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Abstract

Boundless Fluids Using the Lattice-Boltzmann Method

by

Kyle Haughey

Computer-generated imagery is ubiquitous in today’s society, appearing in ad-

vertisements, video games, and computer-animated movies among other places.

Much of this imagery needs to be as realistic as possible, and animators have

turned to techniques such as fluid simulation to create scenes involving sub-

stances like smoke, fire, and water. The Lattice-Boltzmann Method (LBM) is

one fluid simulation technique that has gained recent popularity due to its rela-

tively simple basic algorithm and the ease with which it can be distributed across

multiple processors. Unfortunately, current LBM simulations also suffer from

high memory usage and restrict free surface fluids to domains of fixed size. This

thesis modifies the LBM to utilize a recursive run-length-encoded (RLE) grid

data structure instead of the standard fixed array of grid cells, which reduces the

amount of memory required for LBM simulations as well as allowing the domain

to grow and shrink as necessary to accomodate a liquid surface. The modified

LBM is implemented within the open-source 3D animation package Blender and

compared to Blender’s current LBM simulator using the metrics of memory usage

and time required to complete a given simulation. Results show that, although

the RLE-based simulator can take several times longer than the current simula-

tor to complete a given simulation, the memory usage is significantly reduced,

making an RLE-based simulation preferable in a few specific circumstances.
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Chapter 1

Introduction

In 2007, the film industry took in $26.72 billion in box office receipts [58],

with $9.63 billion coming from the U.S. alone. Examine the credits of almost any

recent theatrical release, and you will see a smattering of companies listed who

created the computer graphics (CG) effects for the film. CG effects are used in

movies to create full or partial scenes that are either too expensive or impossible

to create in real life and capture with a real camera. Several recent films such

as The Day After Tomorrow [34], Poseidon [80], and Pirates of the Caribbean

3 [80] have used physically-based fluid simulation techniques to create realistic

computer-generated scenes involving massive amounts of water.

In addition to the film industry, fluids have also been prevalent in video games

for many years; the entertainment software industry generated $7 billion [77] in

revenue in 2007. Technology for representing fluids in video games has progressed

from simple sprite- and texture-based techniques to height fields and pixel shaders

[23], and true fluid simulation is just becoming feasible for use in video games.

Although there have not yet been many games featuring physical fluid simulation,

several tech demos have been published [72] [62] and at least one upcoming title

will be highlighting realistic fluids [10].

These two industries are big business, and have consequently spurred much

research into fluid simulation for the purposes of computer graphics for the last
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20 years or so.

One particular method for fluid simulation, the Lattice-Boltzmann Method

(LBM), has gained popularity due to its relatively simple core algorithm and the

ease with which it can enforce physical constraints such as mass conservation [84].

However, due to the way it represents fluid, the LBM suffers from high memory

requirements compared to other simulation methods. This thesis applies a run-

length encoded (RLE) volume data structure derived from [32] to the LBM in

order to reduce the memory required to perform simulations.

One current LBM implementation is contained within the open-source 3D

animation application Blender. To take advantage of Blender’s advanced ren-

dering capabilities and to provide maximum benefit to the computer graphics

community, this thesis implements its modified LBM algorithm within Blender.

In addition to the high memory requirements mentioned above, Blender’s

LBM implementation also constrains simulations to fixed domains that must be

specified by animators before the simulations begin. This can lead to fluid en-

countering invisible walls (the maximum extent of the simulation domain) during

the course of the simulation, which creates unwanted visual artifacts and wastes

animators’ time (for instance, if an animator has to redo a simulation to remove

the visual artifacts). The RLE data structure that this thesis uses for LBM sim-

ulation is not inherently confined to a domain of fixed size, and thus the modified

LBM simulator also allows fluid to move outside of the original domain.

The results obtained from the RLE LBM simulation show that RLE-based

LBM is a mixed bag: the RLE-based simulator takes much longer than the

original, array-baesd simulator to complete the given simulations, but uses only

a fraction of the memory. These results indicate that most fluid simulations

are better off using the original simulator except in a few situations, such as

simulations that are so large that the original simulator exhausts the computer’s

memory and simulations where fluid needs to move outside of the domain.

The primary contributions of this thesis are an implementation of an LBM

simulator that uses an RLE grid for cell storage and an analysis of this simulator’s

2



strengths and weaknesses.

The following chapter (2) will provide background information on fluid sim-

ulation in general (the major algorithms, enhancements, and issues), the LBM

in particular, as well as the RLE data structure employed by this thesis (as de-

scribed by [32]). Subsequent chapters will describe the implementation of the

RLE data structure as used in Blender’s LBM simulator (3) and experimental

results using the modified simulators (4). The final two chapters will explore

some opportunities to improve on this work (5) and conclude the paper (6).
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Chapter 2

Background

Numerical simulation of fluids has been practical since the late 1960’s when

computers became powerful enough to handle the vast number of computations

required to complete simulations in a reasonable amount of time. Fluid simulation

is used in a wide variety of disciplines [66], but here we will examine simulation

techniques used primarily in computer graphics.

2.1 User Interaction

In most fluid simulation software, the user interaction pattern is essentially

the same.

As input, the user specifies a domain in which the simulation will take place,

boundary conditions that determine what happens to fluid that attempts to flow

outside of the domain, physical properties such as fluid viscosities and external

forces,and initial conditions such as fluid or obstacle regions.

Once the user has specified all of the input parameters, the simulation per-

forms a series of timesteps, outputting various information such as velocity or den-

sity fields at each step. Other output information can include isosurface meshes

and fluid particle locations for small drops of fluid. Rendering the simulation
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output is usually considered a separate step because the same simulation data

can be rendered in many different ways.

2.2 Simulation Methods

There are three basic methods used for fluid simulation in computer graphics:

Navier-Stokes (2.4), Lattice-Boltzmann (2.5), and Smooth-Particle Hy-

drodynamics (SPH) (2.6). Navier-Stokes and SPH will be briefly discussed

below, and the LBM will get a detailed treatment in section 2.5.

2.2.1 Simulation Models

Each fluid simulation method can be classified as an Eulerian or Lagrangian

model, where Eulerian models choose fixed points in space and then simulate the

fluid quantities (velocity, density) that pass through those fixed points (typically

a regular 2D or 3D grid) and Lagrangian models choose particular fluid elements

to track and then simulate the elements’ trajectories through space (typically

implemented as a particle system). In Figure 2.1, the red and blue arrows are ve-

locities at two times at fixed points (Eulerian), and the black line is the trajectory

of a particular particle (Lagrangian). Table 2.2.1 shows the model classification

for each of the basic simulation methods.

Simulation Method Model
Navier-Stokes Eulerian
Lattice-Boltzmann Eulerian
Smoothed-Particle Hydrodynamics Lagrangian

Table 2.1: Model Classification for Fluid Simulation Methods

2.2.2 Phase Support

Fluid simulations also differ in the number of different fluids (called called

“phases”) they can handle at once. Phase support for fluid simulation can be
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Figure 2.1: Eulerian vs. Lagrangian models (Credit: [74]).

placed into three categories: single-phase, two-phase, and multi-phase. The three

categories are described in the following sections.

Single-Phase

Single-phase simulations typically represent the motion of a fluid (gas or liq-

uid) within a domain along with the motion of some density field of particulate

matter suspended in the fluid (for example, steam rising from a cup of coffee).

