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Abstract

An Exploration of Hole Filling Algorithms

by

Eric Firestone

Laser range scanning is one of the leading methods for the acquisition of 3D

models from real world objects. This process, however, introduces significant

excess topological handles which increases the complexity of future processing,

and lowers the quality of the acquired models. Previous research has shown that

the hole filling step of the model creation pipeline is the primary cause of excess

handles. We explore the hole filling process in detail and discuss the limits of

hole fillers that work on the reconstructed surface and of those that work in the

volumetric setting. In addition, we present our algorithm which aims to reduce

the excess handles by adapting and improving filters that work in the volumetric

domain to fill holes in the scanned data. Using these filters we are able to reduce

the topological noise by 47% and to improve the output appearance of surfaces

processed by existing hole fillers.
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Chapter 1

Introduction

Computerized 3D models are increasingly being used in fields such as motion

pictures, video games, and medical research, among others [14, 17]. A common

goal in these applications is the creation of as realistic a model as possible, and

this is often accomplished by scanning physical objects and digitizing that data.

Various methods exist for accomplishing this, but we will focus on the most

common one: structured light sensing [3].

In the structured light sensing method of scanning, a focused beam of light,

generally a laser, is swept across the model as a point of reference for a conven-

tional video camera, which can relate the illuminated area to a scanline in the 3D

representation. Using this data and the camera’s known line of sight, correspon-

dence between the viewpoints of the laser and the camera can be triangulated,

giving a distance to the object.

Scans are made from multiple angles and the collected correspondences are

synthesized into a series of data points called range images, which are subse-

quently aligned and merged to create a single model. This model is first repre-

sented as a cube of voxels (a volume), from which a mesh can later be extracted

using an algorithm such as marching cubes [13].

There is no guarantee that these scans will include data about the entire

1



surface of the object being scanned, and more often than not some of the object

is occluded from the scanner, creating areas that lack data. For most practical

applications these areas must be filled using one or more hole filling techniques. It

is our goal to examine the influence of these hole fillers on the final mesh product,

particularly on how they affect the topology of the model. We also aim to help

minimize the excess topology introduced by these hole fillers through the use of

volumetric preprocessors.

1.1 Terminology

There are a number of terms which will be used heavily, and which should be

clearly defined for the context of this document.

(a) A hole (b) A handle

Figure 1.1: Terminology

Boundary Edge - A boundary edge is the edge of a polygon in a mesh which

has only one adjacent face. This term may be shortened to simply “boundary”

or “edge” throughout the paper.

Hole - For the purposes of this document, a hole, as illustrated in figure

1.1(a), refers to a break in a surface mesh, as defined by a series of three or more

boundary edges. A hole should not be confused with a handle, which is defined

later.

Manifold - The term manifold describes a model with a surface that is either

devoid of any holes (i.e. has exactly two faces connected to each edge in the mesh),
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or which has holes that are topologically equivalent to a disc (i.e. each vertex is

either surrounded by a disc neighborhood or half-disc neighborhood).

Handle - A handle refers to a loop in the structure defined by a mesh, such as

the handle on a coffee cup, or the area in the middle of a doughnut. An example

of such a handle is shown in figure 1.1(b). Handles are an expected part of the

topology of the mesh, and unlike holes, are not considered a defect in the mesh

structure.

Genus - Genus is a mathematical term describing the number of handles, or

watertight holes, present on a mesh. As examples, a sphere has a genus of zero,

a torus a genus of one, and a double torus a genus of two. Any genus numbers

used in this paper are for manifold meshes.

Hole Filling - For our purposes, hole filling refers to the process of eliminat-

ing holes defined by boundary edges in the mesh. It does not refer to altering

the genus of the mesh through the elimination of handles.

1.2 Problem Description

Structured light range scanning is capable of producing high resolution, visu-

ally accurate models, however it does have a few limitations. Because the process

uses a linear sensor, areas of concavity on an object can obstruct the scanner’s

line of sight, leaving unscanned regions. Without treatment, these regions man-

ifest themselves as holes in the final mesh, leaving it non-manifold and visually

unappealing (see figure 1.2). As these regions are common on all but the simplest

of real world objects, they must be dealt with in a robust and accurate way.

As discussed in the related work section, there are many existing hole filling

methods, however each still has significant shortcomings. One of the most reli-

able and prevalent methods is that employed by VRIP [5], which makes use of

the additional scanner data present in the volumetric representation to extract

an isosurface. This method works well for creating a manifold mesh, but our

previous work [7] has shown that it introduces unnecessary complexity as well.
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Figure 1.2: A region which is problematic to capture using range scan-
ning.

This complexity comes in the form of excess topological handles, or loops on the

surfaces of the model. These handles are generally very small and are not visible

to the naked eye when the model is viewed in full. They mean, however, that

extraneous data must be stored for the model, and more importantly, that any

processing that is done on the scanned model must be done on the extraneous

data as well, often severely degrading the results.

VRIP does its hole filling during the reconstruction phase of the reconstruction

pipeline, however the other phases of the pipeline are worth reviewing as well. The

pipeline begins with the data acquisition stage, during which some device (such

as a laser scanner) is used to generate a data set representing the physical object

being modeled. In the case of structured light data acquisition, this acquired data

is stored into multiple range images, each containing a point cloud representation

of the scanned model from a given viewpoint in 3D space. This stage is followed

by an alignment stage during which the range images are translated or rotated

so as to represent their position on the original model. During the third stage

the aligned range images are merged into a single volumetric representation, on

which many existing hole fillers focus their repairs. The final stage of the pipeline

involves reconstructing a mesh from the volumetric representation. This mesh is

the other medium on which hole fillers are commonly applied

Filling holes in a model in a satisfactory way is difficult due to a number

of subtle problems, whether the model is in its volumetric representation or in

its mesh representation. The volumetric representation provides additional data
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(a) Hole-spanning faces (b) Overlapping vertices (c) Self intersection

Figure 1.3: Common problems in mesh-based hole filling.

from the scanner, however, this representation occurs earlier in the reconstruction

pipeline and it is difficult to determine what effects changes to the volume will

have on the final mesh. Furthermore, there must be some way to determine from

the volume that the extracted mesh will actually be devoid of holes.

