
On the influence of On the influence of On the influence of On the influence of
TestTestTestTest----Driven Development on Driven Development on Driven Development on Driven Development on
Software DesignSoftware DesignSoftware DesignSoftware Design

Conference on Software Engineering
Education and Training 2006

David Janzen (djanzen@ku.edu)
PhD Candidate in Computer Science

University of Kansas

Owner/Principal Consultant and Trainer

Simex LLC

David Janzen - CSEE&T 2006 / 2

ScheduleScheduleScheduleSchedule

• Focusing on TDDFocusing on TDDFocusing on TDDFocusing on TDD

• Previous Work: External Quality

• TDD and Internal Design Quality

• Empirical Studies

• Results

David Janzen - CSEE&T 2006 / 3

XP Practice CouplingXP Practice CouplingXP Practice CouplingXP Practice Coupling

pair programming

testing

metaphor

continuous integration

on-site customer

collective ownership

planning game

short releases

40 Hour Week

refactoring

coding standards

simple design

David Janzen - CSEE&T 2006 / 4

XP ScaleXP ScaleXP ScaleXP Scale----Defined PracticesDefined PracticesDefined PracticesDefined Practices1111

pair programming

test-driven development

metaphor

continuous integration

on-site customer

collective ownership

acceptance testing

planning game

short releases

statements

and methods

class and

interfaces

design

architecture

features

priorities

solutions

1. Vanderburg, “A Simple Model of Agile Software Processes”, OOPSLA’05

David Janzen - CSEE&T 2006 / 5

XP Practices and Time ScalesXP Practices and Time ScalesXP Practices and Time ScalesXP Practices and Time Scales1111

pair programming

test-driven development

metaphor

continuous integration

on-site customer

collective ownership

acceptance testing

planning game

short releases

seconds

minutes

hours

days

weeks

months

1. Vanderburg, “A Simple Model of Agile Software Processes”, OOPSLA’05

David Janzen - CSEE&T 2006 / 6

Extracting TDD from XPExtracting TDD from XPExtracting TDD from XPExtracting TDD from XP

pair programming

test-driven development

metaphor

continuous integration

on-site customer

collective ownership

acceptance testing

planning game

short releases

test-driven development

David Janzen - CSEE&T 2006 / 7

ScheduleScheduleScheduleSchedule

• Focusing on TDD

• Previous Work: External Quality

• TDD and Internal Design Quality

• Empirical Studies

• Results

David Janzen - CSEE&T 2006 / 8

Related TDD Studies in IndustryRelated TDD Studies in IndustryRelated TDD Studies in IndustryRelated TDD Studies in Industry

a Studies reported less time spent debugging with TDD
b TDD group wrote many more tests than control group

No change40% reduction in
defect density

91CSWilliams3

(NCSU
2003)

Minimal impact50% reduction in
defect density

91CSMaximillien2

(NCSU
2003)

TDD took 16%
longerb

TDD passed 18%
more tests

243CEGeorge1

(NCSU
2004)

Productivity
effects

Quality effects#
programmers

companies

TypeStudya

1. George and Williams, “A Structured Experiment of Test-Driven Development”, Info & Sw Tech, 2004
2. Maximilien and Williams, “Assessing Test-Driven Development at IBM”, ICSE, 2003
3. Williams et. al., “Test-driven development as a defect-reduction practice”, Sw Rel. Eng, 2003

David Janzen - CSEE&T 2006 / 9

Related TDD Studies in AcademiaRelated TDD Studies in AcademiaRelated TDD Studies in AcademiaRelated TDD Studies in Academia

no changeno change38CEPančur4

(Ljubljana 2003)

28% improvementno change35CEErdogmus5

(Torino 2005)

no changeno change, but
better reuse

19CEMüller3

(Karlsruhe 2002)

50% improvementimproved
information flow

8CEKaufmann2

(Bethel 2003)

n/a54% fewer defects59CEEdwards1

(Virginia Tech
2003)