Two-Phase

Two-phase simulations can handle two phases of fluid simultaneously, which

usually means a liquid and a gas. An example of a two-phase simulation would

be water (liquid) being poured into a glass (which is filled with air before the

water gets there). Two-phase simulations are more complex than single-phase

simulations because the simulation must track which regions are filled with gas

and which regions are filled with liquid. A boundary between a liquid region and

a gas region is called an interface. In two-phase simulations, the liquid is usually

assumed to be much more dense than the gas, and so only the liquid motion is

simulated. In these simulations, the liquid/gas interface is called a free surface

because the liquid surface is free to move anywhere in the domain without being

hindered by the gas.
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Multi-Phase

Multi-phase simulations are a generalization of the two-phase case. Since

there are only two common fluid phases of matter (liquid and gas), multi-phase

simulations are most often used in cases where it is necessary to simulate multi-

ple interacting liquids with different densities and viscosities. An example of this

would be a container filled with both water and oil (and air). Multi-phase sim-

ulations are the most complex class of fluid simulations because the simulation

must track not only liquid/gas interfaces for each liquid, but every pair-wise liq-

uid/liquid interface as well. This can be quite tricky, especially when the liquids

begin to mix.

2.3 Non-simulated Fluid

Before the rise of true fluid simulation techniques in computer graphics, there

were several attempts to animate fluid motion that tried to duplicate observed

fluid behavior without respect to the underlying physics. Although these tech-

niques were cutting-edge in their day, they had several limitations that prevented

them from being very convincing.

The very first attempts at animating fluids in computer graphics were made

in 1986 by Peachey [68] and Fournier and Reeves [21]. These attempts did not

use any physically-based model for the water, but used sums of sinusoids and

trochoids (a class of functions that generalize cycloids) respectively to model

waves breaking on a beach. These methods were limited in that they could only

model perturbations in height on a globally flat liquid surface. These papers did,

however, start a trend which has continued to this day of using particles to model

very small fluid regions.

In 1990, Kass and Miller [35] introduced a technique that they based on a

simplified version of the Navier-Stokes equations (the equations describing fluid

flow) called the shallow water equations. This technique solved the shallow wa-

ter equations using finite differencing and used a height field to represent the
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water surface. Chen and Lobo [8] did a similar thing in 1995 when they used

finite differencing (a method that uses forward-, back-, or central differences to

approximate derivatives) to solve the 2D version of the Navier-Stokes equations

and based the liquid height at any given point on the surface on the local pressure

computed from the Navier-Stokes equations.

2.4 Navier-Stokes

The first true 3D fluid simulations used for the purposes of computer graphics

were performed in 1996 by Foster and Metaxas [20]. To perform their simulation,

they used a finite-differencing scheme to obtain a discrete solution to the 3D

Navier-Stokes equations on a uniform grid (Eulerian model). They based their

work on a classic paper from engineering computational fluid dynamics (CFD)

literature [28], but additionally included user control forces and free-surface track-

ing by means of marker particles (two-phase). This paper was a breakthrough in

fluid simulation for computer graphics because it removed the restriction imposed

by height fields that fluids could never occupy two heights at the same location on

the surface. However, their method still suffered from one of the same problems

as engineering CFD simulations (the CFL condition) in that they were severely

restricted in the maximum timestep that could be taken without the simulation

becoming unstable.

In 1999, Jos Stam proposed a new advection (the process of transporting ve-

locities along themselves) technique that he called the “Semi-Lagrangian Method”

[79], which allowed simulations to take much larger timesteps and remain stable.

This breakthrough allowed non-trivial simulations to be completed in a reason-

able amount of time and made true 3D fluid simulations useful for the first time.

However, Stam’s new advection method only worked with single-phase simula-

tions, making it useful for smoke simulations but less so for water simulations.

Also, the algorithm suffered from numerical dissipation, in which the motion of

the smoke would be not be as turbulent as it would be in real life.
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Fedkiw et al extended Stam’s algorithm in 2001 [15] to use a technique called

vorticity confinement that they took from the CFD literature [81] to re-inject

small-scale rotation at locations in the velocity field where the greatest damping

occurred.

Foster and Fedkiw again built on Stams algorithm in 2001 [19] when they

modified it to handle free surfaces, using a combination of level sets [66] and

particles to track the free surface. This new free surface technique has since

been extended to handle multi-phase flows [14] [47], but the basic particle/level-

set technique still forms the basis for most Navier-Stokes simulation techniques

today.

Navier-Stokes simulations have advantages over other simulation methods [84]

in that the level-set representation makes it easy to extract a smooth liquid

surface and the Semi-Lagrangian advection allows them to take large timesteps.

However, Navier-Stokes simulations do require a global pressure-correction step

which makes them difficult to parallelize and employ a fixed domain grid [84].

2.5 The Lattice-Boltzmann Method

Another increasingly popular method for simulating fluids is the Lattice-

Boltzmann Method (LBM), which was first used for computer graphics in 2003

by Li et al [43] and Wei et al [88]. The LBM is an Eulerian model just like Navier-

Stokes simulations, but focuses on fluid interactions at a molecular scale rather

than a continuum scale. The molecular interactions handled by the LBM have

been shown [22] [51] to closely approximate the Navier-Stokes equations. Instead

of directly discretizing the Navier-Stokes equations, the LBM instead maintains

a probability distribution at each grid cell of fluid quantities moving in a finite

set of velocities. At each timestep, fluid quantities are streamed to the neigh-

boring cell in the velocity directions and then collided in their new cells, which

redistributes the fluid among each of the velocities. The collision step models

fluid molecules colliding with each other and changing direction. There are sev-
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eral collision models that can be used, but the most popular one for computer

graphics is called BGK [5].

Before Li et al [43] and Wei et al [88] were published, the LBM had been

already used for many years in physics applications such as [22], [9], [17], and [52]

but was restricted to supercomputers due to its computational complexity [43].

However, Li et al [43] created an LBM implementation that exploited the mas-

sively parallel and vector-optimized processors available on commodity graphics

processing units (GPUs) that are inexpensive and widely accessible to the pub-

lic. This allowed LBM simulations to run on commodity hardware and greatly

increased its popularity.

The previous techniques, while significant, were all limited to single-phase

LBM simulations. It was not until 2004 that LBM simulations were modified to

handle two-phase simulations [86] by Thurey and Rude, and not until 2007 that

LBM simulations were extended to handle multi-phase flows [92]. Nils Thurey

also extended the basic LBM algorithm to use adaptive timestepping to increase

simulations’ stability [84].

Although the LBM has the advantage over Navier-Stokes simulations of being

well-conditioned for parallelization [84], it suffers from high memory requirements

as many fluid velocities need to be stored at each grid cell [84]. Additionally, LBM

simulations have strict timestep requirements that increase the real-world time

it takes to simulate a given interval of animation time [84] and also use a fixed

domain grid like Navier-Stokes simulations.

2.6 Smoothed-Particle Hydrodynamics

SPH is a particle-based (Lagrangian) model, and thus does not use a fixed

grid of sample points like Navier-Stokes or LBM simulations. SPH can evaluate

physical quantities such as velocity or density at any point in space by interpo-

lating the corresponding physical properties of particles within a given spatial

distance (called the smoothing length) of the point. There are several possible
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interpolating functions, which are also known in SPH terminology as kernel func-

tions.