Filling holes in an extracted mesh seems more straightforward at first, but

this method too is riddled with difficulties, particularly around producing a man-

ifold mesh. The manifoldness of the extraction is not a problem for volumetric

hole fillers as the requirement to create a manifold mesh is left on the extrac-

tion mechanism, such as marching cubes [13]. When filling holes in the mesh,

however, the hole filler must avoid a number of problems, including creating over-

lapping faces. This can happen if existing hole-spanning faces exist in a hole (see

figure 1.3(a)), and faces added to fill the hole overlap them. A similar prob-

lem exists with overlapping vertices. In a manifold mesh without boundaries,

a vertex must be surrounded by a disc neighborhood, and so situations such as

figure 1.3(b) must be avoided. A third, and often more difficult, problem is the

case of self-intersection, as shown in figure 1.3(c). The mesh should not inter-

sect itself. Avoiding this requires a programmatic understanding of the mesh’s

representation in space, which is more difficult to deal with than the relatively

simple edge, face, and vertex connections required for the other issues. For-

tunately, self-intersection in a mesh, although visually less appealing, does not

affect post-processing such as face-count reduction.

As with the problem of hole filling, a number of methods exist for reducing
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(a) Before (b) After

Figure 1.4: Mesh smoothing results in an overall loss of detail. Taken
from [15].

the number of handles in an existing mesh, although these too are imperfect. A

common technique is to smooth the surface of the mesh [8, 15]. This has the

benefit of being somewhat naive as to where handles exist, however, it results in

an overall loss of detail (figure 1.4), and by no means ensures that all extraneous

handles will be removed. More complex methods exist [18] which can explicitly

identify the handles to remove and do so in a clean manner without loss of detail.

The shortcoming of this technique is that it is complex in its execution, and

therefore requires long processing times.

Our goal in this paper then, is to carefully explore the hole-filling algo-

rithms used for surface reconstruction. We examine several different methods

and present their results and weaknesses. We also propose a method to reduce

the genus of the final mesh in a way which does not compromise existing detail,

and which improves the overall appearance of hole filled areas. We focus on the

hole filling step of the reconstruction process as that has been shown to introduce

the most topological noise.
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Chapter 2

Previous Work

2.1 Source Investigation

Our previous work [7] provides a solid exploration into where extraneous

handles in a mesh are introduced. This work analyzes two of the four stages of

the reconstruction pipeline [4]. Of the four stages: data acquisition, alignment,

merge, and reconstruction, we focused on the first and last stages, eschewing the

alignment stage in order to limit the scope of the paper, and judging the merge

stage as an unlikely source of error.

Our analysis of the data acquisition stage in this previous work shows that

any noise introduced by the scanner is likely not a source of extra topology in

the final mesh. In general, removing “noisy” data points led to increased hole

filling, which resulted in a higher genus for complex hole fillers, or significant loss

of detail for simple ones.

Our evaluation of the hole filling stage provided further evidence that it was a

significant contributor to a mesh’s artificially high genus. We tested the influence

of this stage by comparing the hole filler from the widely used reconstruction

algorithm, VRIP [5], to a simple triangle fan hole filler. This simple hole filler

produced meshes with a much lower genus than VRIP. Based on this result,
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combined with the correlation of higher genera given increased hole filling (as

demonstrated by the noise filtering experiment), we determined that the hole

filling stage introduces the majority of the extraneous topology. Based on this

conclusion, our current work focuses on improving the results of existing hole

fillers such that they introduce fewer handles.

2.2 Hole Fillers

As the hole filling stage has been determined to be the primary source of

extraneous handles, it is compulsory that we investigate previous research in this

area.

2.2.1 Triangulation

In order to evaluate the effects of the hole filling stage on a mesh’s genus, for

our previous work [7] we implemented our own simplistic hole filler which uses

a triangle fan patch over holes. The patch had its center vertex located at the

geometric center of all points comprising the boundary edge of the hole, with one

side of each patch face aligned along one of the hole’s boundary edges.

As discussed in the problem description, a number of problems must be solved

for mesh-based hole fillers. Our triangulation hole filler addressed the issue of

hole-spanning faces using a mark-and-sweep approach [11], where marking is done

only by traversing across edges. Using this approach unmarked faces correspond

to hole-spanning faces, which are removed before any hole filling is done. Over-

lapping vertices are handled after hole filling has completed by simply splitting

the vertex into multiple vertices which coexist at the same geometric location.

An additional vertex is created for each set of connected faces which touches the

overlapping vertex in order to eliminate the overlap condition. As it was not

relevant to our investigation, we did not address self-intersection in the mesh.

The greatest strength of this hole filling approach is its simplicity. Given that
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only one vertex is being added for each hole, it is extremely unlikely that any

additional handles will be introduced, leading to a lower genus than is produced

by other hole fillers. This algorithm also requires no manual intervention. Holes

can be automatically identified based on boundary edges, and no parameters

are needed to create the triangle fan patches. Finally, thanks to the methods

described above to handle hole-spanning faces and overlapping vertices, the final

mesh is always manifold and without boundaries.

Because the triangulation hole filler was created for evaluating other hole

fillers by trying to minimize extraneous handles, the visual representation of the

filled holes was not a concern. A number of features of the triangle fan patches

are non-ideal. Using the centroid as the center of the patch is simplistic, and the

geometry of the patch may not fit well with the surrounding mesh. Additionally,

self-intersection is not prohibited, so the patch could potentially intersect existing

faces of the mesh.

Aesthetically, the triangle fans create noticeable lines as seen in figure 2.1(a)

and the large faces we use stand out from the much smaller faces of the rest of

the mesh. The algorithm can also alter the desired topology of the model by

closing holes it is not supposed to. Holes such as the Buddha’s armpit (see figure

2.1(b)) can be mistakenly filled because the armpit, which is supposed to be a

tunnel through the model, is viewed by the algorithm as two basic holes (one on

either end), which should be patched. This is a difficult problem to avoid using

only the data available in the mesh, but one which is not an issue for volumetric

hole fillers.

