughTesting
g Correctness |
Simpler |
FewerDefects
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% Choosing

O Test-First B Test-Last

64

Beginning Programmer Opinions

Beginning Progranmmer Opinions - Tried TF

Choice
BestApproach |
ThoroughiTesting |
Correctness |

Characterisi

Sinpler
FewerDefects

0% 20% 40% 60% 80% 100%
% Choosing

@ Test-First B Test-Last

Beginning Programmer Opinions - TL Only

Choice
BestApproach |
ThoroughTesting |
Correctness |
Sinpler |
FewerDefects |

Characterist

I I
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
%Choosing

B Test-First @ Test-Last 65

Mature Programmer Opinions

Mature Programmer Opinions - Tried TF

Choice
BestApproach

ThoroughTesting

Correctness
Simpler
FewerDefects

Characterisl

0% 20% 40% 60% 80% 100%

O Test-First B Test-Last

Mature Programmer Opinions - TL Only

Choice
BestApproach |
ThoroughTesting |
Correctrness |

Characterisi

Sinpler
FewerDefects

0% 20% 40% 60% 80% 100%
% Choosing

66

@ Test-First B Test-Last

Organization
- Problem Statement

- Background

- Research Methodology

- Evaluation and Results

- Conclusions and Future Work

David Janzen - August 21, 2006

67

Quality Comparison Chart

Experiment Complexity Coupling Cohesion | Size Testing

CS1 Fall 2005 P4 TF

CS1 Fall 2005 P5

CS2 Fall 2005 P1 TF

CS2 Fall 2005 P2 TL TF

CS2 Fall 2005 P3 TF

CS2 Spr 2006 P1

CS2 Spr 2006 P2

CS2 Spr 2006 P3

Undergrad SE TF

Undergrad SE (Text Ul) TF

Grad SE Mixed TF

Industry Bowling

Industry Case Study TF

Industry 3 (TF/TL) TF TF Mixed TF

Industry 2 (TL/TF) TF TF Mixed TF

Industry 1 (No-Tests/TF) TF TF
David Janzen - August 21, 2006 68

Quality Comparison Chart Clusters

Experiment Complexity Coupling

Cohesion

Size

Testing

CST1 Fall 2005 P4

[Ty

CS1 Fall 2005 P5

CS2 Fall 2005 P1

CS2 Fall 2005 P2 TL

CS2 Fall 2005 P3

TF

\TF/

CS2 Spr 2006 P1

CS2 Spr 2006 P2

CS2 Spr 2006 P3

Undergrad SE

Undergrad SE (Text Ul)

Grad SE Mixed

Industry Bowling

Industry Case Study

TF

Industry 3 (TF/TL) TF

TF

Industry 2 (TL/TF) TF

TF

Industry 1 (No-Tests/TF)

David Janzen - August 21, 2006

69

Conclusions

1. Mature developers applying the test-first
approach are likely to write /ess complex code
than they would write with a test-last approach.

2. Mature developers applying the test-first
approach are likely to write more smaller units
(methods and classes) than they would write with
a test-last approach.

3. Developers at all levels applying the test-first
approach are likely to write more tests and
achieve higher test coverage than with a test-last
approach.

4. Mature developers who have applied both the
test-first and test-last approach are more likely
to choose the test-first approach.

David Janzen - August 21, 2006 70

Future Work

Replicate experiment in additional environments

Replicate experiment with beginning developers
using Java

Examine residual effects of TDD

- For how long do TDD programmers sustain high test-
coverage and quality effects?

- Are residual effects better with continued test-first and
test-last use?

Does a more comprehensive TDL approach improve

beginning programmer acceptance and quality?

Examine various levels of up-front
architecture/design detail

- Compare TDD with a process containing formal
Inspections

David Janzen - August 21, 2006 71

Key References

D. Janzen and H. Saiedian, “Test-Driven Learnlng Intrinsic
Integration of Testing into the CS/SE Curriculum,” Technical
Symposium on Computer Science Education (SIGCSE '06), March,
2006, Houston, TX

D. Janzen and H. Saiedian, “Test-Driven Development: Concepts,

Taxonomy and Future Directions,” /EEE Computer, 38(9), 2005

D. Janzen, “Software Architecture Improvement through Test-
Driven Development Object-Oriented Programming, Systems,
Languages, and A,op//cat/ons (OOPSLA’05) Student Research
Competition, October, 2005, San Diego, CA

D. Janzen, H. Saiedian, “On the Ianuence of Test-Driven
Development on Software Design,” Conference on Software
Engineering Education and Tra/n/ng (CSEE&T’06), April 2006,
North Shore Oahu, Hawaii

D. Janzen, “An Empirical Examination of Test-Driven
Development,” ACM Student Research Competition Grand Finals
Third-Place Winner, ACM Digital Library, May 2006

Acknowledgements

Karen Janzen, Hossein Saiedian
SIGCSE Special Projects Grant

David Janzen - August 21, 2006

72