The first computer graphics fluid simulation algorithm that used SPH was

created in 1996 by Desbrun and Gascuel [13]. They based their work off of

previous SPH models from astrophysics [24] [56]. However, their algorithm was

only geared towards animating highly-deformable bodies rather than fluids in

particular, and thus ignored some important fluid properties like force terms

from the Navier-Stokes equations or surface tension. Muller et al rectified this

in 2003 [59] when they modified Desbrun and Gascuel’s algorithm to take these

things into account, providing a much more accurate algorithm for simulating

fluids. Harada et al also improved the efficiency of SPH calculations in 2007 [27]

by performing them in combination of GPU vertex and fragment shaders.

Because SPH does not use a fixed domain grid (although it is possible to use

a fixed domain with SPH), fluid particles can move anywhere in space, subject to

the precision of the data type used to represent fluid properties. Typically, a float

or double data type would be used which is large enough for most simulations.

However, the standard method for extracting a surface from the particles, March-

ing Cubes [45] still requires a grid. This grid can be easily computed, though,

based on the bounding box of all particles in the simulation. Recently, Hoetzlein

and Hollerer have also developed an alternative surface extraction method to

Marching Cubes [31] that is based on wrapping cylinder surfaces around particle

streams and shrinking them to fit the stream.

Since SPH uses a particle-based fluid representation, it is not well suited for

single-phase flows since it is almost always impractical to completely fill a fixed

domain with air particles and attempting to do so with an unrestricted domain

will quickly exhaust any system’s memory. Thus, SPH is better suited to two-

phase [59] and multi-phase [60] [49] flows. In fact, SPH is particularly well-suited

to multi-phase flows because simulations can use particles with different color

properties. Surface extraction then merely extracts a single surface based on

the presence and location of particles, and simply interpolates the surface color

between nearby particles.
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Although SPH does not require a grid, it does have a few problems [84]. For

instance, kernel functions can be quite complex and so smoothing can take a

significant amount of time. Also, SPH does have some problems with important

physical properties such as mass conservation over the entire simulation domain

[84].

2.7 Metrics

Measuring the quality of a given fluid simulation algorithm is a tricky propo-

sition, for a number of reasons. Because fluid simulations are employed in such

a wide variety of contexts that each have different requirements and constraints,

there is no body of standard metrics used to judge algorithms. Furthermore, the

experimental results for each algorithm are generated using different hardware

and measurement criteria (for example, some experiments include render time

[15] and some don’t [20]). Nevertheless, it is possible to extract from the litera-

ture a general set of properties that we would like fluid simulation algorithms to

possess.

2.7.1 Time and Space Complexity

The time and memory required to perform a fluid simulation over some time

interval is very important, because most projects that employ fluid simulations

(such as films and games) have budgets and deadlines and run the simulations on

real hardware that does not have unlimited computing resources. In fact, video

games involve rapid interaction with players and thus have the requirement that

any fluid simulation run in real time (30-60 frames per second). Thus, simulation

algorithms with lower time and space complexities are highly valued. In addition,

merely reducing the constant factor of a simulation algorithm’s time or space

complexity also has its uses as it can bring a given simulation within the realm

of feasibility for a given project.
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2.7.2 Accuracy

Another very important metric for measuring the quality of a fluid simulation

algorithm is the algorithm’s accuracy, which is a measure of how closely the

algorithm’s results come to duplicating what would happen in the real world

given the same physical setup (fluid properties, obstacle properties, gravity, etc.).

Accuracy can be measured in a number of ways, and it is important to note

that fluid simulation algorithm accuracy for computer graphics is measured very

differently than it is in other disciplines such as physics or engineering.

In engineering, an algorithm’s accuracy is measured by examining the simula-

tion algorithm and calculating maximum bounds on the error in various quantities

such as density or velocity at given points in space. Algorithms are also validated

by comparing simulation results to experimental data, such as data provided by

wind tunnels [18]. This rigor is necessary for engineering applications because

errors have the potential to cause harm to both people and property.

In computer graphics, the accuracy criteria are much less rigorous. Since the

end goal of fluid simulations performed in computer graphics is always to produce

an image, a simulation’s results can be deemed accurate if the final image merely

“looks right”. That is, if most observers could look at the images produced with

a given simulation algorithm and conclude that the fluid behaves correctly, then

the algorithm is accurate. Because it is possible to use many different renderers

to create an image from simulation data, “looking right” usually refers to the

shapes and locations of fluid elements rather than their appearance in the final

image.

All of the same error criteria that are used for engineering applications can

also be applied to computer graphics applications; indeed, all of the basic al-

gorithms used for fluid simulation in computer graphics today originated from

other engineering or science disciplines. However, these error metrics introduce

a higher time and space complexity into the algorithms and are unnecessary for

a simulation to look right most of the time. As processors get faster and faster

and as computers have increasing amounts of memory, we do see more rigorous
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error metrics being introduced in computer graphics applications.

2.7.3 Time/Space vs. Accuracy Tradeoff

The simultaneous goals of increasing a simulation’s accuracy and decreasing

the time and memory it requires are in constant tension with each other. One of

the easiest ways to increase a simulation’s accuracy is to run it using a very high

resolution (many samples per spatial unit). However, this can greatly increase the

time and memory required to complete the simulation. Conversely, it is possible

to reduce the time and space required for a simulation by running the simulation

at a lower resolution, but accuracy will suffer. The goal for users then is to choose

the correct resolution such that the time and space required will be minimized

and the results will still “look right”.

2.7.4 Capabilities

Not all fluid simulation algorithms are created equal. The quality of a fluid

simulation algorithm is also measured by the range of situations it can handle.

For example, some simulations [79] simulate only one type of fluid (such as air)

while others can handle two or more fluids. In fact, your choice of algorithm

may be dictated by your particular circumstances. Any two algorithms may also

support all of the same capabilities while varying in how well they support each

capability.

2.8 Algorithmic Enhancements

All of the basic fluid simulation methods described in the previous sections

can take copious amounts of time and memory for high-resolution simulations

(whether that means very densely packed grid cells or the use of many thousands

of particles). Because of this, modest increases in resolution can have a dramatic
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impact on the time required to perform a simulation, as well as the space required

to store all of the grid cells or fluid particles. Conversely, a decrease in time or

space complexity can have a profound effect on the maximum resolution that

can feasibly used in a simulation for any given project. Thus, much effort has

been expended in recent years attempting to reduce both the time and space

complexity, even if only by a constant factor, of all of the different fluid simulation

methods. The following sections will describe several techniques that various

researchers have tried in an attempt to make fluid simulations smaller and faster.

2.8.1 Parallelization

One of the first techniques used when attempting to speed up any algorithm

is to try to make it run in parallel on multiple processors, and fluid simulation

is no exception. Several papers have been published containing methods for par-

allelization of all of the basic simulation methods ([30] and [2] for Navier-Stokes

simulations, [61], [89], and [41] for LBM simulations, and [83] and [70] for SPH

simulations); however, these algorithms are all designed for massively-parallel su-

percomputers. In computer science, most of the research into fluid simulation

parallelization has focused on the GPU because they are both massively parallel

(pixels in an image produced by a GPU are usually processed independently)

and are optimized for matrix and vector math. Programmable GPU shaders

have only been around for the last 7 years or so [65], and so all of the research

is fairly recent. Navier-Stokes GPU implementations came first [29], [44], but

implementations are also available for the LBM ([42], [57]) and SPH ([39]). The

primary challenge in GPU-based simulations is framing the simulation problem

in terms of graphics-related concepts such as pixels and texels.

