
An Empirical Evaluation of the Impact of An Empirical Evaluation of the Impact of An Empirical Evaluation of the Impact of An Empirical Evaluation of the Impact of
TestTestTestTest----Driven Development on Driven Development on Driven Development on Driven Development on

Software QualitySoftware QualitySoftware QualitySoftware Quality

David Janzen (djanzen@ku.edu)
University of Kansas

David Janzen - August 21, 2006 2

AcknowledgementsAcknowledgementsAcknowledgementsAcknowledgements
• Committee Members

– Dr. Hossein Saiedian, Advisor

– Dr. Arvin Agah

– Dr. Perry Alexander

– Dr. John Gauch

– Dr. Carey Johnson

• EECS Department

David Janzen - August 21, 2006 3

OrganizationOrganizationOrganizationOrganization
• Problem Statement

• Background

• Research Methodology

• Evaluation and Results

• Conclusions and Future Work

David Janzen - August 21, 2006 4

OrganizationOrganizationOrganizationOrganization
• Problem StatementProblem StatementProblem StatementProblem Statement

– IntroductionIntroductionIntroductionIntroduction

– ContextContextContextContext

– Research ProposalResearch ProposalResearch ProposalResearch Proposal

– Results OverviewResults OverviewResults OverviewResults Overview

• Background

• Research Methodology

• Evaluation and Results

• Conclusions and Future Work

David Janzen - August 21, 2006 5

IntroductionIntroductionIntroductionIntroduction
• Observation

– Test-driven development is a popular new
method for designing and testing software

• Problem

– No empirical evidence of TDD efficacy as a
design methodology

• Opportunity

– Poor testing is a significant contributor to
software crisis

– Can TDD improve both design and testing,
resulting in better software?

David Janzen - August 21, 2006 6

Mainstream Software Mainstream Software Mainstream Software Mainstream Software
Development MilestonesDevelopment MilestonesDevelopment MilestonesDevelopment Milestones

Agile (XP)1Object-Oriented2000’s

UML/CMM/RUPObject-Oriented1990’s

OOA&DObject-Oriented1980’s

WaterfallStructured1970’s

Assembly1960’s

ProcessProcessProcessProcessLanguageLanguageLanguageLanguageEraEraEraEra

1. Rajlich, “Changing the Paradigm of Software Engineering”, Communications of the ACM, 2006

David Janzen - August 21, 2006 7

XP Practice CouplingXP Practice CouplingXP Practice CouplingXP Practice Coupling1111

pair programming

testing

metaphor

continuous integration

on-site customer

collective ownership

planning game

short releases

40 Hour Week

refactoring

coding standards

simple design

1. Beck, Extreme Programming Explained: Embrace Change, 2000

David Janzen - August 21, 2006 8

XP ScaleXP ScaleXP ScaleXP Scale----Defined PracticesDefined PracticesDefined PracticesDefined Practices1111

pair programming

test-driven development

metaphor

continuous integration

on-site customer

collective ownership

acceptance testing

planning game

short releases

statements
and methods

class and
interfaces

design

architecture

features

priorities

solutions

1. Vanderburg, “A Simple Model of Agile Software Processes”, OOPSLA, 2005

David Janzen - August 21, 2006 9

XP Practices and Time ScalesXP Practices and Time ScalesXP Practices and Time ScalesXP Practices and Time Scales1111

pair programming

test-driven development

metaphor

continuous integration

on-site customer

collective ownership

acceptance testing

planning game

short releases

seconds

minutes

hours

days

weeks

months

1. Vanderburg, “A Simple Model of Agile Software Processes”, OOPSLA, 2005

David Janzen - August 21, 2006 10

Extracting TDD from XPExtracting TDD from XPExtracting TDD from XPExtracting TDD from XP

pair programming

test-driven development

metaphor

continuous integration

on-site customer

collective ownership

acceptance testing

planning game

short releases

test-driven development

David Janzen - August 21, 2006 11

Research ObjectiveResearch ObjectiveResearch ObjectiveResearch Objective
• Conduct empirical studies examining how TDD

affects testingtestingtestingtesting and internal design qualityinternal design qualityinternal design qualityinternal design quality