Productivity effectsQuality effects# programmersTypeStudy

1. Edwards, “Rethinking Computer Science Education from a Test-first Perspective”, OOPSLA, 2003
2. Kaufmann and Janzen, “Implications of test-driven development: a pilot study”, OOPSLA, 2003
3. Muller and Hagner, “Experiment About Test-First Programming”, IEEE Software, 2002
4. Pancur et. al., “Towards Empirical Evaluation of Test-Driven Development in a University Environment” Eurocon, 2003
5. Erdogmus, “On the Effectiveness of Test-first Approach to Programming”, IEEE Trans on SE, 2005

David Janzen - CSEE&T 2006 / 10

Gaps in TDD studiesGaps in TDD studiesGaps in TDD studiesGaps in TDD studies

• Defect density was only quality consideration
– No consideration of design quality

– No quantification of reuse potential

• Inconclusive results
– Few, small studies

– Inconsistent results from inconsistent studies
• Iterative test-first vs. iterative test-last

• Iterative test-first vs. traditional test-last (non-emergent
design)

• Ignores Pedagogy
– No consideration of how or where to teach TDD

– No examination of incidental benefits

David Janzen - CSEE&T 2006 / 11

ScheduleScheduleScheduleSchedule

• Focusing on TDD

• Previous Work: External Quality

• TDD and Internal Design Quality

• Empirical Studies

• Results

David Janzen - CSEE&T 2006 / 12

• Disciplined development approach

• Emerged from agile methods (XP)

• Reverses traditional micro workflow

test code code test

• More about design than testing1

• Supported by automated testing
frameworks such as JUnit

TestTestTestTest----Driven Development (TDD)Driven Development (TDD)Driven Development (TDD)Driven Development (TDD)

1. Beck, “Aim, Fire”, IEEE Software 2001

David Janzen - CSEE&T 2006 / 13

TDD MisconceptionTDD MisconceptionTDD MisconceptionTDD Misconception

• TDD does not mean “write all the tests,
then build a system that passes the tests”

Test 1

Test 2

Test 3

Test 4

Test 5

Test 6

System

David Janzen - CSEE&T 2006 / 14

TDD ClarifiedTDD ClarifiedTDD ClarifiedTDD Clarified

• TDD means “write one test, write code to
pass that test, refactor, and repeat”

Test 1 Unit 1

Test 2 Unit 1

Test 3 Unit 2

Test 4 Unit 2

Test 5 Unit 3

Refactor

Refactor

Refactor

Refactor

Refactor

David Janzen - CSEE&T 2006 / 15

TDD is about DesignTDD is about DesignTDD is about DesignTDD is about Design

• Traditional test-last process

• TDD process

Unit TestCode
Detailed

Design

Code

High-Level Design/

Architecture
Test

RefactorUnit Test

Design and Code
High-Level Design/

Architecture
TestCode

David Janzen - CSEE&T 2006 / 16

public class TestBank extends TestCase {

public void testCreateBankEmpty() {

Bank b = new Bank();

assertEquals(b.getNumAccounts(), 0);

}

}

Design Decisions

TDD is about DesignTDD is about DesignTDD is about DesignTDD is about Design

• TDD causes the developer to give early focus to a unit’s:

– Interface: How will I use it?

– Behavior: What does it do?

– Reuse: Multiple clients (test and source)

– Coupling: Units need to be tested in isolation

– Cohesion: Testable units have one purpose

David Janzen - CSEE&T 2006 / 17

ScheduleScheduleScheduleSchedule

• Focusing on TDD

• Previous Work: External Quality

• TDD and Internal Design Quality

• Empirical Studies

• Results

David Janzen - CSEE&T 2006 / 18

TDD Instruction Project Phase 1 Project Phase 2

CS1

CS2

SE
(undergrad)

SE
(grad)