2.8.2 Multigrid and Spatial Partitioning

Multigrid methods are a way to decrease the amount of time required to

perform a given fluid simulation at the cost of potentially increased memory
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usage. The basic idea is to embed a coarse grid of lower resolution within a

high-resolution fine grid and perform simulation on the coarse grid away from

“interesting” regions of the fine grid. The “interesting” regions of the fine grid

are usually defined to be regions of non-negligible density or regions near the fluid

surface [84]. Spatial partitioning methods are similar to multigrid methods in that

they both contain fine grids embedded within coarser grids. The difference is that,

in spatial partitioning methods, fine grid cells are associated with only one coarse

grid cell, and the fine grid cell’s volume is completely contained within the coarse

cell; this is not generally the case with multigrid methods. Handling fluids at

multiple resolutions turns out to be quite challenging because physical properties

of the fluids being simulated change at different resolutions, for example the

fluid’s effective viscosity [84].

Robert Bridson created a subgrid method for Navier-Stokes simulations in

2003 called Sparse Block Grids [6], which was a two-level multigrid method in

which fine cells were used near a free surface and coarse cells elsewhere. Losasso

et al [46] in 2004 created a Navier-Stokes simulation that used an octree data

structure. Zhao et al in 2007 [91] created a subgrid method for the LBM that

allocated fine grids in interesting regions and interpolated vector field values

between the coarse and fine grids. In 2008, Thurey and Rude [?] devised an LBM

method that started with a fine grid and created coarsened grids occupying the

same volume. Spatial partitioning algorithms are also useful for SPH simulations

as well in speeding up the process of finding “close” neighboring particles, such

as in [16].

2.8.3 Flexible Domains

In addition to the time and space complexity problem, Navier-Stokes and

LBM simulations are restricted to a fixed domain grid that is specified by the

user before the simulation is performed. Fluid attempting to exit the domain

will either disappear completely or encounter an invisible wall depending on the

boundary conditions. This can cause excruciating frustration for users who have
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to re-run simulations after discovering this. To alleviate this problem, researchers

have investigated ways to make simulation domains more flexible. As SPH sim-

ulations are particle-based, they don’t inherently suffer from this issue. Several

solutions have been proposed for Navier-Stokes simulations, including: Shah et al

in 2004 [75], which compensated for a mobile domain by adjusting the domain’s

velocities (Galilean Invariance), Rasmussen et al in 2004 [71], which uses a small

simulation domain that can move around in a larger domain, and Houston et al

in 2006 [32] that uses a run-length encoded (RLE) volume instead of a 3D array

to store grid nodes. These solutions worked well for Navier-Stokes simulations,

but they have never been applied to the LBM.

2.9 Related Areas

There are several research areas that are closely related to fluid simulation,

but are not considered a part of fluid simulation proper.

One area is coupling fluid simulations with other simulations such as thin-

shell simulations ([26]), rigid- and soft-body simulations ([73]), other types of

fluid simulations ([48], which couples a Navier-Stokes simulation with an SPH

simulation), and even coupling 2D/3D fluid simulations of the same type ([33],

[84]). SPH simulation coupling with thin-shell, rigid-body, or soft-body simula-

tions are also generally straightforward to implement because there is extensive

research on particle/object collision detection and response ([87], [53], [40], [38]).

Another area is simulation of viscoelastic fluids, which exhibit properties of

both liquids and solids (such as lava or pudding). Some viscoelastic simulations

have approached the problem from a fluid simulation angle, such as [25] and [11].

Viscoelastic and even solid materials can be treated as fluids that have a very

high viscosity [67]. Other simulations have approached the problem from a solid

mechanics angle by using spring-based meshes [82] or the Finite Element Method

(FEM) [90].

The last related area is animation control, which covers systems that an-

17



imators can use to make fluid behave how they want. Fluid control systems

accomplish this task in a number of ways. Many control systems ([50], [55], [69],

[76], [85]) allow users to specify a target shape or particles that attract fluid.

Alternatively, there are systems such as [3] that do not attract fluid to a certain

shape but instead create forces to make fluid follow user-defined flow trajectories.

2.10 Open Areas

Despite the extensive research that has been performed on simulating fluids

for computer graphics, there are still many avenues that remain to be explored.

One such avenue is multi-resolution simulation editing. Although multigrid

methods have had some success at handling multiple resolutions within the same

simulation, no one has yet devised a system that will cause high-resolution sim-

ulation behavior to duplicate low-resolution simulations; the behavior always

changes between different resolutions. Kim et al [37] have made some progress

on this front by allowing users to synthesize detailed velocity perturbations onto

low-resolution simulations, but there is still much work to be done in this area.

GPU-based simulations have also seen quite a bit of success, but new APIs

such as CUDA [63], OpenCL [36], and DirectX Compute Shaders [54] are emerg-

ing that remove the need to re-frame simulation problems in terms of shaders

and textures and promise to make GPU-based simulations much easier to imple-

ment. As yet, there have been very few fluid simulations (see [64] as an example)

that use these new general-purpose GLU (GPGPU) APIs, but there is ample

opportunity to exploit them.
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Chapter 3

Algorithms

Because we would like to have a more memory-efficient fluid simulator that

does not confine fluid to a fixed domain, we propose modifying the LBM simulator

from Blender to use an RLE grid for cell storage.

The following sections describe the algorithms used for RLE-based LBM fluid

simulations. Section 3.1 covers in more detail the LBM, which was already im-

plemented within Blender. Section 3.2 covers RLE level sets, which were imple-

mented using [32] as a reference, and Section 3.3 covers the modifications that

were made to both the LBM and RLE algorithms in order to integrate them.

3.1 The Lattice-Boltzmann Method in Detail

This section provides a more detailed look at the Lattice-Boltzmann Method,

although still at a high level. This description is taken from, and full details can

be found in, [84].

As mentioned in the previous section, the LBM works by storing the amount

of fluid moving in each of a finite number of velocities at each grid cell. Each

discrete velocity is called a distribution function, or DF for short. Each velocity

vector is directed at a neighboring grid cell, except for a special zero vector that
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Figure 3.1: Distribution functions (DFs) for the D2Q9 and D3Q19
LBM models (Credit: [84]).

represents non-moving fluid. In memory, the fluid distribution is represented as

an array of floating-point values where each element in the array corresponds to

a DF and the float value represents the amount of fluid moving in each direction.

LBM simulations can be identified by the nomenclature D¡n¿Q¡m¿, where ¡n¿

represents the number of dimensions in the simulation and ¡m¿ represents the

number of DFs. Typical values for LBM simulations are D2Q9 for 2D simulations

and D3Q19 for 3D simulations. Because a grid cell in three dimensions has 26

neighbors, you would expect 3D simulations to be labeled D3Q27 (26 neighbors

plus the zero vector); however, D3Q19 is able to maintain stability while speeding

up simulations and requiring less memory [84]. In D3Q19, the DFs point to

neighbors in the directions of the cell’s faces and edges (assuming a cubic cell),

but not the neighbors in the direction of the cell’s vertices as shown in Figure

3.1, which also contains an example of the D2Q9 model.

3.1.1 Basic Algorithm

Each LBM timestep has two parts: stream and collide, which can be seen

in Figure 3.2. The stream step advects fluid amounts for each velocity to their

respective neighboring cells, and once all of the fluid has been advected the collide
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Figure 3.2: LBM stream and collide steps (Credit: [84]).

step redistributes the new velocities at each cell to simulate collisions among the

incoming fluid.

The collision model used by [84] is the BGK model described in [4], which

modified the fluid distribution by interpolating fluid values with an equilibrium

value for each velocity. The equilibrium value for each velocity is the value for

which, if all velocities in all cells had their equilibrium values, no fluid values

would change.