• Controlled experiments in academic courses

– At all levels to gauge optimal introduction point

• Semi-controlled experiments and case study in
Fortune 500 companies

– Conduct small experiment in training course

– Compare same team in transition to TDD

– Compare different teams/projects

• Longitudinal studies examine voluntary TDD adoption
in subsequent projects

David Janzen - August 21, 2006 12

Summary of ResultsSummary of ResultsSummary of ResultsSummary of Results

• TDD improves internal quality aspects

– Software is smaller

– Software is less complex and more elegant

• TDD improves testing

– Increased coverage, more test cases

– Fewer defects

• Programmer opinions

– Mature programmers prefer TDD after trying
both approaches

David Janzen - August 21, 2006 13

Additional Research ResultsAdditional Research ResultsAdditional Research ResultsAdditional Research Results

• Test-Driven Learning

– A pedagogical approach that integrates TDD
instruction at all levels with minimal cost

• Framework for future studies

– Results establish benchmark

– Methods, tools, and artifacts provided for
replicated studies

David Janzen - August 21, 2006 14

OrganizationOrganizationOrganizationOrganization
• Problem Statement

• BackgroundBackgroundBackgroundBackground

– TDD Overview

– Related Research

• Research Methodology

• Evaluation and Results

• Conclusions and Future Work

David Janzen - August 21, 2006 15

• Disciplined development approach

• Emerged from agile methods (XP)

• Reverses traditional micro workflow

test code code test

• More about design than testing1

• Primarily focuses on unit tests

• Supported by automated testing
frameworks such as JUnit

TestTestTestTest----Driven Development (TDD)Driven Development (TDD)Driven Development (TDD)Driven Development (TDD)

1. Beck, “Aim, Fire”, IEEE Software, 2001

David Janzen - August 21, 2006 16

TDD MisconceptionTDD MisconceptionTDD MisconceptionTDD Misconception
• TDD does not mean “write all the tests,

then build a system that passes the tests”

Test 1

Test 2

Test 3

Test 4

Test 5

Test 6

System

David Janzen - August 21, 2006 17

TDD ClarifiedTDD ClarifiedTDD ClarifiedTDD Clarified
• TDD means “write one test, write code to

pass that test, refactor, and repeat”

Test 1 Unit 1

Test 2 Unit 1

Test 3 Unit 2

Test 4 Unit 2

Test 5 Unit 3

Refactor

Refactor

Refactor

Refactor

Refactor

David Janzen - August 21, 2006 18

Related TDD Studies in IndustryRelated TDD Studies in IndustryRelated TDD Studies in IndustryRelated TDD Studies in Industry

a Studies reported less time spent debugging with TDD
b TDD group wrote many more tests than control group

No change40% reduction
in defect density

91CSWilliams3

(NCSU 2003)

Minimal
impact

50% reduction
in defect density

91CSMaximillien2

(NCSU 2003)

TDD took
16% longerb

TDD passed
18% more tests

243CEGeorge1

(NCSU 2004)

Productivity
effects

Quality effectsNumber of
programmers

Number of
companiesTypeStudya

1. George and Williams, “A Structured Experiment of Test-Driven Development”, Info & Sw Tech, 2004
2. Maximilien and Williams, “Assessing Test-Driven Development at IBM”, ICSE, 2003
3. Williams et. al., “Test-driven development as a defect-reduction practice”, Sw Rel. Eng, 2003

David Janzen - August 21, 2006 19

Related TDD Studies in AcademiaRelated TDD Studies in AcademiaRelated TDD Studies in AcademiaRelated TDD Studies in Academia

no changeno change38CEPančur4

(Ljubljana 2003)

28% improvementno change35CEErdogmus5

(Torino 2005)

no changeno change, but
better reuse

19CEMüller3

(Karlsruhe 2002)

50% improvementimproved
information flow

8CEKaufmann2

(Bethel 2003)

n/a54% fewer defects59CEEdwards1

(Virginia Tech
2003)

Productivity effectsQuality effects# programmersTypeStudy

1. Edwards, “Rethinking Computer Science Education from a Test-first Perspective”, OOPSLA, 2003
2. Kaufmann and Janzen, “Implications of test-driven development: a pilot study”, OOPSLA, 2003
3. Muller and Hagner, “Experiment About Test-First Programming”, IEEE Software, 2002
4. Pancur et. al., “Towards Empirical Evaluation of Test-Driven Development in a University Environment”, Eurocon, 2003
5. ErdogmusErdogmusErdogmusErdogmus, , , , ““““On the Effectiveness of TestOn the Effectiveness of TestOn the Effectiveness of TestOn the Effectiveness of Test----first Approach to Programmingfirst Approach to Programmingfirst Approach to Programmingfirst Approach to Programming””””, , , , IEEE Trans on SEIEEE Trans on SEIEEE Trans on SEIEEE Trans on SE, 2005, 2005, 2005, 2005