Industry

TestTestTestTest----DrivenDrivenDrivenDriven

LearningLearningLearningLearning

TDD TrainingTDD TrainingTDD TrainingTDD Training

TestTestTestTest----FirstFirstFirstFirst

TestTestTestTest----LastLastLastLast

TestTestTestTest----LastLastLastLast TestTestTestTest----FirstFirstFirstFirst

TestTestTestTest----FirstFirstFirstFirst

TestTestTestTest----LastLastLastLast

TestTestTestTest----FirstFirstFirstFirst

TestTestTestTest----LastLastLastLast

TestTestTestTest----FirstFirstFirstFirst

TestTestTestTest----LastLastLastLast

Where does TDD fit in Curriculum?Where does TDD fit in Curriculum?Where does TDD fit in Curriculum?Where does TDD fit in Curriculum?

How do we teach TDD?1

1. D. Janzen and H. Saiedian, “Test-Driven Learning: Intrinsic Integration of Testing into the CS/SE Curriculum,”
Technical Symposium on Computer Science Education (SIGCSE’06), March, 2006, Houston, TX

TestTestTestTest----FirstFirstFirstFirst TestTestTestTest----LastLastLastLast

David Janzen - CSEE&T 2006 / 19

TDD Instruction Project Phase 1 Project Phase 2

CS1

CS2

SE
(undergrad)

SE
(grad)

Industry

TestTestTestTest----DrivenDrivenDrivenDriven

LearningLearningLearningLearning

TDD TrainingTDD TrainingTDD TrainingTDD Training

TestTestTestTest----FirstFirstFirstFirst

TestTestTestTest----LastLastLastLast

TestTestTestTest----LastLastLastLast TestTestTestTest----FirstFirstFirstFirst

TestTestTestTest----FirstFirstFirstFirst

TestTestTestTest----LastLastLastLast

TestTestTestTest----FirstFirstFirstFirst

TestTestTestTest----LastLastLastLast

TestTestTestTest----FirstFirstFirstFirst

TestTestTestTest----LastLastLastLast

The First Controlled StudyThe First Controlled StudyThe First Controlled StudyThe First Controlled Study

TestTestTestTest----FirstFirstFirstFirst TestTestTestTest----LastLastLastLast

David Janzen - CSEE&T 2006 / 20

Formalized Hypotheses:Formalized Hypotheses:Formalized Hypotheses:Formalized Hypotheses:
Productivity and Internal QualityProductivity and Internal QualityProductivity and Internal QualityProductivity and Internal Quality

IntQltyTF > IntQltyTL
Test-First code has higher internal
quality

IntQltyTF = IntQltyTLQ1

ProdTF > ProdTL
Test-First Programmers are more
productive

ProdTF = ProdTLP1

IntQlty|TestedTF >
IntQlty|Not-TestedTF

IntQlty|TestedTF =
IntQlty|Not-TestedTF

Q2

Alternative HypothesisNull HypothesisName

David Janzen - CSEE&T 2006 / 21

Formalized Hypotheses:Formalized Hypotheses:Formalized Hypotheses:Formalized Hypotheses:
Testing and OpinionsTesting and OpinionsTesting and OpinionsTesting and Opinions

TestCovTF > TestCovTL
Test-First Programmers write tests with
better code coverage