In practice, two grids are used: one grid contains the cell values at time t

and into the other grid are written the values for time t + dt. Also, typically

implementations will iterate over the t + dt grid and retrieve incoming fluid from

neighboring cells rather than iterating over the t grid and pushing fluid out to

neighboring cells. This allows the stream and collide steps to be performed at the

same time, since the collide step requires all of the new velocities to be present

and the push method would require the collide step to occur in a second pass,

taking more time.

The density ρ at each grid cell can be calculated by adding up the fluid amount

for each velocity, and the net velocity u of each grid cell can be calculated by

adding up the products of the fluid amounts and the velocity vectors.
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Figure 3.3: Free surface cell flags (Credit: [84]).

3.1.2 Handling Free Surfaces

To handle free-surfaces, [84] flags each cell as one of four types: empty, in-

terface, filled, or obstacle. Empty cells have no fluid in them (ρ = 0), filled

cells are filled with fluid (ρ = 1), and interface cells are partially filled with fluid

(0 <= ρ <= 1). Figure 3.3 illustrates a free surface and the corresponding cell

flags. Obstacle cells are treated specially by the simulation as described in the

next paragraph. Also in [84], a layer of obstacle cells is automatically initialized

at the domain’s boundary to prevent fluid from moving outside the domain.

During the stream and collide steps, the simulation tracks cells that get emp-

tied or filled, and after each time step their flags are re-initialized to ensure that

the following properties are maintained:

• Empty cells must have only empty, interface, and obstacle neighbors.

• Fluid cells must have only fluid, interface, and obstacle neighbors.

• Interface cells must have at least one empty neighbor and at least one fluid

neighbor.

When iterating over the t + dt grid and the neighboring cell in a particular

direction is an obstacle cell, the fluid moving in that direction is reflected ac-

cording to the obstacle’s slip value. For no-slip obstacles, the fluid is reflected

to the opposite velocity vector in the same cell. For free-slip obstacles, the fluid

is reflected about a plane perpendicular to the obstacle cell’s normal and then
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Figure 3.4: Obstacle boundary conditions (Credit: [84]).

Figure 3.5: Obstacle normal calculation.

advected to an adjacent fluid or interface cell. Each type of reflection can be seen

in Figure 3.4.

Obstacle normals can be calculated by summing the vectors from neighboring

cells which are also obstacle cells to the current cell as shown in Figure 3.5.

In the figure, the cell highlighted in yellow is the current cell, the gray cells

are neighboring obstacle cells, the blue arrows are the vectors from the obstacle

neighbors to the current cell, and the green arrow is the resultant normal vector.

To prepare the free surface for rendering, [84] uses Marching Cubes [45] to

23



iterate over the domain using the cell densities as isosurface values. The fluid

surface is defined to be the locus where the density ρ = 0.5.

3.1.3 Stability Concerns

Because fluid moves at maximum one cell width each timestep, there is a

maximum fluid velocity that the LBM grid can accommodate. When velocities

attempt to grow beyond this threshold, the simulation becomes unstable. To

combat this, [84] uses a couple techniques.

First, when velocities become too large, [84] adapts the physical time that a

single timestep represents. This involves rescaling all of the equilibrium velocities

as well as the physical constants specified by the use such as gravitational force

and the fluid viscosity.

In addition, [84] uses a Smagorinksy subgrid model ([78]) to handle high-

turbulence flows. This involves calculating the stress tensor at each fluid cell and

using it to modify the equilibrium velocities.

3.2 Hierarchical Run-Length Encoded (HRLE)

Volumes

Run-length encoding is a simple compression technique that has been used on

image data [1] and volume data [12] for quite a while now. Run-length encoding

stores sequences of adjacent identical data elements as a single element along

with a count of how many elements are in the sequence.

This thesis uses a run-length encoded data structure called a “hierarchical

run-length encoded (HRLE) level set”, which was created by Houston et al in

[32] (full details can be found here). The HRLE grid is hierarchical in the sense

of dimension, where information for each dimension is kept separate from the

other dimensions and higher dimensions refer to lower ones.
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3.2.1 RLE Level Sets

In Houston et al, the RLE level set was used to store level sets, which are an

implicit surface representation used in many different applications in computer

graphics [66]. Level sets are defined as isocontours of a scalar function in 2D or 3D

space, usually the isocontour where f(x) = 0 (the choice of the 0-isocontour will

be assumed from here forward). In discrete domains, scalar values are stored at

nodes on a regular grid, where the stored value is usually a signed distance to the

isocontour. 2D or 3D surface meshes can be generated from level set information

by running the Marching Cubes algorithm [45] on it. Houston et al divided space

into three types of regions: positive, negative, and defined. Positive regions were

regions where f(x) > β, where β is a threshold value chosen by the user, and

negative regions likewise were regions where f(x) < −β. Defined regions were

regions where −β <= f(x) <= β, and the RLE level set allocates memory only

for grid nodes within the defined regions.

The RLE level set consists of an array of scalar values, and one or more RLE

blocks, the collection of which is called an RLE grid. An RLE grid contains one

RLE block per dimension. If we assign each dimension a number (for example,

z=2, y=1, and x=0), we can talk about the block in terms of their position, so

the blocks proceed from high to low. The block corresponding to the highest

dimension is called the top block, and blocks corresponding to lower dimensions

are called lower blocks.

Each block consists of the following items:

1. Low and high extents for the dimension. An explicit bounding box can be

constructed for an RLE grid by using the dimension extents from each RLE

block.

2. An array of runs, where a run is a run code (positive, negative, or defined)

combined with an offset. The offset is only significant for defined runs.

3. An array of run breaks (of the same length as the run array) that gives the

end coordinates of each run. The first run in each segment (see next item)
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Figure 3.6: 2-dimensional RLE level set (Credit: [32]).

is assumed to have a starting coordinate equal to the low extent, and the

last run break in each segment must equal the high extent.

4. An array of segment start indices that provides offsets into the run and run

break arrays of the first run in each segment. A segment is a contiguous (in

space) sequence of runs.

Because an RLE block stores all of the runs for its dimension, it will usually

have to store multiple segments that correspond to different coordinates in its

dimension. In fact, only the top block will have a single segment. An example of

a 2D RLE level set can be seen in Figure 3.6.

The meaning of the offsets in defined runs depends on which block is being

talked about. For the lowest block, the offsets index into the RLE level set’s value
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array. For higher blocks, the offsets index into the next-lower block’s segment

start index array.

3.2.2 HRLE Advantages/Disadvantages

The advantage of using an RLE level set instead of a fully-defined array is that

you don’t have to allocate memory for regions that are far away from the “inter-

esting” region near the isocontour of choice. This makes the storage requirement

roughly proportional to the surface area (roughly O(n2)) of the isocontour rather

than O(n3), where n is the number of grid cells along one edge of the domain.

Furthermore, with the trim/dilate algorithm described below, the level set

is not confined to a fixed domain, but can adjust itself to follow the surface as

necessary.

The disadvantage of RLE level sets compared to arrays is that random access

to cell data is much slower, because locating cells in memory requires navigating a

data structure instead of simply performing some pointer arithmetic (the random

access algorithm is described below in Section 3.2.3.

3.2.3 HRLE Algorithms

There are several algorithms that operate on RLE level sets, but only two are

covered here. For details on the other algorithms, consult [32].

Random Access

To access a particular defined cell, it is necessary to start at the top block and

navigate downward through the bottom block to the RLE level set’s value array.