Finally, although not relevant for most models, the triangulation hole filler

cannot handle a mesh which is split into multiple distinct pieces. For a model

of this sort, the mark-and-sweep phase would discard all but one of the pieces,

and even without this phase, the hole identification step would fail if the hole

could not be traced in a complete loop from one vertex back to itself (here, too,

it would fill the hole only on one piece, ignoring any additional pieces).
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(a) (b)

Figure 2.1: a) Visually distinct triangle fan patches from the triangu-
lation hole filler. b) The Buddha’s armpit filled using the triangulation
hole filler. This is an example of a complex hole which is difficult to
analyze in the mesh domain.

2.2.2 VRIP

The volumetric range image processor (VRIP) [5] is a well-regarded and widely

used tool for research applications [10, 12, 16]. It provides both a merging algo-

rithm as well as a volumetric hole filler. By working with the volumetric data,

VRIP has more information available to it than hole fillers working with a mesh.

The most important piece of additional information relates to the validity of vol-

ume areas as determined by their visibility from the range image scanner. Using

the scanned data, and a process called space carving, VRIP is able to determine

which areas are unseen by the scanner and thus will represent holes in the output

mesh.

Space carving works by following the line of sight from an observed surface

back to the scanner. As the scanner was able to see the surface along that

path, the path can be assumed to be empty space and is marked as such. This

creates three distinct states for the voxels of the volume: seen voxels are those

representing the observed range image data, empty voxels are those that are

cleared using space carving, and unseen voxels represent any remaining areas. In

more practical terms, the seen voxels make up the exterior surface of the model,
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the empty voxels make up the area outside of the model, and the unseen voxels

fill the interior of the model. A slice of the buddha volume which illustrates these

voxel types can be seen in figure 3.1(a).

VRIP’s hole filler works by extracting an isosurface from the unseen-empty

boundaries as well as the observed surface. These boundaries appear in crevices

and areas which the scanner has difficulty observing. This method has a number

of strengths. Because VRIP works only with the volume data, it does not have

to worry about problems inherent to mesh hole filling such as hole-spanning faces

or overlapping vertices. Additionally, its results are always manifold as long as

the extraction mechanism (marching cubes [13] in VRIP’s case) always produces

manifold meshes. VRIP also requires relatively little user tweaking. There are a

number of parameters that can be changed, however for the majority of data the

default values will produce an adequate product.

A number of optimizations are employed by VRIP to speed processing and

minimize memory usage, but the noteworthy one with regard to hole filling is the

use of run length encoding [9] to encode the volume. This allows for quick traver-

sal across large homogenous areas, and also minimizes the memory footprint. We

will take advantage of this optimization in our hole filling implementation as well.

The biggest shortcoming of VRIP as a hole filler is that it introduces a large

number of additional handles. As shown by our previous work [7], the number of

handles increases significantly with the amount of the model that VRIP is hole

filling. Due to its widespread use, but relatively poor genus numbers, we use

VRIP as the minimum benchmark for our results.

2.2.3 Volfill

The volumetric diffusion hole filling algorithm (commonly referred to as volfill)

by Davis et al. [6] attempts to use a more intelligent approach than VRIP’s to

synthesize unseen surface areas of the model. It represents the model volumet-

rically as a signed distance function similar to VRIP, but attempts to create a

surface which is continuous with the existing, seen model surface, in order to
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(a) (b) (c)

Figure 2.2: a) A mesh extracted from a volume treated by Volfill. b)
Volfill does a good job of handling small, complex areas, such as the
Buddha’s armpit. c) However, it creates significant noise and deviates
into the wrong directions near large holes if other nearby holes are
present. This behavior keeps it from creating the desired topology in
the output mesh.

produce a more realistic surface geometry.

Using volfill, holes are filled by identifying gaps in the zero set of the signed

distance function. These gaps, which would correspond to holes if an isosurface

were extracted from the volume, are then closed by iteratively expanding the

known surface into that area. The direction of expansion is determined by the

distance to the existing isosurfaces in a specified vicinity.

In practice, this works well in small areas, as illustrated in figure 2.2(b). It

successfully closes holes using a realistic looking geometry, using curves that are

significantly more authentic looking than triangulation hole filling, and which

also look better and have a smoother surface than VRIP filled holes. Volfill is

much more robust in complex areas as well, accurately filling areas that contain

chaotic surfaces, such as hair or the folds of robes.

Volfill, like the other algorithms, has its problems. The foremost issue is
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(a) (b) (c)

Figure 2.3: a) Two holes in close proximity. b) The desirable direction
of expansion by volfill. c) The actual direction of expansion by volfill
due to influence of the holes on each other.

that although the authors claim the algorithm is always capable of producing

a volume which can be extracted to a manifold mesh, our tests showed that

this mesh was often not the one desired. Large holes, such as that on the top

of the Buddha’s pedestal, were not closed completely (see figure 2.2(c)), even

after a large number of iterations. The direction of expansion indicates that

the hole was to be filled by merging the top of the pedestal with the bottom

of the Buddha’s robes, therefore eliminating desired topology. This example

also illustrates volfill’s inability to properly close large holes. The direction of

expansion is influenced by all surrounding isosurfaces, so if an additional gap

exists near one side of a large gap, the side of the gap will converge toward the

smaller gap, not toward the other side of itself. An illustration of this situation is

provided in figure 2.3, and a real-world example can be seen in figure 2.2(c), where

the gap at the bottom of the Buddha’s robe is converging toward the large gap

in the pedestal. The two holes which are converging can be seen in the volume

slice of figure 3.7(a). It is likely that much of this problem could be avoided

by using the line of sight constraints as outlined in the volfill paper, however

the implementation made publicly available by the authors does not provide this

capability.

Also, unlike the previously mentioned hole fillers, volfill requires manual input.

The user must specify the number of iterations to expand, where an insufficient
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number would keep it from filling even the most simple holes. Additionally,

the distance for which expansion will proceed into a hole must be specified, thus

requiring the user to have knowledge of how large the holes in the model’s surface

are. These, along with other parameters which are not easily obtained by the

user, can have significant influence on the success or failure of the algorithm to

fill holes.

