
LEGAL SUFFICIENCY of TESTING

PROCESSES

Clark Savage Turner, Esq., Debra J. Richardson, John L. King

Department of Information and Computer Science, University of California, Irvine

Irvine, CA., 92717 USA

Abstract

Software processes are executed for a purpose: to satisfy a set of
process requirements and to meet process constraints [1]. This paper
shows that there is a critical set of process constraints, often considered
only implicitly or even ignored, that are derived externally from social
expectations. This paper suggests an approach to determining this set
of process constraints and a basic method for their consideration during
safety-critical testing process design.

1 Introduction

Software is increasingly used to control systems that pose risks to the public.
As dramatically demonstrated in the Therac-25 accidents [2], these risks are
serious. When an innocent member of the public is injured by a new technology
based on software, who bears the loss and how should software professionals
deal with the issue?

Certainly, the behavior of the developer is under scrutiny. Did the devel-
opment process include a reasonable set of precautions designed to avoid the
predictable risks? If not, the developer might be expected to pay for the dam-
age. If so, the developer is not at \fault" for the unfortunate accident, and the
injured party may be left to su�er the damages uncompensated. This is the
underlying philosophy of negligence law.

Ultimately, this discussion raises questions about externally imposed con-
straints on the technical requirements for safety-critical testing processes. This
paper suggests that there is a set of testing process considerations that is im-
portant beyond its ability to a�ect the product, and is relevant to the long-term
economic health of the organization. This set of constraints on the process of
testing safety-critical software are imposed by the law of negligence. This paper
also suggests an approach to determining a set of applicable constraints and
integrating them into our safety-critical testing processes.

1.1 Why is this an important problem?

All major innovation requires investment. Investors are risk-sensitive; they
avoid projects with a high risk of failure. Software engineering changes what's
technically feasible while investors support the economically pro�table. (See
generally [3] for a thorough discussion of these issues.) Successful innovation
therefore occurs at the intersection of the two worlds:

1



Social expectations a�ect the economically pro�table through the law. In
particular, negligence law de�nes a portion of the economic risk for innovative
projects. The testing process may be designed to lower the risk of technical
failure, but must also address the risk of economic failure in any organization
with limited resources.

Detailed negligence constraints for some engineering processes are well known
since they have had years to develop. Much general engineering experience and
knowledge about accidents is built into these constraints. But software is new
to negligence law. It not only changes the relative \size" of our projects, but
their technological \reach". New social expectations and thus the applicable
negligence constraints will develop in response to these changes. Our process
designs must be designed to meet these constraints, and to do that, we must
have an explicit set to work with!

1.2 Technical constraints on the testing process

Software testing, like negligence law, deals with the inevitable risks of new
software technologies. Since no one wants a software system to arbitrarily
inict harm on innocent persons, it typically goes through a stringent testing
process designed to reduce or eliminate that damage potential. It is known
that in realistic situations, risks cannot be entirely eliminated by testing [4].
Thus, testing processes must attempt to minimize risk within practical limits.

Work has shown that certain processes are necessary (though not su�cient)
to an e�ective risk reduction e�ort. Improvement of testing processes is an
important step in the maturation of software engineering. However, evaluation
and analysis of any \improvements" can only be done by explicit reference to
a complete and correct set of process requirements and constraints. There-
fore, it is appropriate to ask, \what are the relevant process requirements and
constraints?" This paper will show that there is an important set of process
constraints derived from the law of negligence.

2 The law of negligence

The tort of negligence is based upon conduct that is socially unreasonable.
It involves the endeavor to \... strike some reasonable balance between the
plainti�'s claim to protection against damage and the defendant's claim to
freedom of action for his own ends" [5, page 6]. Negligence imposes a set of
expectations on behavior through the concept of duty. We all have a duty to
act with \reasonable prudence"1 whenever our conduct foreseeably creates a
threat of injury to others.

