CS174b Computer Graphics Bounding Hierarchies

Bounding Hierarchies

Overview

Since standard ray tracing is extremely computationally expensive, techniques
must be found to increase the computational efficiency of the algorithm. Whit-
ted discovered that 75 percent of the time required for simple scenes was in
ray-object intersections. Therefore many algorithms have been researched to
speed up basic ray-object intersection calculations.

The most common technique to reduce the ray-object intersection cost is to
replace the objects with simple bounding objects that require less time to de-
termine intersection. If the bounding object is not intersected, then the true
object cannot have an intersection.

The bounding object technique reduces the cost of the intersections, but it still
remains linear in the number of objects. However, if we construct a hierarchy of
such objects, we can discard entire subtrees of objects if the subtrees bouunding
box is not intersected. With this technique, we can reduce the intersection
calculations to logarithmic in the number of objects.

Building the Hierachy

When attempting to construct a bounding hierarchy, one immediately notices
that many such trees can be constructed. Additionally, the time to render an
image can vary by many orders of magnitude simply depending on the choice
of bounding tree. Therefore, it is important for us to determine a bounding
hierarchy that will help to reduce the time spent rendering an image.

In order to create a bounding hierarchy that reduces rendering time, we must
estimate the cost of adding a new object to the hierarchy. Everytime a bounding
object is intersected, we must perform the intersection with all of its children.
Therefore, the measure of cost that we will use is the probability that the object
will be intersected times the number of children that the object has plus the
cost of all its children. This metric will give us an approximate cost of adding
this node to the hierarchy.

In order to compute the above formula, we need to estimate the probability of a
ray intersecting a given bounding object. This is proportional to the surface area
of the bounding object divided by the surface area of the object that bounds

the entire scene. However, since all of the costs will contain this denominator
(surface area of root node), it can be removed from the cost calculation. The
cost functional then becomes:

Cost(nodeN) = area(N) * N.numChildren + 3 (N.child(i).cost)

We also define the cost of a leaf node in the hierarchy to be zero since it has no
children.

Now that we have an absolute cost measure, we can define an incremental
cost due to inserting a node m at the node n:

If(leaf(n))
Incr = 2 * area(bound(n , m))
else
Incr = -area(n) * n.numChildren + area(bound(n,m)) * (n.numChildren + 1)

After defining our incremental cost measure, we are ready to begin con-
structing our bounding hierarchy. Given an existing hierarchy, we wish to find
the spot in the hierarchy that produces the smallest increase in cost for the tree
and add the node there. With this algorithm, we can incrementally build our
bounding hierarchy. The pseudocode for adding a new node m to an existing
subtree n is given below:

insert(n,best,m)

oldArea = area(n)
if(Mleaf(n))

for all children calculate incr(n.child(i),m)

nc = child node with min incr

best = insert(nc, nc.incr < best.incr 7 nc : best, m)
if(n == best) addChild(n,m)
else if(oldArea < area(n))

n.cost += (area(n) - oldArea) * n.numChildren
return best

addChild(n,m)

if(leaf(n))
n.child[0] = new node(n)
n.child[l] = m
m.cost = 0

else

n.child[n.numChildren] = m
n.numChildren++
n.cost += n.incr

Traversing the Hierarchy

In order to use the bounding hierarchhy, one simply intersects rays with a volume
(starting with the entire scene volume) and if an intersection exists, performs
the intersection test on each of the children. There now comes the question of
what order to process the child objects. One can easily process the objects in
the order that they were added to the tree, but this would not take into account
any information about the scene. Instead, we can store the bounding objects
that we need in a heap ordered by the distance along the ray. Now, we can
stop processing objects once the closest object in the heap is further than the
current intersection point. The psuedo code is given below:

traverse

initialize closest intersection point to infinity
initialize closest intersection object to none
initialize active node heap
while(heap not empty)
extract nearest node from heap
if(closest intersection point is closer than node)
break
if(node is a primitive node)
compute intersection with primitive
if(intersects && is closer)
update closest intersection point
update closest intersection object
else
for(each child of node)
intersect ray with bounding volume
if(ray intersects bounding volume && is closer)
insert node in ative node heap