David Janzen - August 21, 2006 20

Background and Related Work Background and Related Work Background and Related Work Background and Related Work
Published in IEEE ComputerPublished in IEEE ComputerPublished in IEEE ComputerPublished in IEEE Computer
• D. Janzen and H. Saiedian, Test-Driven

Development: Concepts, Taxonomy and
Future Directions, IEEE Computer, 38383838(9), 2005

• Background study, challenges, clarifying TDD
as design approach, need for the research

• Cover feature

David Janzen - August 21, 2006 21

OrganizationOrganizationOrganizationOrganization
• Problem Statement

• Background

• Research Methodology Research Methodology Research Methodology Research Methodology
– TDD and Design

– Hypotheses

– Experiment Design

– Metrics

• Evaluation and Results

• Conclusions and Future Work

David Janzen - August 21, 2006 22

TDD Process FlowTDD Process FlowTDD Process FlowTDD Process Flow

Unit TestCode
Detailed

Design

Code

High-Level Design/

Architecture
Test

RefactorUnit Test

Design and Code
High-Level Design/

Architecture
TestCode

• Traditional test-last process

• TDD process

David Janzen - August 21, 2006 23

public class TestBank extends TestCase {

public void testCreateBankEmpty() {

Bank b = new Bank();

assertEquals(b.getNumAccounts(), 0);

}

}

Design decisions

TDD is about DesignTDD is about DesignTDD is about DesignTDD is about Design

• TDD gives early focus to a unit’s

– Interface: How will I use it?

– Behavior: What does it do?

– Reuse: Multiple clients (test and source)

– Coupling: Units need to be tested in isolation

– Cohesion: Testable units have one purpose

David Janzen - August 21, 2006 24

HypothesisHypothesisHypothesisHypothesis
• Null hypothesis

– Software constructed using the test-driven development
approach will have similar quality at higher cost to develop
when compared to software constructed with a traditional
test-last approach

• Independent variable
– Use of test-driven (test-first) versus test-last development

• Dependent variables
– Software quality

– Degree of testing

– Software cost (programmer productivity)

• Additional dependent variables observed
– Student performance on related assessments

– Subsequent voluntary usage of TDD

David Janzen - August 21, 2006 25

Formal Hypotheses: Internal Quality Formal Hypotheses: Internal Quality Formal Hypotheses: Internal Quality Formal Hypotheses: Internal Quality
and Testingand Testingand Testingand Testing

IntQlty|TestedTF >
IntQlty|Not-TestedTF

Test-first code covered by tests has
higher internal quality

IntQlty|TestedTF =
IntQlty|Not-TestedTF

Q2

#TestsTF > #TestsTL

Test-first programmers write more
tests

#TestsTF = #TestsTLT1

TestCovTF > TestCovTL

Test-first programmers write tests with
better code coverage

TestCovTF = TestCovTLT2

IntQltyTF > IntQltyTL

Test-first code has higher internal
quality

IntQltyTF = IntQltyTLQ1

Alternative HypothesisNull HypothesisName

David Janzen - August 21, 2006 26

Formal Hypotheses: Productivity Formal Hypotheses: Productivity Formal Hypotheses: Productivity Formal Hypotheses: Productivity
and Programmer Opinionsand Programmer Opinionsand Programmer Opinionsand Programmer Opinions

ProdTF > ProdTL
Test-first programmers are more
productive

ProdTF = ProdTLP1

OpTF > OpTL
Programmers perceive test-first as
better approach

OpTF = OpTLO1

Op|TFTF > Op|TFTL
Programmers who have attempted
test-first prefer test-first

Op|TFTF = Op|TFTLO2

Alternative HypothesisNull HypothesisName

27

TDD Instruction Project/Phase 1 Project/Phase 2

CS1

CS2

SE
(undergrad)

SE
(grad)

Industry
(in-training)

TestTestTestTest----DrivenDrivenDrivenDriven
LearningLearningLearningLearning

TDD TrainingTDD TrainingTDD TrainingTDD Training

Test-Last Test-First

Test-First

Test-Last

Test-First

Test-Last

Test-First

Test-Last

Test-Last Test-First

Test-LastTest-First

Test-LastTest-First

Industry
(in-domain) Test-Last Test-First

Test-LastTest-First

No-Automated-Tests Test-First

David Janzen - August 21, 2006 28

Sample Experiment Design (CS2)Sample Experiment Design (CS2)Sample Experiment Design (CS2)Sample Experiment Design (CS2)