Negligence generally de�nes a portion of the economic exposure of an in-
dustry for any foreseeable damage done by its products or services whenever it
has not taken reasonable precautions to avoid such damages. Since the duty in
negligence focuses on behavior, it yields constraints on development processes
and not the products themselves.2 Behavior that fails to meet these process

1\Negligence is the omission to do something which a reasonable man, guided upon those
considerations which ordinarily regulate the conduct of human a�airs, would do, or doing
something which a prudent and reasonable man would not do" [6].

2Distinguish negligence from product based liability such as strict products liability.



constraints may be a basis for negligence liability. Behavior that satis�es these
constraints will not be the basis for liability, even if the product was defective
and caused harm to an innocent party.3

The law of negligence may be di�erent, or may be applied di�erently, in
common law jurisdictions (like the USA and England) and civil law jurisdic-
tions (like other countries in the European Union). Indeed, it may be applied
di�erently within those jurisdictions, but the basic tenets remain the same,
society imposes constraints on our technical processes.

2.1 Principles of negligence under common and civil law

The basic feature of the civil law that distinguishes it from the common law
is that its primary source is the written law as enacted by legislators. The
common law is seen to develop from principles developed through written court
decisions. However, with the increasing codi�cation of the common law through
legislation in the USA and England, and the practical necessity for civil law
judges to interpret cases in order to make sound decisions, the di�erences do not
appear to be great. See generally [7]. Regardless of the source for negligence
law, these constraints are derived from the same social concerns. Use of a
common law model for constraint development therefore does not result in
consideration of substantially di�erent issues for the development of process
constraints.4 Therefore, the rest of this paper will assume a common law model
for the development of the relevant constraints.

2.2 A common law duty to the public

In common law jurisdictions, the duty of \reasonable prudence" is determined
by the court under the circumstances of the case at hand. This duty to act
(or to refrain from acting) is found by a \balancing" test involving the risk5 to
the plainti� and the burden of preventing the harm.6 Evidence is adduced to
give relative weights to the relevant factors, and if the risk of harm outweighs
the cost to prevent it, then the duty is imposed. If the cost of prevention and
utility to society outweigh the possible harm, then the duty is not imposed in
the law of negligence.

A prominent legal scholar explains in [8] that there is no question that soft-
ware engineers owe a general duty of care in negligence to their customers and
the general public: to use such care as a reasonably prudent software devel-
oper would use under similar circumstances. What might this mean to the
individual testing organization?

One cannot yet research the common law and �nd a list of speci�c software
testing process constraints known to meet this general duty in negligence. We

3Though there may be other legal theories whereby liability is imposed
4Further, in an increasingly international marketplace, organizations must take note of

the rules of the countries where they do business. The common law is observed in much of
the international market. Any multinational organization should be aware of the common
law of negligence for that reason.

5Risk is said to be the probability of the harm \multiplied by" the gravity of the harm.
6This is the burden on the defendant and the relative loss to society if the product has

restricted utility after it is made safer.



thus develop a basic model to illustrate the process of developing constraints,
giving us insight as to what they will be.

3 Legal su�ciency of testing process designs

Two things are noteworthy about the software engineer's general duty of care
due under negligence law: (1) it is de�ned by reference to software engineering
itself, and (2) perfection is not required.

3.1 The common law model

The development of speci�c legal rules by application of general principles to
concrete situations can be modeled with a pair of interacting process control
systems, where control is applied in the attempt to keep each process within
certain accepted limits. See Figure 1.

Constraints on the testing process are developed through the model: the
legal rule is applied in the context of technical facts and circumstances proved
in court. These technical facts are derived from the �eld of software engineering
and testing: research and accepted practices. A given constraint will develop
through repeated application of the general rule to similar situations. The
new constraint is established �rmly by appellate review and published. It
must then be faithfuly applied in subsequent cases by trial courts. It provides
a public statement of the legal expectation - the constraint on the software
testing process.

Use of this model to derive relevant constraints o�ers two main bene�ts to
the testing process designer: (1) awareness of previously implicit (or unknown)
constraints; and, (2) availability of the rich history of safety experience included
in the constraints.