2.3 Handle Reducers

Improved hole filling is one approach to reducing the number of handles in

a mesh. An alternate approach is to try to remove the handles from a model

after the holes have been filled. A number of methods have been devised for

accomplishing this, some which operate on the mesh itself, and some which op-

erate on the volume data used to create the mesh. We explore these works as we

incorporate some of their techniques into our own implementation.

2.3.1 Smoothing

A methodology by Nooruddin and Turk [15] helps reduce handles by applying

traditional 2D morphological operators to a volumetric representation of a model.

The aim of their work is to produce more accurate models of reduced face counts

than existing simplification methods. A key to their approach is that they do

not preserve the topology of the original mesh. Although the aim of our work is

not to simplify the mesh (in fact it is to preserve as much detail of the original

as possible), Nooruddin and Turk’s methods do effectively reduce handles, and

we can adapt their algorithm to fit our needs.

The morphological operators are applied to the volumetric representation,

which they obtain from existing meshes using two mechanisms unique to their

work. As we are concentrating on improving the entire reconstruction pipeline,

we have access to the volumetric data before a mesh has been extracted, and so
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these mechanisms are not relevant to this paper. What is relevant is that the

volume they extract is necessarily solid (not thin-shelled), which is similar to the

volumes we will be using from VRIP. The differences between these volume types

can be seen in figure 2.4.

(a) Thin-shelled (b) Solid (c) VRIP

Figure 2.4: Slices through various types of volumes. White represents
seen voxels, black represents empty voxels, and brown represents un-
seen voxels.

Specifically, their work makes use of the erosion and dilation morphological

operators to reduce the topology of the model. The erosion operator contracts the

volume within a given threshold, effectively shaving layers off of the volume. It

is here that the solid model becomes necessary, as thin-shelled volumes would be

destroyed once the shell has been eroded. The dilation operator is the complement

of the erosion operator. This operator expands the volume by adding layers to it.

The operators are generally used in conjunction, first contracting then expanding

the volume, or vice versa. During this operation, small topological artifacts are

smoothed out.

A key problem with this algorithm is that the process of voxelizing the model,

then re-extracting a mesh, creates a product which is drastically different from the

original. For Nooruddin and Turk, this is desirable as it produces a guaranteed

manifold mesh, however it creates a significant loss of detail that is against the

interests of our paper. This process is also complicated and expensive. For our

work, non-manifold meshes are not a problem as we are addressing the data before

it has been extracted into a polygonal representation, and so we can alleviate this

15



problem by simply working with the volume data early on in the pipeline.

2.3.2 Handle Identification

One of the most successful handle removal tools is that of Wood, et al. [18].

Their approach utilizes both the extracted isosurface, and the underlying volume.

Handles are identified by encoding the data as a Reeb graph and looking for cycles.

The identified loops (handles) are then filled with a triangle fan. Additional

precautions are used to preserve existing mesh detail and to avoid self-intersection

in the resulting mesh.

This algorithm is the most accurate of any mentioned. Because it explicitly

identifies handles, it can precisely remove them and can guarantee that they are

all removed. Additionally, this precision allows for minimal modification of the

mesh, thus preserving detail.

One of the main disadvantages of Wood’s algorithm is that it is very slow.

The process of identifying handles takes significant time, and so this algorithm

takes orders of magnitude longer than the other algorithms. Also, by necessity,

it requires the user to specify the maximum size of the handle to close, thus

preserving handles which are part of the desired topology of the model (such as

the Buddha’s armpit).

It is also worth noting that this algorithm is a sort of last resort. It is used

because the stages of the traditional reconstruction pipeline have failed to create

a mesh without imperfections, and so these imperfections must be removed. It

is the goal of this work to help improve these traditional reconstruction stages

to help reduce the handles they introduce, thus minimizing the need for post

processing tools such as this algorithm.
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Chapter 3

Implementation

3.1 Inspiration

The aforementioned works present a wide variety of ideas for reducing the

genus of a mesh, however none of these is perfect. We aim to combine the

strengths of these approaches while minimizing their shortcomings.

One common theme for the existing bodies of work is their use of the volume

data instead of the mesh data. The one approach that uses a purely mesh-based

repair mechanism [7] hits a number of limitations which cannot be reasonably

overcome without additional data. As an example, the problem of differentiating

holes in the mesh on the ends of a tunnel from holes that happen to be aligned

and need to be filled is nearly impossible to solve without some concept of how the

original scan was made. By comparison, the volumetric data clearly represents

the area as a tunnel through the model, or as an area unseen by the scanner.

By modifying the volume rather than the mesh, we can take advantage of this

additional data, such as normals and line of sight information provided by the

original range images.

Working in the volumetric domain also eliminates the need to do complex

mesh surgery. Changing the mesh requires taking care to preserve manifoldness
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and avoid self-intersection. These are two problems that have many caveats, as

outlined in the problem description section. Modifications to the volume do not

require taking these precautions, as a well-behaved mesh extraction mechanism

[13] is guaranteed to produce a manifold, non-intersecting mesh.

Unlike some existing works, we do not bind ourselves with the requirement of

being able to work with an existing mesh, and so we have the freedom to work

on the volume data as desired. We also note that even with this requirement,

research such as [15] still converts the mesh to the volumetric domain in order to

leverage the advantages of this representation. Our goal is to improve hole filling

to produce a cleaner mesh after a single run through the reconstruction pipeline,

and as the data passes through a volumetric representation in the pipeline, we

will focus on this period.

Finally, we choose to work in the volumetric domain because it is earlier in the

pipeline, and so we can leverage additional hole filling techniques at later stages.

By applying volumetric hole filling techniques, we do not preclude ourselves from

applying existing volumetric hole fillers, or mesh based hole fillers. Given this

ability, our work is not required to fully solve a problem which has already been

partially solved, it only needs to improve the product of the existing techniques.

We build our solution upon the discussed solutions, supplementing them as

necessary. In particular, we make heavy use of VRIP since it provides the merge

and reconstruction phases of the reconstruction pipeline. For the raw data and

its alignment we use range images from the Stanford 3D Scanning Repository [2],

which come pre-aligned by previous researchers using a tool called Scanalyze [1].

By interspersing our techniques into the steps taken by VRIP we have access to

the data in its volumetric representation, and are also provided with a marching

cubes implementation to extract a manifold mesh from our modified volume.