Pre-experiment

survey

TDD

Training

Incremental

Projects
Post-experiment

survey

Project 1

metrics

Project 2

metrics

Individual

Profile
Individual

Profile

Test-First

Test-Last

Projects

Project 3-5

metrics

29

TestTestTestTest----Driven LearningDriven LearningDriven LearningDriven Learning1111 in CS1/CS2in CS1/CS2in CS1/CS2in CS1/CS2
• Teach testing simply by example

int sum(int min, int max) {

int sum = 0;

for(int i=min;i<=max;i++)

sum += i;

return sum;

}

void runTests() {

assertassertassertassert(sum(3,7)==25);

assertassertassertassert(sum(-2,2)==0);

assertassertassertassert(sum(-4,-2)==-9);

}

int main() {

runTests();

}

int sum(int min, int max) {

int sum = 0;

for(int i=min;i<=max;i++)

sum += i;

return sum;

}

int main() {

cout << sum(3,7); //should print 25

cout << sum(-2,2); //should print 0

cout << sum(-4,-2); //should print -9

}

Traditional Approach TDL Approach

1. Janzen and Saiedian, “Test-Driven Learning: Intrinsic Integration of Testing into the CS/SE Curriculum,”
Technical Symposium on Computer Science Education (SIGCSE’06), 2006

David Janzen - August 21, 2006 30

TDD Training in IndustryTDD Training in IndustryTDD Training in IndustryTDD Training in Industry
• Company agreed to participate in study if

author developed and delivered training

– Six-day course

• One-day on TDD

• Remainder on Spring and Hibernate

– Spring is a lightweight dependency-injection
framework that developed based on TDD

– Hibernate is an object-relational database mapping
framework

– About 500 presentation slides

– Hands-on lab exercises

– Delivered on-site in October 2005

31

ContextContextContextContext
• Small Projects (typically less than 3000 LOC)

• C++ and Java

• Mix of text UI, graphical UI, web applications,
libraries

David Janzen - August 21, 2006 32

Internal Design Quality MeasuresInternal Design Quality MeasuresInternal Design Quality MeasuresInternal Design Quality Measures
• Product Metrics

– i.e. only look at code (and tests)

• Desirable Attributes

– Understandability

• Low complexity, high cohesion, simple

– Maintainability
• Low complexity, high cohesion, low coupling

– Reusability
• Low complexity, high cohesion, low coupling, inheritance

– Testability
• High cohesion, low coupling, high test coverage

• Complexity, coupling, and cohesion are cross-
cutting measures

David Janzen - August 21, 2006 33

Metrics Collection and AnalysisMetrics Collection and AnalysisMetrics Collection and AnalysisMetrics Collection and Analysis
• Calculated nearly 100 metrics for each project

• Many calculated at multiple levels

• project, package, class, interface, method

• Acquired and evaluated twelve metrics tools

• Selected CCCC, Eclipse Metrics, JavaNCSS, JStyle, Krakatau,
Clover, Cobertura

• Custom-built Ant scripts and Java programs

• Invoke metrics tools

• Extract metrics

• Count asserts in code

• Parse xml files produced by metrics tools

• Extensive spreadsheet and statistical analysis

• Web-based and paper survey collection

David Janzen - August 21, 2006 34

MetricsMetricsMetricsMetrics

• Instability

• #Interfaces

• #Children

• Specialization Index

• #Overridden Methods

• Nested Block Depth

• Response for Class

• Lack of Cohesion of Methods

• Weighted Methods per Class

• LOC/Method

Cohesion

• Coupling between Objects

• Fan-in, Fan-out

(Afferent/Efferent Coupling)

• Information Flow

Coupling

• McCabe’s Cyclomatic Complexity

• Halstead Complexity

• LOC/method

• Weighted Methods per Class (WMC)

• Number of Parameters

• Depth of Inheritance Tree

Complexity

David Janzen - August 21, 2006 35

• Response for Class

• Depth of Inheritance Tree

• #Children

• #Overridden Methods

• Abstractness

• Instability

• #Overridden Methods

• #Interfaces

• LOC/Module

• LOC/Method

• LOC/Class

• #Attributes

• #Static Attributes

• #Packages

• #Asserts

• Line Coverage

• Branch Coverage

• Method Coverage

• Total Coverage

Testability

• Depth of Inheritance Tree

• #Children (bigger is good)