With this awareness, testing process designers must explicitly consider these
constraints or knowingly su�er an additional risk of liability and economic
loss. The general constraints may be re�ned given the particular circumstances
existing at the time the process is to be executed. Consideration may then be
given to their satisfaction and reasoned justi�cation recorded for future use.

4 Consideration of legal process constraints

How can we explicitly include these process design constraints in our testing
processes in a practical way? We suggest the use of a fault tree structure in
order to trace the ways in which our testing process designs may fail to satisfy
key constraints.

Fault tree analysis is a familiar tool to many involved in safety-critical sys-
tems. It is a deductive, e�ect - cause approach, traditionally used in hazard
analysis. The fault tree is the logical model of a process with regard to some
undesired event. It is represented graphically with a tree structure. See gener-
ally [9] for an industrial process approach, [10] for a software approach to fault
tree construction.

Fault trees may be used to analyze our safety critical testing process designs.
\Civil Liability" (money damage awards) is the \undesired top event." The



boxes indicate events, and the labels name those events. Events higher in the
tree are the e�ects of the events lower in the tree combined with the logical
operators such as AND and OR. When a box is connected to another by a
single line with no logical operator, it indicates another name for the event
that is critical to understanding the boundaries between the legal and software
processes. Leaf nodes that are circles will indicate further development of the
tree as a separate subtree with a root having the same label. These subtrees
are broken o� separately in order to focus on their individual properties.

The fault tree, once constructed, can be decomposed into its \minimal cut-
sets" (a combination of components whose simulatneous failure is just su�cient
to cause the undesired event). Note that there may be several cutsets for a given
undesired top event. Each fault tree is generally not unique. The events in the
trees we construct are not generally independent of each other.

4.1 The basic software process fault tree

We present a process fault tree with the undesired top event \civil liability" in
Figure 2. It gives the general picture of ways civil liability may be imposed.
This paper is only concerned with paths leading through a negligence node and
concerned with testing, but note that in order to add overall context, other
nodes and possible paths are indicated by dotted lines and boxes.

Just below the \testing process defective" node, there is an AND connec-
tor and four nodes, which represent the elements that must be proven in any
negligence case. Arguably, the most critical node here is the \breach of duty"
node. It is this node we choose to expand to illustrate the concepts. It is this
node where the organization's activities in constraint satisfaction will be the
controlling factor. The other nodes are generally legal questions that have little
to do with the particular testing process design used.

It is seen that civil liability may ultimately result from either failure to
reasonably document testing activities, or a failure in other testing activities.
This is one way to de�ne the \failure to test in a reasonable fashion", which is
a \breach of duty" in negligence law.

4.2 Development of the testing process fault tree

The tree is developed down to its leaves that indicate individual constraints
on the process. Node number 1, the reasonability of the test documentation
process is diagrammed in �gure 3, while node number 2, the reasonableness of
other process activities is diagrammed in �gure 4.

4.3 Determine the constraints

What a \reasonably prudent tester," where do we start? We may begin by
looking at the literature of software testing, checking standards and industry
customs to gather information about what is considered reasonably prudent
testing by experts in the �eld. We might also check relevant legal literature to
see what has been written on the topic, if anything. See, for example, [11].

We do not propose a list of potential constraints as this is beyond the
scope of the present work. We choose an example to illustrate our approach to



determining and documenting reasonable e�orts to consider them. In checking
the testing literature, we �nd that one important issue is \independence." In
fact, upon examination, the literature seems to be in agreement that the main
testing e�ort for a safety-critical project should be independent of the rest
of development. One very early cite to this conclusion is [12] and a recent
one that speaks speci�cally of safety-critical projects is [13]. We further note
that ISO 9000-3, though not speci�cally a standard for safety-critical processes,
requires independence in testing and veri�cation activities to some extent [14].
Thus, \independence" should appear as a constraint under node number 2. In
any actual e�ort, information on all sides of the issue should be gathered and
abstracted so that a well reasoned decision may be made to an approach to
satisfaction or non satisfaction of the proposed constraint.