Given a coordinate corresponding to a given block’s dimension and starting and

ending offsets into the run array, we can perform a binary search to locate the

run corresponding to the given coordinate. If the run is not defined (it is positive

or negative), then we return NULL. If the run is defined, we can compute the
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Figure 3.7: An example of 1-dimensional dilation (Credit: [32]).

run’s offset and the given coordinate to locate the value corresponding to the

coordinate (for the lowest block) or recursively search the next-lower block (for

all other blocks). For the top block, the starting and ending offsets are merely 0

and the number of runs in the top block respectively.

Trim/Dilate

The trim/dilate algorithm is used to ensure that the defined region stays

centered around the 0-isocontour. If the surface moves (by changing the defined

scalar values), then the defined region will also need to move periodically to keep

up. To accomplish this, a two-step algorithm was devised in [32] to re-center it.

Trim/dilate operates on two RLE level sets, using one as a temporary level set.

The trim step uses the original level set as a source and writes to the temporary

level set, and the dilate step reads from the temporary level set and writes back

to the original level set.

The first step is the trim step, wherein existing defined cells are checked to

ensure that they are still “close” to the 0-isocontour . This part of the algorithm

iterates over each defined cell in the source set (see [32] for the iteration algorithm)

and adds cells whose value is in the range [−β, β] to the target set.

After the trim step, the dilate step ensures that there is a wide enough band

around the surface. Dilation consists of two substeps. First, each segment in

each block in the trimmed set is dilated independently as a 1D segment. This is

done by creating a [start − 1, end + 1) pair for each defined run in the segment

and then taking the union of these pairs, a process which will be described in

the next paragraph. Then, starting at the top and handling dilated segments
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recursively down to the bottom block, we iterate over each coordinate included

in the dilated 1D segments. For each coordinate, we create runs in the same-

level block of the target set by taking the union of the dilated 1D segment for

the current coordinate from the first substep with the dilated 1D segments for

each of the current coordinate’s immediate neighbors in all higher dimensions.

If we are currently at the lowest block, then we must initialize the values in the

newly-created defined runs. If a value in the newly-defined runs has the same

coordinates as a defined value in the old set, then we can simply copy the value

over. If there is no corresponding value from the old set, then we must calculate

the signed distance from the grid cell to the suface and initialize the new value

with that distance.

To compute unions of [start, end) pairs that may overlap, we use the following

algorithm. Create a sorted map from coordinates to ints. Iterate over each pair,

increment the map count for start, and decrement the map count for end, creating

any necessary map entries. Then, create an empty list of pairs that will hold the

union runs, initialize a total count variable to 0, and iterate over the map keys.

Because the map is sorted, the iteration will proceed from low coordinates to

high coordinates. At each coordinate, add the coordinate’s map value to the total

count. If the total count transitions from 0 to a positive number, then store the

coordinate in a temporary variable. If the total count transitions from a positive

numebr to 0, push a pair onto the union run list consisting of the previously-saved

temporary coordinate and the current coordinate. After iterating through all of

the map coordinates, the list will contain pairs that are the union of the input

pairs.

3.3 LBM Modifications

Using the RLE set data structure with LBM simulations required several

modifications to both the RLE data structure and algorithms as well as the LBM

simulation algorithm. You can see an example of an RLE-based grid being used

in a 2D LBM simulation in Figure 3.8. In the figure, gray cells are boundary cells,
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Figure 3.8: An example of a 2D-LBM simulation with no fixed domain.

blue cells are interface or fluid cells, the red box indicates the maximal extent of

the domain (which is flexible), and the green boxes represent defined runs within

the domain. Regions inside the red box but outside a green box are positive

regions that don’t have any memory allocated for cells. The changes required to

accomplish the integrated LBM simulation are described in the following sections.

3.3.1 Data Structure Modifications

To accommodate a fluid simulation, several modifications were made to the

RLE set data structure to accommodate general-purpose data, to improve trim/dilate

performance, and to handle arbitrary injection of defined grid cells.

General-Purpose RLE Sets

The RLE data structure used in the modified LBM simulator was changed

from being a level set representation that stored only signed distances as floats

to being a templatized general-purpose data structure that could store an instance
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of an arbitrary C/C++ datatype at each grid cell.

The modified LBM simulation does not store scalar values, but instead stores

FluidCell C structs that each contain the flag and DFs for one cell (the previous

LBM simulator from [84] stored grid cells in two separate arrays: one for cell flags

and one for DFs).

The modified RLE set also only has two types of regions, positive and defined.

Positive regions are empty regions that are more than one grid cell away from

the fluid surface, and defined regions are regions that are fluid and interface

cells along with with empty cells within one grid cell of the fluid surface. The

reason for the lack of negative regions is that we cannot ignore fluid cells that

are far away from the fluid surface, since doing so would disregard the net fluid

velocities contained in these cells. which will impact future timesteps. The reason

for including the one-empty-cell layer surrounding fluid and interface regions is

that, during the course of an LBM timestep, these empty cells could potentially

be re-flagged as interface cells so they must be defined.

It is important to note that modifying the LBM to use the RLE data structure

instead of fully-defined arrays changes the memory storage required for a simula-

tion from being proportional to the volume of the domain to being proportional

to the current volume of fluid.

Memory Allocation

To prevent the repeated allocation and deallocation of memory during the

trim and dilate steps, the modified RLE set also provides a push() interface to

the trim/dilate code to use when adding or copying values, segment start indices,

runs, and run breaks. The RLE set maintains two counters for each of these

arrays: a size and a capacity. The size tracks the number of valid entries in each

array and the capacity tracks the number of allocated entries for each array.

When an RLE set is first allocated, the capacities are initialized to zero,

and the size counters are all initialized to zero before a trim or dilate operation is

performed. As array elements are added, the RLE set checks to see if the new size
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will be greater than the capacity and, if so, reallocates a larger array and copies

the old values to the new array before proceeding as normal. The enlargement

factor used when an array size reaches its capacity is (3 ∗ oldCapacity)/2 + 1.

The astute reader may notice that this behavior is nearly identical to the

C++ vector class and wonder why vector was not employed. It is worthwhile

to admit that this was attempted; however, the overhead of vector’s operator[]

caused a significant decrease in simulation performance.

This performance enhancement means that an RLE set at any given timestep

may have more memory allocated than is strictly required. This tradeoff how-

ever seems worth it in light of the performance increase. This also makes the

memory storage requirement proportional to the maximum volume of fluid over

the simulation’s time simulated so far rather than the volume of fluid at each

timestep.

Arbitrary Fluid Injection

Any useful fluid simulation needs to at some point inject fluid (at arbitrary lo-

cations) into the domain, and the simulation’s underlying data structure needs to

handle this. The original RLE data structure was initialized from an implicit sur-

face and its trim/dilate steps only handled adding or removing defined grid cells

that were relatively close to the fluid surface. To handle injection of defined cells

at arbitrary locations, the modified RLE data structure provides clients with an

ensureCell() method that will define a cell at any client-provided coordinates.

It would be possible to implement ensureCell() by performing the trim and

dilate operations each time ensureCell was called on a previously-undefined

cell. However, due to the number of ensureCell() calls encountered in practical

situations (a cubical drop of fluid occupying a 10x10x10 region could potentially

invoke 1000 ensureCell() calls), the modified RLE set instead stores previously-

undefined cells in a map keyed by the cell’s (x, y, z) coordinates.