• Fan-in

• Specialization Index

• Distance from Main

Reusability

• LOC (source and test)

• #Modules

• #Classes

• #Methods

• #Interfaces

• Weighted Methods per Class

Size

MetricsMetricsMetricsMetrics

David Janzen - August 21, 2006 36

Subjective MetricsSubjective MetricsSubjective MetricsSubjective Metrics
• CS1 and CS2

• Correctness score (lack of defects)

• Style (design quality, standards conformance)

• Source: TA Reviewers

• Industry Projects

• Design Review Scorecard
• Understandability: simplicity, architectural clarity/consistency

• Maintainability: low coupling, high cohesion

• Reusability/Extensibility: use of design patterns

• Testability: use of dependency inversion, small cohesive modules

• Overall Design Quality

• Source: Peer Reviewers

David Janzen - August 21, 2006 37

• Problem Statement

• Background

• Research Methodology

• Evaluation and ResultsEvaluation and ResultsEvaluation and ResultsEvaluation and Results

– Sample Detailed Results

– Summary Results

• Conclusions and Future Work

OrganizationOrganizationOrganizationOrganization

David Janzen - August 21, 2006 38

Undergrad SE Experiment DesignUndergrad SE Experiment DesignUndergrad SE Experiment DesignUndergrad SE Experiment Design

Pre-experiment

survey

Test-First/

Test-Last

Training

Programming Project

Post-experiment

survey

Intermediate

metrics

Final

metrics

Individual

Profile
Individual

Profile

Team 1: Test-First

Team 2: Test-Last

Team 3: Test-First

David Janzen - August 21, 2006 39

Productivity ResultsProductivity ResultsProductivity ResultsProductivity Results1111

Features Completed

0

2

4

6

8

10

12

14

Test-First No-Tests Test-Last

Effort Per Feature

182

1424

506

0
200
400
600
800

1000
1200
1400
1600

Test-First No-Tests Test-Last

M
in

u
te

s

 x

•Test-First spent 88% less effort/feature than No-Tests
•Test-First spent 57% less effort/feature than Test-Last
•Only Test-First completed both phases

1. Janzen and Saiedian, “On the Influence of Test-Driven Development on Software Design,”
Conference on Software Engineering Education and Training (CSEE&T’06), 2006

David Janzen - August 21, 2006 40

Code Size and Test DensityCode Size and Test DensityCode Size and Test DensityCode Size and Test Density

• Code size (Source only)

• Code size (Test only) and Test Coverage

Test LOC % Classes Tested Assertions/SLOC Test Coverage (lines) Test Coverage (branches)

Test-First 168 38.46% 0.077 19.00% 39.00%

No-Tests 0 0.00% 0.000 0.00% 0.00%

Test-Last 38 25.00% 0.045 29.00% 23.00%

of classes LOC #methods methods/class LOC/class LOC/method LOC/feature

Test-First 13 1053 87 6.69 81.00 12.10 87.75

No-Tests 7 995 36 5.14 142.14 27.64 199.00

Test-Last 4 259 35 8.75 64.75 7.40 43.17

Test-First wrote more

tests per LOC

but, coverage

was mixed

David Janzen - August 21, 2006 41

Code Size and Test Density (No GUI)Code Size and Test Density (No GUI)Code Size and Test Density (No GUI)Code Size and Test Density (No GUI)

• Test-first project included an extensive GUI

• GUI’s are traditionally difficult to test

• Code size (source only without GUI)

• Code size (test only) and test coverage
Test LOC % Classes Tested Assertions/SLOC Test Coverage (lines) Test Coverage (branches)

Test-First 168 38.46% 0.086 31.00% 43.00%

No-Tests 0 0.00% 0.000 0.00% 0.00%

Test-Last 38 25.00% 0.045 29.00% 23.00%

of classes LOC #methods methods/class LOC/class LOC/method LOC/feature

Test-First 11 670 57 5.18 60.91 11.75 55.83

No-Tests 7 995 36 5.14 142.14 27.64 199.00

Test-Last 4 259 35 8.75 64.75 7.40 43.17

Test-First tests covered

more source code

David Janzen - August 21, 2006 42

Design Quality: MethodDesign Quality: MethodDesign Quality: MethodDesign Quality: Method----level Metricslevel Metricslevel Metricslevel Metrics