4.4 Constraint attributes

In addition to determining the minimal cutsets to determine potential problem
areas of our testing processes, we suggest attribution of the leaf nodes with
pointers to critical constraint information. This may be crucial to a reasoned
negligence analysis during process design. It is also a foundation for defense to
a future negligence suit (where we are expected to prove reasonable satisfaction
of the constraints to a court of law).

The attribution to the constraints is shown in Figure 5. External constraint
information includes all sources used in deriving the given constraint such as
caselaw, statutes, regulations and other literature. It may also include indirect
sources such as software engineering research, expert opinions and standards
which are used in courts to derive the constraints legally.

Internal constraint information is the record of the organization's response
to the given constraint. How the known risks were actually considered and
resolved is shown here. Process documentation and other information relevant
to cost and risk analyses used by the organization can be located from here.

With our proposed independence constraint, howmight this play out? First,
we must gather the information that leads us to believe that the independence
constraint is important. Above, we listed citations to two references from the
�eld of software engineering and one international standard. All the main
references in addition to these should be abstracted and referenced so that
they can be part of the analysis. Further, legal references that may bear on
this constraint must be listed as direct or indirect authority on the constraints
in question.

Second, the testing organization then needs to document its own response
to the constraints with pointers to any relevant internal constraint information.
To that end, the process must be documented and each part of the process that
addressed the constraint in question must be noted. The particular test tools
used, the extent and depth of the procedures, and the costs must be recorded
for possible proof in the future. In case of any legal question, the organization
would then be able to justify its own response with reasoned risk analyses, just
as the court must do. If it can be shown that the organization's behavior was
reasonable in light of the foreseeable circumstances, negligence liability will not
follow.



5 Advantages and limitations of the approach

There are bene�ts to this sort of explicit approach to testing process constraints.
We may increase the actual safety of the product due to a higher quality pro-
cess. A safer product exposes the organization to lower risks of liability. The
approach certainly heightens awareness of the constraints on our processes and
may also lower the risk of lawsuits due to increased attention to them. In any
case, there is a higher probability of successful negligence defense (or settle-
ment) whenever legal action is taken, due to solid awareness of the legal issues
and how these issues were handled during design. There will be lowered legal
costs in any event, since the process explicitly includes relevant constraints and
justi�cations, hence part of the lawyer's work is already done ahead of time.
In some cases, this sort of approach may prevent an award of punitive damage
awards by recording the organization's good faith e�orts. Much of this analysis
may be reusable whenever a project is shown to involve similar constraints.

This model and the approach also have limitations. Since the nodes in the
fault trees are not independent, a probabilistic analysis is not contemplated.
Fault tree analysis is traditionally done by hand using trained personnel. It
must be done early in the process and periodically updated, since the constaints
and references may change. Thus it appears to be a costly approach in the
beginning of the development process. However, the potential is that the early
investment will result in lower economic risks due to negligence suits. Our
approach currently covers only negligence law and the testing process, but we
plan to extend it to other areas in the future. Finally, this approach does not
answer speci�c legal questions, but gives a framework for approaching a legally
sound safety-critical testing process.

6 Conclusions

We have presented a model showing how legal constraints on safety-critical
testing processes develop under negligence law. Even though there are no
decisions published at this point for personal injury due to a software aw, it
is agreed that certain constraints may soon be found applicable to our testing
processes [11], and those constraints may be postulated now and used in analysis
and evaluation of our current testing processes.

We further presented an approach to analyze our safety-critical testing pro-
cesses. The intent is to assure that our process designs do indeed consider
a basically complete and correct set of process requirements and constraints.
With the process fault trees attributed with constraint information, we can
explicitly show how we addressed the relevant constraints. This allows us to
later justify our particular approach to their satisfaction with the explicit con-
sideration of key risk factors.