In order to create our improved hole filler, we start by modifying the technique

of Nooruddin and Turk [15]. We adapt variations on their erosion and dilation

operators to work with the volume data provided by VRIP. Unlike their solid

volume, the VRIP volume has voxels of three types: seen, unseen, and empty.

Because the unseen voxels comprise the inner content of the volume, with the
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seen voxels providing the volume’s shell, we can effectively operate on the volume

as if it were solid by treating both of these types of voxels as model voxels. We do

not neglect the differentiation between seen and unseen voxels however, as this

provides a valuable piece of information which is absent in the Nooruddin and

Turk work. Their original implementation applied the morphological operators

to the entire volume, thus losing detail uniformly across all areas, even where

smoothing was not necessary. Using our knowledge of the unseen areas of the

volume, we can apply the operators only to the unseen-empty boundaries, as

these areas will correspond to areas that will require hole filling (and which have

the most extraneous handles) later in the pipeline. By limiting the scope of the

operators we avoid the loss of detail in areas which do not correspond to holes.

We derive a third operator that uses the surface normals to expand the isosur-

face into the hole areas. This operator is inspired by volfill, and has the similar

aim of expanding the isosurface based on the existing surface, however it uses

a different implementation. Volfill expands the isosurface by slowly blurring it

outward into gaps. The direction of the blur is based on the distance to the

nearest existing isosurface. Our approach expands more concretely by expanding

perpendicular to the normal of a voxel as determined by the scanner line of sight.

This method avoids interference from nearby gaps as the volfill algorithm is prone

to, since the direction of expansion is based on the known surface, not on the

gaps. Unfortunately, this implementation too has issues which will be discussed

in the results section.

Even using constraints such as line of sight and unseen-empty boundaries,

there are times when the lack of scanner information limits the effectiveness of

an algorithm due to interference by the surrounding data. Additionally, there

are times when applying an algorithm is more detrimental in certain areas than

it is helpful (such as a smoother which might erase detail in an already filled

area). To help combat this, we provide the ability to apply our operators only to

selected areas of the volume. This requires user knowledge and interaction with

the filling process, but is optional and can lead to improved output.
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(a) (b)

(c)

Figure 3.1: Our user interface. a) An x-axis slice displaying the empty
(black), unseen (brown), and seen (white) voxels of the Buddha vol-
ume. b) A z-axis slice displaying the normals for the Buddha volume.
c) A y-axis slice of the Buddha’s feet displaying the voxels’ confidence
values.
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3.2 Interface

To provide the user interface with which to apply our operators, we modify

the vripslicer tool provided with the VRIP [5] project. This tool provides a basic

volume viewer to which we add a number of capabilities. On top of the voxel

type view (figure 3.1(a)) provided in the basic tool, we add a normals view (figure

3.1(b)), and fix the implementation of the weights view (figure 3.1(c)) which gives

the confidence values for each pixel. The VRIP provided implementation of the

weights view is non-functional.

We add two capabilities for use specifically with our work. Notably, we add a

selection mechanism (as discussed further below), which is available both through

numeric controls and through mouse selection. Additionally, we add buttons to

apply our operators to the currently selected voxels. These buttons apply one

iteration of their respective operator, with the effects immediately visible in the

volume view.

Finally, we provide two mechanisms to save the results of user-applied oper-

ations. Controls are provided to save either the modified volume to a specific

path, or to save images for each slice of the currently viewed axis to a directory.

3.3 Morphological Operators

As discussed, there is a large body of work aimed at effectively filling holes.

Our goal then, is not to create another hole filler, but to improve the results of

existing fillers by limiting their use to situations where they excel. We accomplish

this goal by applying the following morphological operators to the model while

in its volumetric representation.

The operators are applied to a copy of the volume which is then swapped

for the original when a sweep is done. This double buffering technique keeps

changes that have already been made from interfering with future comparisons

in the same sweep. Without this precaution, expansions or dilations would run
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(a)

(b)

Figure 3.2: a) If updates are done in-place then as we sweep from left to
right we are always on the boundary and expansion will go unchecked
b) The expansion will fill the entire scanline.

unbounded within a single sweep. Consider the simplified case of only one di-

mension: iterating from left to right across three unseen voxels followed by three

empty voxels. If the algorithm reaches the barrier and expands the unseen voxels

into the empty voxels (to create four unseen voxels followed by two empty ones),

without the double buffering, the algorithm would then encounter the barrier

again on the next iteration (and again make the expansion). This unbounded

expansion is illustrated in figure 3.2. By updating a different volume than we are

reading from, we avoid this problem, as in figure 3.3.

3.3.1 Erosion and Dilation

Our two primary operators are adaptations of the dilation and erosion op-

erators implemented by Nooruddin and Turk [15]. These operators expand and

contract the volume, respectively, which serves to merge or remove small “noise”

voxels around the volume, and to smooth out rough areas. The erosion operator

can be used to remove noise voxels by contracting them into nothing as shown in
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(a)

(b)

Figure 3.3: a) By using one volume for reading (tops) and one for
writing (bottoms), we only make incremental updates with each sweep.
c) The resulting scanline won’t be expanded more than one voxel away
from the volume with each sweep.
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figure 3.4. Alternatively, the dilation operator can be used to remove them if they

are near the main volume by expanding the volume until the noise is merged into

it as in figure 3.5. In practice, both operators are usually used in tandem to avoid

shrinking or growing the volume significantly. The effects of these operators is

discussed further in the results section.

In the implementation given by [15], the operators are applied to the entire

volume, which given our goal has the undesirable side effect of smoothing the

entire model when we only want to smooth the hole filled areas. Our implemen-

tation therefore limits the application of these operators to the boundaries of

unseen-empty voxels in the VRIP-generated volume, as these areas correspond

to areas that will require hole filling in the extracted mesh. Additionally, be-

cause our volume has voxels of three states (seen, unseen, and empty) instead

of the two-state (empty and not-empty) voxels of Nooruddin and Turk’s volume,

we cannot implement the dilation operator by simply inverting the volume and

applying the erosion operator. Instead, we reverse our test as described below,

and add voxels to the volume rather than removing them.
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(a) A single application of the erosion operator

(b) A single application of the dilation operator

Figure 3.4: The removal of a floating “noise” voxel using the erosion
operator followed by the dilation operator.