When accessing a cell, the RLE set first checks to see if the requested coor-

dinates are defined in the map. If they are, then a reference to the map cell is
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returned. If not, then a reference to the RLE set’s cell is returned (assuming

of course that the cell at the requested coordinates is defined). To ensure that

injected cells stored in a map don’t remain there forever, the dilate operation

checks both the source set and the source set’s injection map when adding values

to the target set.

During the dilate operation, injection map values are merely copied to the

target set’s injection map and before any trim or dilate operation the target set’s

injection map is cleared.

3.3.2 Algorithm Modifications

Although the basic algorithms for RLE set manipulation and LBM simulation

were taken from [32] and [84] respectively, some tweaks were required to get them

to interoperate.

LBM Modifications

The original LBM simulator was heavily integrated with its array-based grid

storage, and thus had to be heavily modified to accommodate multiple grid stor-

age data structures. The original simulator used pointer arithmetic in several

places to speed up cell access, but since pointer arithmetic does not work to lo-

cate cells in RLE sets, all cell access was abstracted out into an interface that

had one implementation for array-based grids and another for RLE-based grids.

The method for iterating over grid cells also had to be changed. The original

simulator simply iterated x, y, and z coordinates over the x, y, and z ranges of the

domain. To accommodate multiple grid types, all grid iteration was modified to

use iterator objects that were obtained from the individual grid implementations.

The simulation also need to be modified to include an additional “prepare”

step to prepare the target grid for the next LBM timestep. The prepare step for

array-based grids is a no-op, since all storage is pre-allocated at the beginning

of the simulation. For RLE-based grids, however, the prepare step is used to
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configure the target grid to have all of the defined cells it needs for the next

timestep (fluid cells plus the one-empty-cell layer). This configuration consists of

trimming the source grid into the target grid, dilating the target grid back into

the source grid, and then reinitializing the target grid to have the same defined

cells as the source grid. The subsequent LBM timestep is then guaranteed to

have all of the defined cells it needs.

The last LBM modification allowed RLE-based grids to include fluid and

obstacles outside the domain. The original simulator again iterated over the x, y,

z ranges of the domain to determine cells that were filled with fluid or an obstacle.

This had to be changed for RLE-based grids to iterate over the bounding box of

each object (whether fluid or obstacle) rather than the domain and inject cells

that were inside the object.

RLE Set Modifications

During a trim operation, the original RLE set removed cells that were “far

away” from the fluid surface. Since we cannot ignore all cells that are “far away”

from the fluid surface when simulating fluids, the trim criteria was changed to

retain only fluid cells that are not flagged as empty (i.e., cells that are flagged as

fluid or interface cells).

During a dilate operation, cells in the target set are initialized either by copy-

ing fluid cells that are defined in the source set or the source set’s injection map,

or setting the cell’s flag to empty and zeroing all of the cell’s DFs for cells that

aren’t defined in the source grid or its injection map.

Lastly, because RLE sets can have defined cells that are in the injection map

rather than the value array, iteration over the set visits all injected cells before it

visits any of the cells in the value array.

34



Figure 3.9: Blender interface with fluid panel.

3.4 Blender Changes

The LBM simulation code in Blender is fairly-well isolated from the rest of

the code, which made it easy to include the modified simulator code. The only

significant changes were interface changes in both Blender and the simulator’s

API to allow users to choose between array- and RLE-based grids, and to choose

for RLE grids whether the fluid would be allowed to escape the domain.

These options were added to the Blender interface in the form of toggle but-

tons, located in the pre-existing Fluid panel that appears for Blender meshes.

The fluid panel in Blender can be seen highlighted in Figure 3.9 with closeups

of the new buttons in Figures 3.10 and 3.11. The domain escape button only

appears if the user has chosen to use the RLE-based grid.
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Figure 3.10: Blender interface button toggling array- vs. RLE-based
grid storage.

Figure 3.11: Blender interface button allowing RLE-based fluid to es-
cape the original domain.
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Chapter 4

Validation

To see how RLE-based simulations compare with array-based simulations, two

experiments were performed using both RLE- and array-based grids and data was

gathered regarding the time and memory required to perform the simulations, as

well as the simulation outputs themselves.

4.1 Experiments

The two experiments that were performed involved a single drop of water

starting from rest and falling inside a cubical domain. The domain for both

experiments was 10x10x10 Blender units (BU) on each side. The first experiment

used a water drop that had a radius r = 2.5 BU, and the second experiment used

a drop with r = 1.5 BU. The proportions of the domain volume occupied by the

fluid in each experiment are
4
3
π(2.5)3

103 = 6.55% and
4
3
π(1.5)3

103 = 1.41% respectively.

For each experiment, a simulation was run with the given setup at three

different resolutions, with n = 32, 64, and 128 grid cells in each dimension.

The start-to-finish wall clock time and memory usage were recorded for each

experiment at each resolution, and the resulting fluid surface meshes were saved

for comparison.An addition run was performed with n = 256, but the array-based
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simulation crashed Blender because it was trying to allocate too much memory.

The RLE-based simulation started successfully, and memory measurements have

been included for n = 256. The “domain escape” for the RLE-based simulations

was also left disabled to enable a comparison. With the “domain escape” option

enabled for RLE-based simulations, the water drops would simply have fallen

straight out of the bottom of the domain.

All of the experiments were performed using an Intel Core 2 Duo @ 1.8GHz,

with 2 GB of RAM on Windows XP.

4.2 Results and Analysis

When comparing the fluid surface meshes for array- and RLE-based simula-

tions for the same setup and resolution, the meshes were found to be different.

Upon further investigation, it was discovered that the meshes differed at small

scales while the global behavior of the surface was consistent. This difference

can be attributed to different instruction sequences (especially floating-point in-

structions) generated by the compiler for the different grid types. For instance,

merely moving a C++ class definition from one header file to another caused

similar differences. A comparison between the array- and RLE-based simulation

for experiment 1 at three different timesteps with n = 64 can be seen in Figure

4.2. In the figure, the top row is the RLE-based simulation and the bottom row is

the array-based simulation. The yellow wireframe cube denotes the boundaries of

the domain. Note that, although the small details differ, the global fluid behavior

is similar between the two simulation types.

The time and memory measurements for each experiment are detailed in

Tables 4.1 and 4.2. The “RLE %” row gives the RLE results as a percentage

of the corresponding array result. Figures 4.2 and 4.2 also compare the array-

and RLE-based simulation measurements graphically. The results show that,

while the RLE-based simulations take several times longer than the corresponding

array-based simulations, the memory savings can be significant.
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n 32 64 128 256

Mem. Usage (MB)
Array 5.75 46.00 368.00 N/A
RLE 4.89 24.72 126.12 419.73
RLE % 85.00 53.74 34.27 N/A

Time Taken (s)
Array 41.95 421 6287 N/A
RLE 182 2183 28072 N/A
RLE % 433.90 518.53 446.51 N/A

Table 4.1: Time and memory results for experiment 1 (r = 2.5 BU).

n 32 64 128 256

Mem. Usage (MB)
Array 5.75 46.00 368.00 N/A
RLE 4.89 16.63 83.43 281.56
RLE % 85.00 36.16 22.67 N/A

Time Taken (s)
Array 20.34 204 2766 N/A
RLE 95 944 10499 N/A
RLE % 467.04 462.75 379.57 N/A

Table 4.2: Time and memory results for experiment 2 (r = 1.5 BU).
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: Comparison of RLE- vs. array-based fluid simulations. (a)
- (c) are RLE-based, and (d) - (f) are array-based.