Economically

profitable

Technically

feasible

Figure 1: Common Law Process Model

Perceived

social needs

Process of

software

development
of various qualities

in market

human/economic

interaction

Process of Qualities

of social

"fairness"

Court system

legal complaintenforcement

Testing, analysis,

inspection

Rework,
redesign
remanagement

Software

Econ. lossCourt

What is possible, what is worthwhile
what is reasonable

Appellate

review

Research

and development

What is reasonably expected
Constraints defined:

Constraint information:

Management

Software

Management

Actuators: Sensors:Sensors:Actuators:



Figure 2: Basic Process Fault Tree

Civil Liability for

personal injury.

OR

Violation of 

voluntary obligation:

Contract

Violation of

non-voluntary obligation:

Tort

OR

Process defectProduct defectProduct defect

OR

Express 

warranty

Implied 

warranty

Strict

liability liability

Negligence

defective defective

Testing process 

defective

Analysis processProgramming process

OR

AND

DamagesDuty of care Breach of duty Legal cause

Failure to test

in a reasonable

fashion.

OR

Failure to 

reasonably 

document 

testing 

activities

Failure to

reasonably

documentary

testing 

activities

1 2

perform non-



Figure 3: Documentary subtree

OR

Inadequate 
process 
documentation documentation

product 
Inadequate 

1

Constraint 1a Constraint 1n Constraint 2a Constraint 2n

and/or and/or

Failure to document

testing activities 

reasonably

Figure 4: Nondocumentary subtree

2

Inadequate non-documentary

testing process activities

and/or

Constraint 3a Constraint 3n



Figure 5: Constraint Attribution

Constraint
Information:

Pointers to external

constraint information constraint information

Pointers to internal

Legal pointers:

1. Caselaw

2. Statutes

3. Regulations

Software 

engineering

1. Literature

2. Experts

3. Standards

pointers:

Actual process

information:

Relevant

cost info:

External Internal

5. Legal 

1. Process

documentation

2. other files

produced by

the process

1. Cost 

2. Actual

information

cost 

estimates

literature



References

[1] Osterweil, Leon. Software Processes are Software Too, 9th Int'l Conf. on
Soft. Eng., 1987.

[2] Leveson, Turner, An Investigation of the Therac-25 Accidents, IEEE Com-
puter, Vol 26, No. 7, July, 1993.

[3] Nelson and Winter, An Evolutionary Theory of Economic Change, Belk-
nap Press of Harvard University Press, 1982.

[4] Hamlet, Are We Testing for True Reliability?, IEEE Software, July 1992

[5] Prosser, Handbook of the Law of Torts, 4th Ed., West Publ., St Paul,
Minn., 1971

[6] Blyth v. Birmingham Waterworks Co., 1856, 11 Ex. 781, 784, 156 Eng.
Rep. 1047.

[7] Glendon, Gordon, Osakwe, Comparative Legal Traditions, West Publ. Co.,
St. Paul, MN., 1994

[8] Gemignani, Law and the Computer, CBI Publ., Boston, MA., 1981

[9] Lapp, Powers, Computer-aided Synthesis of Fault-Trees, IEEE Trans. on
Reliability, April 1977, page 2.

[10] Leveson, Harvey, Analyzing Software Safety, IEEE Trans. on Soft. Eng.,
Vol. SE-9, No. 5, September, 1983, page 569.

[11] Fossett, The Development of Negligence in Computer Law, No. Ky. L. R.
14 No. 2, pps 289-310 (1987)

[12] Weyuker, On Testing Non-Testable Probrams, The Computer Journal, Vol
25, No. 4, 1982

[13] Parnas, Evaluation of Safety-Critical Software, CACM Vol. 33, No. 6, June
1990

[14] ISO 9000-3 : 1991 (E), Quality management and quality assurance stan-
dards - Part 3: Guidelines for the application of ISO 9001 to the develop-
ment, supply and maintenance of software.