(a) A single application of the dilation operator

(b) A single application of the erosion operator

Figure 3.5: The merging of a floating “noise” voxel using the dilation
operator followed by the erosion operator.
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The erosion operator iterates the voxels of the volume and where it finds an

unseen voxel adjacent to an empty voxel, it replaces the unseen voxel with an

empty one. Adjacent voxels are those six voxels which share a side with the voxel

being evaluated.

Erosion Operator

Create a buffer volume

01 bufferVolume = copy of volume

Iterate the voxels

02 for (z = 1 to dz - 1)

03 for (y = 1 to dy - 1)

04 for (x = 1 to dx - 1)

05 if (voxel at (x, y, z) is unseen and any adjacent voxel is empty)

06 set type of voxel in bufferVolume at (x, y, z) to empty

07 replace volume with bufferVolume

The dilation operator is implemented similarly, with the role of unseen and

empty voxels swapped:

Dilation Operator

Create a buffer volume

01 bufferVolume = copy of volume

Iterate the voxels

02 for (z = 1 to dz - 1)

03 for (y = 1 to dy - 1)

04 for (x = 1 to dx - 1)

05 if (voxel at (x, y, z) is empty and any adjacent voxel is unseen)

06 set type of voxel in bufferVolume at (x, y, z) to unseen
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07 replace volume with bufferVolume

3.3.2 Isosurface Expansion

The isosurface expansion operator aims to expand the existing isosurface into

holes in the model, a goal similar to that of volfill. This operator expands the

surface by using the normals of voxels in the existing isosurface to determine

the direction in which to expand. As these normals are not available in the

default implementation of VRIP, the implementation had to be augmented to

calculate and store the normal for each voxel where possible. To store the normal,

three unsigned chars (eight bytes each) were used, one for each dimension. This

enlarged the volume’s disk footprint by approximately 75% as the three bytes for

the normal were added to the existing four bytes used to store value and weight

(each a two byte short). In practice this percentage held true as our test Buddha

grew from 113.6 megabytes to 196.5 megabytes (a 73% growth).

The operator expands the isosurface from seen voxels to voxels which are

approximately perpendicular to the normal of the seen voxel, as outlined by the

following pseudo-code:
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Isosurface Expansion Operator

Create a buffer volume

01 bufferVolume = copy of volume

Iterate the voxels in the volume

02 for (z = 1 to dz - 1)

03 for (y = 1 to dy - 1)

04 for (x = 1 to dx - 1)

Find a seen voxel

05 if (voxel at (x, y, z) is a seen voxel and has its normal set)

06 normalize voxel normal <nx, ny, nz>

Look at the surrounding voxels

07 for (zm = -1 to 1)

08 for (ym = -1 to 1)

09 for (xm = -1 to 1)

Find a neighbor which is not already part of the isosurface

10 otherVoxel = voxel at (x+xm, y+ym, z+zm)

11 if (otherVoxel is unseen or empty)

Determine if neighbor is perpendicular to normal of the current voxel

12 normalize vector to surrounding voxel <xm, ym, zm>

13 dotProduct = <xm, ym, zm> · <nx, ny, nz>

14 if (cos(±112.5) < dotProduct < cos(±67.5))
15 set otherVoxel in bufferVolume to element at (x, y, z)

16 replace volume with bufferVolume
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This operator is noticeably more complex than the erosion and dilation oper-

ators, and warrants further explanation. As mentioned previously, any changes

are made to a separate copy of the volume being examined. This copy is created

on line 1, and is swapped for the original after execution of the operator on line

16. Lines 2-4 iterate every voxel in the volume. As will be described in the Op-

timizations section, the efficiency of this iteration is greatly improved by taking

advantage of the RLE encoding. We iterate the voxels until we find a seen voxel

(line 5), as this represents the isosurface that we want to expand. We therefore

ignore unseen and empty voxels during this iteration. As we require a normal to

determine the direction to expand into, we also ignore voxels which do not have

their normal set.

Once we have a seen voxel to work from, we examine its eight immediate

neighbors (those comprising the cube around it). The iteration of these neigh-

bors is handled by lines 7-9. For each neighbor, we first determine if it is not

already part of the isosurface, and therefore is a viable voxel to expand into (line

11). If the voxel is either empty or unseen, then we need to determine if it is

approximately perpendicular to the normal, and therefore is inline with the ex-

isting isosurface. We determine this by taking the dot product of the normal

vector for the current voxel with the vector from the center of the current voxel

to the center of the neighboring voxel being examined. Because both of these

vectors are normalized (lines 6 and 12), the dot product has unity magnitude,

and its value directly represents the angle between the vectors. As the normal

vector is presumed to be perpendicular to the isosurface, we want to expand into

voxels that are approximately perpendicular to the normal. Therefore, if the dot

product of our two vectors is approximately 90 degrees (we allow for a 22.5 degree

variance in either direction), then we expand our isosurface into that voxel (lines

14 and 15). A two dimensional representation of what is done for each voxel is

given in figure 3.6.
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Figure 3.6: Voxels that are approximately perpendicular to the normal
N will be expanded into if necessary. The dotted line represents the
gradient of the current voxel, and the gray lines represent the vector
from the center of the current voxel to the surrounding voxels. The
yellow squares represent voxels that would be considered for expansion.

3.4 User Selection

Although the ideal hole filler can operate with minimal or no user intervention,

allowing the user to limit the scope of operators to specific areas often improves

results. In practice, we see improved genus numbers with this technique for our

operators, but also note that this ability would aid other hole fillers as well.

Specifically, the problem we describe with volfill of incorrectly determining which

boundary edges to merge would be avoided if the user could limit the algorithm’s

scope to only look in the area of the same hole. For our example, this would

involve selecting the top of the Buddha’s base to fill the large hole across its top,

then selecting the bottom of the Buddha’s robe (similar to figure 3.7(a)) to fill

the hole there.