TestCovTF = TestCovTLT2

OpTF > OpTL
Programmers perceive Test-First as
better approach

OpTF = OpTLO1

Op|TFTF > Op|TFTL
Programmers who have attempted
Test-First prefer Test-First

Op|TFTF = Op|TFTLO2

#TestsTF > #TestsTL
Test-First Programmers write more
tests

#TestsTF = #TestsTLT1

Alternative HypothesisNull HypothesisName

David Janzen - CSEE&T 2006 / 22

Experiment DesignExperiment DesignExperiment DesignExperiment Design

Pre-experiment

survey

Test-First/

Test-Last

Training

Programming Project

Post-experiment

survey

Intermediate

metrics

Final

metrics

Individual

Profile
Individual

Profile

Team 1: Test-First

Team 2: Test-Last

Team 3: Test-First

David Janzen - CSEE&T 2006 / 23

ScheduleScheduleScheduleSchedule

• Focusing on TDD

• Previous Work: External Quality

• TDD and Internal Design Quality

• Empirical Studies

• Results

David Janzen - CSEE&T 2006 / 24

Experiment DesignExperiment DesignExperiment DesignExperiment Design

Pre-experiment

survey

TDD

Training

Programming Project

Post-experiment

survey

Intermediate

metrics

Final

metrics

Individual

Profile
Individual

Profile

Team 1: Test-First

Team 2: Test-Last

Team 3: Test-Firstx
x No-Tests

Test-Last

X Reality

David Janzen - CSEE&T 2006 / 25

Productivity ResultsProductivity ResultsProductivity ResultsProductivity Results

Features Completed

0

2

4

6

8

10

12

14

Test-First No-Tests Test-Last

Effort Per Feature

182

1424

506

0
200
400
600
800

1000
1200
1400
1600

Test-First No-Tests Test-Last

M
in

u
te

s

 x

•Test-First spent 88% less effort/feature than No-Tests
•Test-First spent 57% less effort/feature than Test-Last
•Only Test-First completed both phases

David Janzen - CSEE&T 2006 / 26

Code Size and Test DensityCode Size and Test DensityCode Size and Test DensityCode Size and Test Density

• Code size (Source only)

• Code size (Test only) and Test Coverage
Test LOC % Classes Tested Assertions/SLOC Test Coverage (lines) Test Coverage (branches)

Test-First 168 38.46% 0.077 19.00% 39.00%

No-Tests 0 0.00% 0.000 0.00% 0.00%

Test-Last 38 25.00% 0.045 29.00% 23.00%

of classes LOC #methods methods/class LOC/class LOC/method LOC/feature

Test-First 13 1053 87 6.69 81.00 12.10 87.75

No-Tests 7 995 36 5.14 142.14 27.64 199.00

Test-Last 4 259 35 8.75 64.75 7.40 43.17

Test-First wrote more

tests per LOC

but, coverage

was mixed

David Janzen - CSEE&T 2006 / 27

Code Size and Test Density (No GUI)Code Size and Test Density (No GUI)Code Size and Test Density (No GUI)Code Size and Test Density (No GUI)

• Test-first project included an extensive GUI

• GUI’s are traditionally difficult to test

• Code size (Source only without GUI)

• Code size (Test only) and Test Coverage
Test LOC % Classes Tested Assertions/SLOC Test Coverage (lines) Test Coverage (branches)

Test-First 168 38.46% 0.086 31.00% 43.00%

No-Tests 0 0.00% 0.000 0.00% 0.00%

Test-Last 38 25.00% 0.045 29.00% 23.00%

of classes LOC #methods methods/class LOC/class LOC/method LOC/feature

Test-First 11 670 57 5.18 60.91 11.75 55.83

No-Tests 7 995 36 5.14 142.14 27.64 199.00

Test-Last 4 259 35 8.75 64.75 7.40 43.17

Test-First tests covered

more source code

David Janzen - CSEE&T 2006 / 28

Design Quality: MethodDesign Quality: MethodDesign Quality: MethodDesign Quality: Method----level Metricslevel Metricslevel Metricslevel Metrics

Undergrad SE Method Metrics
NOS

NOE

V(G)

PL

AHL

VOC

VOLPD

EFF

BUG

MLOC

NBD

PAR

TF

TL

indicates statistically significant difference with p<.05

David Janzen - CSEE&T 2006 / 29

Design Quality: MethodDesign Quality: MethodDesign Quality: MethodDesign Quality: Method----level Metricslevel Metricslevel Metricslevel Metrics

Undergrad SE Method Metrics
NOS

NOE

V(G)

