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1 Overview

I chose initially to write my compiler in Java. But after learning more Scala to work on my project for
, I chose to use Scala for the later parts (optimization, code generation, and register allocation).
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1.1 Parsing

The compiler creates an Antlr CharStream from the input file. This is then passed to the generated lexer,
and the resulting token stream is passed to the generated parser. The success or failure of the parse is
represented with FunctionalJava’s Option type, with a failed parse resulting in None and a successful parse
resulting in a Some containing the parse tree. Since the parser handles printing parse errors, there is no need
to store the parse error in the result structure.

1.2 Static Semantics

An interface for all program validations was defined and used to provide a uniform way to run them. This
allows validations to be added or removed as desired, making the compiler more modular.

Return statement checking was implemented as a program validation. It ensures each function has a
return-equivalent statement in it. A return-equivalent statement is defined as a block containing a return-
equivalent statement, a conditional statement in which both branches contain a return-equivalent statement,
a recursive invocation of the function, or an actual return statement. With those definitions, checking a
function for a return-equivalent statement requires only a simple recursive function.

Typechecking was implemented as another program validation. An interface named Typed was created
and all type-checkable AST elements implement it. This interface provides a single method, type(), which
returns a FunctionalJava Validation1 containing either an error (of type ValidationException) or the
type of the element it was called on, represented as one of the provided types. For statements, type() will
return VoidType if the types for any subexpressions are valid. Thus, to typecheck a function, we call the
type() method on its block statement and check if the result is successful or not (i.e., if the result is a failure
or an instance of VoidType).

1.3 Intermediate Representation

As the result of parsing and validation, an abstract syntax tree is produced, representing the program in a
language-dependent fashion. The compiler converts this to a list of functions, each represented as a control
flow graph, with LLVM IR instructions stored in each block of the graph. The LLVM instructions provide
a layer of abstraction between the code and the hardware instruction set, while not being dependent on
the language’s structure. LLVM IR is also designed to be in Static Single Assignment form. This makes
some program transformations easier and more efficient, as it stores the use-def chain as part of the IR[1].
Converting to a CFG reorients the structure of the program code around the control flow, rather than the
syntax of the source language[2]. This also helps to abstract the program representation into a unified shape
for all source languages.

In the compiler presented here, Derive4J was used to generate classes and a Visitor pattern implemen-
tation in Java for the instructions in the IR. The rest of the classes for the CFG are just plain Java classes.
The CFG basic block class stores links to its child blocks to create the graph, but it is not necessary to
traverse these links to visit all blocks, as blocks are also stored in a list attached to the function they are
from. This makes printing them out much simpler.

Derive4J worked reasonably well, although its generated pattern matching was less flexible than Scala’s.
I would probably choose to use Scala case classes if I were to reimplement this part of the code.

1.4 Optimizations

Two optimizations were implemented for this compiler: constant propagation and useless code elimination.
To implement constant propagation, the Sparse Conditional Constant Propagation algorithm was used.

This algorithm tracks the blocks that are able to be executed, given what is known about the constant values
in the program. For example, if a conditional branch has a constant value for a condition, then the algorithm
will ignore the block that the untaken branch would have jumped to (unless, of course, it is used by another
branch statement). Within the blocks that are executed, each instruction is abstractly executed in order

1A Validation is an Either designed for failure-checking. Thus, it provides some convenience methods for accumulating
failures across a list of Validations.
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to determine its result value. This is effectively interpretation of the instructions, but with the ability to
handle cases where the actual input values of the instructions are unknown or unknowable.

Useless code elimination is very straightforward: instructions with unused results are eliminated, except
for those with possible side-effects (i.e., calls).

1.5 Code Generation and Register Allocation

The SSA code generated by the compiler up to this point contains phi nodes which provide the logic to
enable separate execution paths to join into one. Phi nodes do not represent an actual instruction; rather, a
single register can be written to by any possible execution path, and the result will always be present for the
next instruction. In order to convert phi nodes to plain instructions, it is necessary to substitute a register
that will hold the result value from whichever branch executes. A new virtual register is generated to hold
the phi value between the parent basic blocks and the block containing the phi node. New mov instructions
are then added to the parent blocks immediately above the branch blocks ending them. Finally, the phi node
is replaced with a mov instruction copying the value from the new temporary register to the target register
of the phi instruction.

It was noticed that the resulting code sometimes would load a function argument into a register, only to
move it to r0 for the call. In order to avoid this, a minor optimization was added to the register allocator to
attempt to reduce all such needless mov operations. When doing the graph coloring, the allocator is passed
a mapping from registers to registers they are moved to. This is then checked for each register, and if a
destination register is not in use, it will be used instead of choosing a new one. This allows the mov operation
to then be eliminated in a later minor optimization.

This unneeded mov elimination optimization occurs as the code of the program is being written into the
output file, by ignoring unneeded movs.

One noteworthy thing about the implementation of the stack-based translation is that it makes no attempt
to be clever about the loads and stores involved: it potentially will spill a register containing a stack address
to the stack, rather than throwing it away and recalculating it when needed.

1.6 Other

In this quarter, my team and I built We chose to use Scala to do so, as
had some experience with it. As I became more familiar with Scala, I found I rather liked it, so I

transitioned this project over to it. Thus, the early parts of the project are written in Java, typically using
the Functional Java and Derive4J libraries, and the later parts are written in Scala.

Also, for amusement, I chose to use a more functional style in many places. I believe this is my first
large project in such a style, so there are a lot of icky parts, as I don’t really have a good feel for how to
implement things cleanly yet.

The translation to ARM assembly is mostly working; I hope that the main remaining bug is a failure to
add loop bodies as their own children. As far as I can tell, this leads to the register allocator deciding it can
overwrite the registers that are needed by the loop during the first loop run, resulting in complete nonsense.

2 Analysis

These results were run on a Intel Core i7-2600K CPU running in frequency autoscaling mode, with approxi-
mately 11 Gb of free memory. Some other programs were running, but system load is believed to have been
below 1. The OS is Ubuntu 16.04 LTS. LLVM 3.8 was targeted, as it was available on the testing machine.
Gradle 3.4.1 running on Java 1.8 was used to build the code (and it is believed the same JVM was used to
run it). A Ruby script was used to gather the reported data. It uses the benchmark library from the Ruby
standard library to collect the timing data. The times reported are wall clock times. The graphs below are
based on ten runs of the program generated by each configuration. The instruction counts are reported by
the compiler in a file named compileStats which is overwritten after each compilation.

As previously noted in class, the LLVM results are uneven at best. Unsurprisingly, Clang generally beats
everything else when all the optimizations are enabled. But the optimizations, and even the use of stack-
versus register-based code, do not consistently improve performance. This is likely due to Clang’s inability
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