We provide the user this ability in an easy to use fashion by allowing for

selection in the volume viewer of the user interface. A basic mouse drag-and-

release sets the scope in which operators will be applied. A selection rectangle is

provided for visual feedback (figure 3.7(a)). The viewer allows for viewing from

any of the three axes, and so the user can choose which view to make his or

her selection from. The user’s selection rectangle dictates the selection scope for
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(a) (b)

Figure 3.7: a) Areas of user selection are visibly highlighted in the
volume viewer. b) Numeric controls are also available for precise in-
formation and selection.

the two axes which are not the view axis. Thus, if viewing along the z-axis, the

height of the selection represents the y-axis selection and the width represents

the x-axis selection. The entirety of the view axis is selected within that scope.

Put another way, all slices (depths) being viewed are selected. Numeric controls

(as shown in figure 3.7(b)) are available if the user wants to limit this third

dimension (or wants to more precisely limit the other dimensions). The selection

rectangle accurately represents the selection across view axis changes, so the user

can clearly see what is selected within the volume.

The implementation of the scoping is straightforward. Lines 2 through 4 of

each of the operators are modified to iterate only within the bounds. The modified

lines look similar to the code below, where start x, start y, start z, stop x, stop y,

and stop z specify the selection area as taken from the user interface.

02 for (z = start z to stop z)

03 for (y = start y to stop y)

04 for (x = start x to stop x)
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3.5 Optimizations

A naive implementation of our operators would consume considerable mem-

ory resources and take considerable processor time to complete. To limit these

impacts, we employ a number of optimizations, such as caching and writing only

modified scanlines.

As the volumes we use are created by VRIP, they are encoded using run

length encoding (RLE) [9], which limits the memory and disk space required to

store the volume. Unfortunately, this makes updating the volume a very slow

process since the encoding needs to be re-evaluated after each write. To remedy

this, we use a scanline cache that stores the scanline being evaluated and its eight

neighboring scanlines in their raw, indexable format. Thus, the cache stores a

three by three block of scanlines; this block size is arbitrarily expandable in our

implementation, but as none of our operators evaluate voxels that are not their

immediate neighbors, there is no need for anything larger.

The cache provides a number of significant advantages. The raw format of

the scanlines in the cache means that they are directly indexable, unlike RLE

encoded ones, which must be progressively evaluated in order to find the value

of a given voxel. Our operators’ implementations iterate the scanline linearly,

so the speed advantage here is minimal over a iterating an RLE scanline (and

may actually be slower, as discussed below), however the direct indexing leads to

cleaner code, and is significantly faster than the default implementation of voxel

indexing in VRIP which evaluates the RLE for each read.

The real strength of the raw format is its speed for writing. Writing a voxel

in VRIP’s default implementation of the volume object required that the existing

scanline be converted to its raw format, the specific voxel value changed, the raw

scanline be re-encoded using RLE, and then the original scanline be replaced with

the new one. This is an expensive process both in the processor time it takes to

convert the scanline back and forth, and in memory as entire new scanlines must

be allocated for each write that occurs within them. Using the cache, a scanline

is converted to raw once when being read into the cache, and is converted back
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to RLE at most once for each time it is needed in the cache. Whereas the naive

implementation had the potential to read, convert, update, re-convert, and write

the scanline once for each voxel in the line, this process occurs at most once for

all voxels in the line using the cache.

An effort is also made to minimize the number of scanlines that need to

be read into and written from the cache. Because our iterations are done one

scanline at a time (iteration of the first dimension iterates voxels in a scanline,

iteration of the second dimension iterates scanlines in the slice, and iteration of

the third dimension iterates slices in the volume), there is strong spacial locality,

and most of the cache does not require updating with each iteration. A naive

implementation might flush the cache each time a new scanline is to be evaluated,

but by intelligently evaluating the location of the new scanline with relation to

the scanline previously centered in the cache, only a small portion of the cache

needs to be refreshed in most cases. For our three by three scanline block, six of

the nine scanlines need only be shifted (a very cheap operation that requires no

new memory) rather than re-read the majority of the time. At times when the

slice changes the cache does require a full refresh.

Similar to reads, the cache limits writes only to those times when needed.

By taking advantage of the encapsulation provided by the cache object, and

by maintaining a dirty bit for each current line, the cache can keep track of

which lines have changed since being read in. By not writing lines that have

not changed back to the volume, the process of reallocating a new RLE scanline

object and reevaluating its encoding from the raw scanline is completely avoided.

Additionally, writes for a scanline are only done before it is to be removed from

the cache, so a given scanline could be updated during the evaluation of multiple

scanlines before ever actually being written out.

As mentioned previously, updating the volume in place leads to problems,

thus our cache must support our double buffering approach. The cache maintains

references to both versions of the volume, and internally maintains two copies of

the cache, one for reading and one for writing. Both copies are shifted and

refreshed as needed. We acknowledge the opportunity to employ the copy-on-
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write optimization here, thus avoiding needing to create an additional write copy

unless a modification needs to be made, however our current implementation does

not utilize this.

Finally, we take advantage of the fact that the volume is RLE encoded. This

encoding allows for very fast traversal of the volume. As an example, a scanline

which contains only empty space can be skipped after reading only a single value,

rather than the hundreds of values present in a raw representation. We use this in

tandem with the cache, taking advantage of the RLE to quickly find a viable voxel

to evaluate, then using the cache to quickly read from and make modifications

to the volume.
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Chapter 4

Results

Using our operators, we successfully reduce the handle counts of the models we

treat, while maintaining or improving the visual quality of the untreated version.

Most of our success comes through the use of the dilation and erosion op-

erators. These operators serve to “clean” areas of the the volume which were

partially occluded from the scanner, and therefore have jagged or irregular data.

There are three distinct ways in which this cleaning occurs: merging of data,

removal of noise, and smoothing of unseen surfaces.

Often times, the line of sight for the scanner is occluded for an area with

the exception of a very small window. As shown in figure 4.1(a), this leads to

tunnels of emptiness in otherwise unseen areas. Because this is an empty-unseen

boundasry, VRIP applies its hole filler to create a surface along the area. This is

an unnecessary additional surface which is an opportunity for additional handles.