Undergrad SE Method Metrics
NOS

NOE

V(G)

PL

AHL

VOC

VOLPD

EFF

BUG

MLOC

NBD

PAR

TF

TL

indicates statistically significant difference with p<.05

David Janzen - August 21, 2006 43

Design Quality: ClassDesign Quality: ClassDesign Quality: ClassDesign Quality: Class----level Metricslevel Metricslevel Metricslevel Metrics
• Comparable/acceptable levels for most

metrics: DIT, NOC, LCOM, …

• NII only metric w/ statistically significant diff

• Tested code was simpler
Cyclomatic Complexity

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Test-First No-Tests Test-Last

David Janzen - August 21, 2006 44

Coupling between Objects

0.00

1.00

2.00

3.00

4.00

5.00

Test-First No-Tests Test-Last

0 Information Flow indicates
procedural/flat design in
No-Tests and Test-Last teams

Information Flow/module

2.56

0.00 0.00
0.00

0.50

1.00

1.50

2.00

2.50

3.00

Test-First No-Tests Test-Last

Higher coupling in Test-First

Design Quality: ClassDesign Quality: ClassDesign Quality: ClassDesign Quality: Class----level Metricslevel Metricslevel Metricslevel Metrics

David Janzen - August 21, 2006 45

TestTestTestTest----First Team MicroFirst Team MicroFirst Team MicroFirst Team Micro----evaluationevaluationevaluationevaluation
• Evaluated differences in methods tested versus

those without tests

• About 28% of the methods were tested directly
– These methods had ~43% lower complexity average

– Not statistically significant at p=.08

• Classes that had some methods tested directly
had an average coupling that was ~104% lower

Tested vs. Untested Code in Test-First Project

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Complexity Coupling

Tested Code

Untested Code

David Janzen - August 21, 2006 46

Programmer OpinionsProgrammer OpinionsProgrammer OpinionsProgrammer Opinions
Undergrad SE Programmer Opinions

0% 20% 40% 60% 80% 100%

FewerDefects

Simpler

Correctness

ThoroughTesting

BestApproach

Choice

C
h
a
ra

c
te

ri
s
ti
c

.

% Choosing

Test-First Test-Last

David Janzen - August 21, 2006 47

Student PerceptionsStudent PerceptionsStudent PerceptionsStudent Perceptions1111

1. Janzen, “Software Architecture Improvement through Test-Driven Development,” OOPSLA, 2005

Opinion of Test-Last (Pre-Experiment)

0.00

1.00

2.00

3.00

4.00

5.00

Test-First No-Tests Test-Last

Team

F
a
v
o
r

-

Test-First

Test-Last

Opinions of TF improved 27% – paired t-test was statistically significant

Opinions of TL declined 19% - paired t-test not statistically significant

David Janzen - August 21, 2006 48

Testing ResultsTesting ResultsTesting ResultsTesting Results
Test-last is better Test-first is better

TFTLTFTL

David Janzen - August 21, 2006 49

Testing ResultsTesting ResultsTesting ResultsTesting Results
Test-last is better Test-first is better

TFTLTFTL

Programmers switched

TF wrote more tests
with higher coverage

Too few TF
to compare

David Janzen - August 21, 2006 50

Complexity ResultsComplexity ResultsComplexity ResultsComplexity Results
Test-first is less complex Test-last is less complex

TLTFTLTF

David Janzen - August 21, 2006 51

Complexity ResultsComplexity ResultsComplexity ResultsComplexity Results
Test-first is less complex Test-last is less complex

TLTFTLTF

Mature TF wrote
less complex code

Beginning TF wrote
more complex code

David Janzen - August 21, 2006 52

Size ResultsSize ResultsSize ResultsSize Results
Test-first is smaller Test-last is smaller

TLTFTLTF

CS2 includes tests

David Janzen - August 21, 2006 53

Size ResultsSize ResultsSize ResultsSize Results
Test-first is smaller Test-last is smaller

TLTFTLTF

CS2 includes tests

TF wrote
smaller units

TL wrote fewer units

TL wrote larger units

David Janzen - August 21, 2006 54

Coupling ResultsCoupling ResultsCoupling ResultsCoupling Results
Test-last has lower couplingTest-first has lower coupling

TLTFTLTF

David Janzen - August 21, 2006 55

Coupling ResultsCoupling ResultsCoupling ResultsCoupling Results
Test-last has lower couplingTest-first has lower coupling