The memory savings achieved by the RLE-based simulation are substantial,

ranging between 15% for n = 32 to 66% and 77% for n = 128 in experiments 1

and 2 respectively. Also notice that the percentages of memory used and times

taken by the RLE-based simulation at each resolution in experiment 2 (r = 1.5)

are less than or equal to those of experiment 1 (r = 2.5), while the memory

and times measured for the array-based simulations are constant between exper-

iments. This matches the expected behavior of time and memory requirements

being proportional to the volume of the fluid rather than the volume of the do-

main, and also the expected time and memory reduction when the fluid occupies

a smaller proportion of the domain.

In both of these experiments, the RLE-based simulation took roughly five

times as long as the array-based simulation. The array-based simulation can

access cell contents’ in O(1) time, but must iterate over each cell in the grid even

though it does not perform any processing for boundary and empty cells. The

RLE-based simulation iterates only over defined cells but has O(log(n)) access

time. Thus, the tradeoff when using RLE grids is decreased iteration time at

40



(a) Memory usage (b) Time taken

Figure 4.2: Results for experiment 1 (r = 2.5 BU).

(a) Memory usage (b) Time taken

Figure 4.3: Results for experiment 2 (r = 1.5 BU).

the expense of increased cell access time. Therefore, RLE simulations should

take less time than the corresponding array simulations when the time saved

during iteration is greater than the increased access time, which will happen

when the domain is very large and the volume occupied by the fluid is very

small in proportion to the domain. Interestingly, the RLE % for n = 64 actually

increased, which is the opposite effect of what one would expect. Perhaps this

can be attributed to poor cache alignment for the particular experimental setups.

Unfortunately, achieving this seems to require much larger domains than Blender

can generate for array-based simulations, which prevents RLE-based simulations

from reaching their potential as far as simulation time is concerned. On the other

hand, RLE-based simulations are essential for these very large domains because

they enable simulations to be performed that were not previously possible.
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4.3 RLE Domain Escape

It is interesting to compare the results of having the “domain escape” option

enabled vs. disabled for RLE-based simulations. Another experiment was per-

formed using n = 64, with the bottom plane of the domain set to be an obstacle

(although the obstacle is not rendered). The results of the experiment are illus-

trated in Figure 4.3, where the top row depicts a simulation with the “domain

escape” option enabled and the bottom row depicts the option disabled. We

can see that the fluid in the simulation with the option disabled encounters an

invisible wall at the edge of the domain (the yellow wireframe cube) while the

simulation with the option enabled allows fluid to move outside of the domain.

(a) (b) (c)

(d) (e) (f)

Figure 4.4: Comparison of RLE-based fluid with the domain escape
option enabled and disabled. (a) - (c) have the option enabled, and
(d) - (f) have the option disabled.
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4.4 Comparison to Houston et al

Because Houston et al [32] used their implementation of an RLE level set to

perform Navier-Stokes fluid simulations, it would also be worthwhile to compare

the RLE-based fluid simulation presented in this thesis to their results. In [32],

Houston et al do not provide any timing measurements for fluid simulations

performed using their RLE implementation, but they do achieve memory savings

comparable to the results in this thesis. The maximum memory savings they

achieved was 77% using a resolution of 136x136x320, which is almost three times

as large in terms of voxel count as the n = 128 grid from experiment 1. Their

experimental results are not directly comparable with ours due to the different

domain sizes and fluid initial conditions, but they are in the same ballpark.

Their experiments used much less total memory than the ones presented here,

using 20MB for their RLE-based 136x136x320 experiment vs. 126MB for our

128x128x128 experiment), but this can be attributed to the different simulation

methods used since LBM stores 19 velocities per grid cell instead of one velocity

and one density in Navier-Stokes simulations.
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Chapter 5

Future Work

Although RLE-based grids save a lot of memory, there are several improve-

ments that could be made.

First, the original LBM simulation had the ability to use multiple grids, where

the additional grids had a much coarser resolution and were used for taking

larger timesteps in fluid regions that were far away from the fluid surface [84],

thereby speeding up the simulation. Results from the coarse grids then had to be

merged back into the finest grid, which required several additional cell flags and

passes over the grid. No part of the RLE-based fluid representation explicitly

prevents multiple grids from being used, but this algorithmic enhancement was

intentionally left unaddressed by this thesis. Enabling multiple grids has the

potential to bring simulation times when using RLE-based grids more in line

with those of array-based grids.

One of the LBM’s advantages over other simulation methods is the ease with

which it can be distributed among multiple processors. [84] describes how the

OpenMP API [7] can be used on array-based grids to speed up simulation times.

This method involved dividing the grid array into two or more partitions of similar

size and processing each partition with a different processor. Because there is no

immediately obvious way to partition RLE grids into similarly-sized partitions,

using an RLE grid prevents parallelization. The original LBM simulation imple-
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mented in Blender did not enable parallelized simulations and thus was limited to

a single processor for both array- and RLE-based grids, but creating a method to

perform parallelized RLE grid simulations could also achieve significant speedups.

Since the greatest disadvantage of RLE grids is the increase in simulation

time, it would be worth investigating additional methods for optimizing the RLE

data structure. For instance, if the simulation could perform its calculations

within the dilate operation when initializing cell values, RLE-based simulations

could avoid having to make another pass over the grid cells afterward (in the

normal LBM timestep), which could reduce simulation times by roughly 33%.

Also, maintaining iterators for not just the current grid cell but also all of its

neighbors when iterating over the grid (as described in [32]) would prevent the

simulation from having to use the O(logn) RLE random access method to access

neghboring cell values. This would speed simulations up considerably.
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Chapter 6

Conclusion

This thesis has demonstrated that RLE-based LBM simulations are not only

possible, but can provide significant memory savings at the cost of increased

simulation time. Due to the magnitude of the time increase, array-based grids are

probably still preferable in most situations that will be encountered in practice,

especially in situations where domains will be mostly or completely filled with

fluid. However, when the amount of memory used is a concern, then RLE-

based grids are the way to go. An example of this type of situation could be

simulations performed on embedded devices such as the iPhone or other handheld

devices, although these simulations would likely experience further slowdowns due

to the lack of computing power available on most mobile platforms. RLE-based

simulation is necessary in a couple of specific situations where fluid needs to

be able to move outside of the original domain or the system performing the

simulation does not have enough memory to allocate the array grids.

We believe that RLE-based simulation still has the potential to be faster than

array-based simulation in situations where the domain is very large and the per-

centage of the volume occupied by the fluid is very small, although the evidence

presented in this thesis does not support this assertion. We attempted to find

a situation where an RLE-based simulation would be faster than an equivalent

array-based simulation, which resulted in the waterslide setup seen in Figure 6.1.
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Figure 6.1: Experimental setup with large domain and small propor-
tion of fluid.

This setup contains a waterslide roughly traversing the domain’s (rendered in

wireframe) diagonal with a fluid source at the top-right. Unfortunately, we could

not run the array-based simulation at a high-enough resolution to compare it to

the RLE-based simulation due to memory limitations on the system running the

experiments. Perhaps future work can confirm or deny this claim by running the

experiment on a 64-bit system with more memory.

The primary factor working against the RLE-based simulation is the several-

fold increase in the time required to complete a simulation. If this time could

be reduced by code optimization and the techniques described in Chapter 5 to

only two-fold or even less, then RLE-based simulations would become a much

more competitive alternative to the current simulator. As it currently stands,

array-based simulations are still king in most situations (at least for the LBM),

even though RLE grids do have their own niche in which they excel (memory

constrained simulations and fluid outside of the domain).
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