Furthermore, these tunnels manifest themselves as small pinholes in the model,

which require a large number of polygons to represent, and which are visually

undesirable. Using the dilation operator, we are easily able to remove these

tunnels, thus avoiding the need for additional hole filling or topology. Because

the sides of the tunnel eventually come together, future erosions can be used on

the outer parts of the model without reopening the tunnel.
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(a)

(b)

Figure 4.1: a) A tunnel in the dragon model before and after being
cleaned. b) Unseen “noise” under the Buddha’s robe before and after
being cleaned.

In a similar manner to the way tunnels are eliminated, noise around the

model (such as in figure 4.1(b)) can be removed. Either the dilation or erosion

operator can be used here, although usually both are used in tandem in order to

avoid growing or shrinking the model significantly. By starting with the erosion

operator, small outlying unseen voxels will be reduced to nothing, after which

the dilation operator can be used to restore empty-unseen boundaries in the

main volume to their original levels. This operation was illustrated in figure 3.4.

Conversely, the dilation operator can be used first to grow the noise and main

volume until they merge together. After being merged, the erosion operator can

be used to shrink the new boundary to a level consistent with the surrounding

seen areas. This can be seen in figure 3.5.

Finally, the operators can be combined to smooth unseen-empty boundary

areas. By applying the operators in alternating sessions, small imperfections in

the problematic areas are smoothed out.

We had a lesser degree of success with the boundary expansion operator.

The issue with this operator is that it requires the normals to be present on
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Figure 4.2: The rear of the Dragon’s body with no hole filling or treat-
ment (left) and after treatment using only the boundary expansion
operator (right).

the surrounding seen areas in order to do expansion, and this is often not the

case in areas where expansion is needed. Unfortunately, the majority of areas

that are out of view of the scanner (and therefore require fixing) are out of view

because they are occluded by a sharp edge. This type of area, such as under the

Buddha’s robe (see figure 3.7(a)), is discontinuous with the normals field present

on the outer part of the edge, and so cannot be filled in using these normals.

The expansion operator did perform decently well in areas where one part of

the model occluded part of a smoother surface. Examples of this type of area are

the top of the Buddha’s pedestal, which is flat, but blocked from the scanner by

the Buddha’s body, and the front part of the Dragon’s rear underbelly, which is

blocked by the front of the Dragon’s body. As seen in figure 4.2, the operator

was able to close small holes successfully, but because only the normals closest to

the hole’s edge are used to determine the direction of the newly created surface,

it is not the best suited for filling surfaces with curvature.

By combining the operators we were able to consistently generate meshes of

a lower genus than when no treatment was used. As seen in table 4.1, we were

able to reduce the genus by 47.8% for the Buddha using the VRIP hole filler, and
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Model Our Operators Hole Filler Vertices Faces Genus

Buddha No VRIP 1564955 3130174 67
Buddha Yes VRIP 1551328 3102890 35
Buddha No Triangulation 1436056 2872220 28
Buddha Yes Triangulation 1436536 2873188 28

Dragon No VRIP 1406194 2812540 39
Dragon Yes VRIP 1392210 2784548 33
Dragon No Triangulation 1354531 2709078 5
Dragon Yes Triangulation 1353775 2707562 4

Table 4.1: Genus counts for treated and untreated volumes using two
different hole fillers.

15.4% for the Dragon using the VRIP hole filler. Because our operators reduce

handle counts by removing noise around holes, they had little effect on the genus

count when using the triangulation hole filler. This is because this hole filler

first removes junk faces, then creates the simplest patch possible, and so is not

influenced by noise.

There was also no loss of visual quality given the use of our operators. As

shown in figure 4.3, the treated and untreated versions appear very similar, and

for the triangulation hole filler, our operators improved the ability of the hole

filler to fill the Buddha’s armpit without patching it (figure 4.4). Figure 4.5

shows in detail the differences between the VRIP and triangulation hole fillers,

where the first leaves a slightly uneven surface across the top of the pedestal,

while the second has the distinct starburst pattern. For the VRIP hole filler,

the treated mesh is slightly smoother across the top of its pedestal. Similar to

the Buddha, figure 4.6 shows that we were able to reduce the genus count of the

Dragon model without reducing its visual appeal.
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(a) genus 39 (b) genus 33

(c) genus 5 (d) genus 4

Figure 4.6: a) Unmodified, VRIP hole filler b) Cleaned, VRIP hole
filler c) Unmodified, triangulation hole filler d) Cleaned, triangulation
hole filler
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Chapter 5

Future Work

Our work furthers the progress toward the creation of meshes without topo-

logical noise, however we acknowledge that there is still much research to be

done.

The operators we apply to the volume are aimed at cleaning up the volume

for hole filling later in the pipeline, but at this point there is already some extra

topology which we are not addressing. Using the triangulation hole filler we still

produce Buddha meshes of genus 28, which is significantly higher than the desired

six. As this hole filler is incredibly simple, this indicates that the extra handles

are in areas other than the unseen-empty areas which we are treating. The

likely culprit for introducing this topology is the alignment stage, which warrants

further analysis. When aligning the range images ourself we note a 21% decrease

in genus (22 vs. 28) over the Stanford aligned images using the triangulation hole

filler, indicating that investigation of this stage would be worthwhile.

We also believe that the expansion algorithm used in volfill [6] carries a lot of

potential, and could be combined with our research to produce improved results.

We suggest two specific enhancements: creating a volfill operator, and enhancing

that operator by incorporating the normals as our boundary expansion operator

does.
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Unfortunately, the existing volfill does not integrate well with our opera-

tors. Volfill cannot read our volumes that have been enhanced with the normals

data, and so we cannot first apply our operators, then run volfill on the volume.

Conversely, we cannot run volfill then apply our operators because the volumes

produced by volfill use two-state (seen and empty) voxels and strip the informa-

tion about which voxels are unseen, an essential element for our operators. An

operator similar to our existing operators could be created which employs the

volfill algorithm. This would allow integration with our other operators, and also

allow for the use of user defined scoping of the operator’s application. This would

greatly enhance volfill as it currently confuses the areas of one hole with another,

causing the results discussed previously.

Finally, volfill could be enhanced to take advantage of the normals data which

we have provided with our existing boundary expansion operator. By weighting

the data perpendicular to the normals more heavily, volfill could avoid being

influenced by holes other than the one it is currently examining.
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