TLTFTLTF

TF may increase coupling

TF had more interaction
between objects/methods

56

Abstractness ResultsAbstractness ResultsAbstractness ResultsAbstractness Results
Test-first is more abstractTest-last is more abstract

TFTL

57

Abstractness ResultsAbstractness ResultsAbstractness ResultsAbstractness Results
Test-first is more abstractTest-last is more abstract

TFTL

TF may be more abstract;
Higher coupling with higher abstractness

may mean better reuse and maintainability

David Janzen - August 21, 2006 58

Cohesion ResultsCohesion ResultsCohesion ResultsCohesion Results
Test-last has higher cohesionTest-first has higher cohesion

TFTLTLTF

David Janzen - August 21, 2006 59

Cohesion ResultsCohesion ResultsCohesion ResultsCohesion Results
Test-last has higher cohesionTest-first has higher cohesion

TFTLTLTF

TF higher cohesion
in industry

TL higher cohesion
in academia

TF more units,
TL higher cohesion

In academia

60

Subjective Evaluation ResultsSubjective Evaluation ResultsSubjective Evaluation ResultsSubjective Evaluation Results
Test-first has higher scoresTest-last has higher scores

TFTL

61

Subjective Evaluation ResultsSubjective Evaluation ResultsSubjective Evaluation ResultsSubjective Evaluation Results
Test-first has higher scoresTest-last has higher scores

TFTL

TF higher scores in CS2

62

Productivity ResultsProductivity ResultsProductivity ResultsProductivity Results
Test-last was more productiveTest-first was more productive

TLTF

63

Productivity ResultsProductivity ResultsProductivity ResultsProductivity Results
Test-last was more productiveTest-first was more productive

TLTF

TF more productive
with mature students

Mixed results with
beginning students

64

Programmer OpinionsProgrammer OpinionsProgrammer OpinionsProgrammer Opinions

Mature Programmer Opinions

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

FewerDefects

Simpler

Correctness

ThoroughTesting

BestApproach

Choice

C
h
a
ra

c
te

ri
s
ti
c

% Choosing

Test-First Test-Last

Beginning Programmer Opinions

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

FewerDefects

Simpler

Correctness

ThoroughTesting

BestApproach

Choice

C
h
a
ra

c
te

ri
s
ti
c

% Choosing

Test-First Test-Last

65

Beginning Programmer OpinionsBeginning Programmer OpinionsBeginning Programmer OpinionsBeginning Programmer Opinions

Beginning Programmer Opinions - TL Only

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

FewerDefects

Simpler

Correctness

ThoroughTesting

BestApproach

Choice

C
h
a
ra

c
te

ri
s
ti
c

% Choosing

Test-First Test-Last

Beginning Programmer Opinions - Tried TF

0% 20% 40% 60% 80% 100%

FewerDefects

Simpler

Correctness

ThoroughTesting

BestApproach

Choice

C
h
a
ra

c
te

ri
s
ti
c

% Choosing

Test-First Test-Last

66

Mature Programmer OpinionsMature Programmer OpinionsMature Programmer OpinionsMature Programmer Opinions

Mature Programmer Opinions - TL Only

0% 20% 40% 60% 80% 100%

FewerDefects

Simpler

Correctness

ThoroughTesting

BestApproach

Choice

C
h
a
ra

c
te

ri
s
ti
c

% Choosing

Test-First Test-Last

Mature Programmer Opinions - Tried TF

0% 20% 40% 60% 80% 100%

FewerDefects

Simpler

Correctness

ThoroughTesting

BestApproach

Choice

C
h
a
ra

c
te

ri
s
ti
c

% Choosing

Test-First Test-Last

David Janzen - August 21, 2006 67

• Problem Statement

• Background

• Research Methodology

• Evaluation and Results

• Conclusions and Future WorkConclusions and Future WorkConclusions and Future WorkConclusions and Future Work

OrganizationOrganizationOrganizationOrganization

David Janzen - August 21, 2006 68

Quality Comparison ChartQuality Comparison ChartQuality Comparison ChartQuality Comparison Chart

TFTFTLTLTFIndustry 1 (No-Tests/TF)

TFMixedTFTFTLIndustry 2 (TL/TF)

TFMixedTFTFTLIndustry 3 (TF/TL)

TFTFTFTLTFIndustry Case Study

TFIndustry Bowling

TFTFTLMixedTFGrad SE

TFTFTLTLTFUndergrad SE (Text UI)