PL

AHL

VOC

VOLPD

EFF

BUG

MLOC

NBD

PAR

TF

NT

TL

David Janzen - CSEE&T 2006 / 30

Design Quality: ClassDesign Quality: ClassDesign Quality: ClassDesign Quality: Class----level Metricslevel Metricslevel Metricslevel Metrics
• Comparable/acceptable levels for most
metrics: DIT, NOC, LCOM, …

• NII only metric with statistically significant diff

• Tested code was simpler

Cyclomatic Complexity

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Test-First No-Tests Test-Last

David Janzen - CSEE&T 2006 / 31

Design Quality: ClassDesign Quality: ClassDesign Quality: ClassDesign Quality: Class----level Metricslevel Metricslevel Metricslevel Metrics
Coupling between Objects

0.00

1.00

2.00

3.00

4.00

5.00

Test-First No-Tests Test-Last

0 Information Flow indicates
procedural/flat design in
No-Tests and Test-Last teams

Information Flow/module

2.56

0.00 0.00
0.00

0.50

1.00

1.50

2.00

2.50

3.00

Test-First No-Tests Test-Last

Higher coupling in Test-First

David Janzen - CSEE&T 2006 / 32

TestTestTestTest----First Team MicroFirst Team MicroFirst Team MicroFirst Team Micro----evaluationevaluationevaluationevaluation
• Evaluated differences in methods tested versus those
without tests

• About 28% of the methods were tested directly
– These methods had ~43% lower complexity average

– Not statistically significant at p=.08

• Classes that had some methods tested directly had an
average coupling that was ~104% lower

Tested vs. Untested Code in Test-First Project

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Complexity Coupling

Tested Code

Untested Code

David Janzen - CSEE&T 2006 / 33

Student PerceptionsStudent PerceptionsStudent PerceptionsStudent Perceptions1111

1. D. Janzen, “Software Architecture Improvement through Test-Driven Development,” Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA’05), October, 2005, San Diego, CA

Opinion of Test-Last (Pre-Experiment)

0.00

1.00

2.00

3.00

4.00

5.00

Test-First No-Tests Test-Last

Team

F
a
v
o
r

-

Test-First

Test-Last

Opinions of TF improved

Opinions of TL declined

David Janzen - CSEE&T 2006 / 34

Results of Undergrad SE study: Results of Undergrad SE study: Results of Undergrad SE study: Results of Undergrad SE study:
Programmer PerceptionsProgrammer PerceptionsProgrammer PerceptionsProgrammer Perceptions

• 89% of programmers thought Test-First
produced simpler designs

• 70% thought Test-First produced code with
fewer defects

• 75% thought Test-First was the best
approach for this project

David Janzen - CSEE&T 2006 / 35

SummarySummarySummarySummary

• TDD can be used without XP

• Empirical studies can be conducted in
undergrad SE courses

• TDD adoption must be motivated

• TDD shows promise of possibly improving
productivity and test coverage

• TDD may lower complexity, but may
increase coupling

• Results are suspect until we get a larger
sample

David Janzen - CSEE&T 2006 / 36

ReferencesReferencesReferencesReferences
• D. Janzen and H. Saiedian, “Test-Driven Learning:

Intrinsic Integration of Testing into the CS/SE
Curriculum,” Technical Symposium on Computer
Science Education (SIGCSE’06), March, 2006,
Houston, TX

• D. Janzen and H. Saiedian, “Test-Driven
Development: Concepts, Taxonomy and Future
Directions,” IEEE Computer, 38383838(9), 2005

• D. Janzen, “Software Architecture Improvement
through Test-Driven Development,” Object-
Oriented Programming, Systems, Languages, and
Applications (OOPSLA’05) Student Research
Competition, October, 2005, San Diego, CA

AcknowledgementsAcknowledgementsAcknowledgementsAcknowledgements
• Karen Janzen, Hossein Saiedian
• SIGCSE Special Projects Grant