TFTFTLTLTFUndergrad SE

TLTLCS2 Spr 2006 P3

TLTLCS2 Spr 2006 P2

TLTLCS2 Spr 2006 P1

TFTLCS2 Fall 2005 P3

TFTLTLTLTLCS2 Fall 2005 P2

TFTLTLTLTLCS2 Fall 2005 P1

TLTFCS1 Fall 2005 P5

TFTLCS1 Fall 2005 P4

TestingTestingTestingTestingSizeSizeSizeSizeCohesionCohesionCohesionCohesionCouplingCouplingCouplingCouplingComplexityComplexityComplexityComplexityExperimentExperimentExperimentExperiment

David Janzen - August 21, 2006 69

Quality Comparison Chart Quality Comparison Chart Quality Comparison Chart Quality Comparison Chart ClustersClustersClustersClusters

TFTFTLTLTFIndustry 1 (No-Tests/TF)

TFMixedTFTFTLIndustry 2 (TL/TF)

TFMixedTFTFTLIndustry 3 (TF/TL)

TFTFTFTLTFIndustry Case Study

TFIndustry Bowling

TFTFTLMixedTFGrad SE

TFTFTLTLTFUndergrad SE (Text UI)

TFTFTLTLTFUndergrad SE

TLTLCS2 Spr 2006 P3

TLTLCS2 Spr 2006 P2

TLTLCS2 Spr 2006 P1

TFTLCS2 Fall 2005 P3

TFTLTLTLTLCS2 Fall 2005 P2

TFTLTLTLTLCS2 Fall 2005 P1

TLTFCS1 Fall 2005 P5

TFTLCS1 Fall 2005 P4

TestingTestingTestingTestingSizeSizeSizeSizeCohesionCohesionCohesionCohesionCouplingCouplingCouplingCouplingComplexityComplexityComplexityComplexityExperimentExperimentExperimentExperiment

David Janzen - August 21, 2006 70

ConclusionsConclusionsConclusionsConclusions

1. Mature developers applying the test-first
approach are likely to write less complex codeless complex codeless complex codeless complex code
than they would write with a test-last approach.

2. Mature developers applying the test-first
approach are likely to write more smaller unitsmore smaller unitsmore smaller unitsmore smaller units
(methods and classes) than they would write with
a test-last approach.

3. Developers at all levels applying the test-first
approach are likely to write more testsmore testsmore testsmore tests and
achieve higher test coveragehigher test coveragehigher test coveragehigher test coverage than with a test-last
approach.

4. Mature developers who have applied both the
test-first and test-last approach are more likely
to choose the testchoose the testchoose the testchoose the test----first approachfirst approachfirst approachfirst approach.

David Janzen - August 21, 2006 71

Future WorkFuture WorkFuture WorkFuture Work

• Replicate experiment in additional environments

• Replicate experiment with beginning developers
using Java

• Examine residual effects of TDD
– For how long do TDD programmers sustain high test-

coverage and quality effects?

– Are residual effects better with continued test-first and
test-last use?

• Does a more comprehensive TDL approach improve
beginning programmer acceptance and quality?

• Examine various levels of up-front
architecture/design detail

• Compare TDD with a process containing formal
inspections

David Janzen - August 21, 2006 72

Key ReferencesKey ReferencesKey ReferencesKey References
• D. Janzen and H. Saiedian, “Test-Driven Learning: Intrinsic

Integration of Testing into the CS/SE Curriculum,” Technical
Symposium on Computer Science Education (SIGCSE’06), March,
2006, Houston, TX

• D. Janzen and H. Saiedian, “Test-Driven Development: Concepts,
Taxonomy and Future Directions,” IEEE Computer, 38383838(9), 2005

• D. Janzen, “Software Architecture Improvement through Test-
Driven Development,” Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’05) Student Research
Competition, October, 2005, San Diego, CA

• D. Janzen, H. Saiedian, “On the Influence of Test-Driven
Development on Software Design,” Conference on Software
Engineering Education and Training (CSEE&T’06), April 2006,
North Shore Oahu, Hawaii

• D. Janzen, “An Empirical Examination of Test-Driven
Development,” ACM Student Research Competition Grand Finals
Third-Place Winner, ACM Digital Library, May 2006

AcknowledgementsAcknowledgementsAcknowledgementsAcknowledgements
• Karen Janzen, Hossein Saiedian
• SIGCSE Special Projects Grant

