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Abstract

Energetic Path Finding Across Massive Terrain Data

Andrew Tsui

Before there were airplanes, cars, trains, boats, or bicycles, the primary means

of transportation was on foot. Unfortunately, many of the trails used by ancient

travelers have long since been abandoned. We present a software tool which

can help visualize and predict where these forgotten trails might lie through the

use of a human-centered cost metric. By comparing the paths generated by our

software with known historical trails, we demonstrate how the tool can indicate

likely trails used by ancient travelers. In addition, this new tool provides novel

visualizations to better help the user understand alternate paths, effect of terrain,

and nearby areas of interest. Such a tool could be used by archaeologists and

historians to better visualize and understand the terrain and paths around sites

of historical interest.

This thesis is a continuation of previous work, with emphasis on the ability to

generate paths which traverse several thousand kilometers. To accomplish this,

various graph simplification and path approximation algorithms are explored to

construct a real-time path finding algorithm. To this end, we show that it is

possible to restrict the search space for a path finding algorithm while not dis-

rupting accuracy. Combined with a multi-threaded variant of Dijkstra’s shortest

path algorithm, we present a tool capable of traversing the contiguous US, a

dataset containing over 19 billion datapoints, in under three hours on a 2.5 Ghz

dual core processor. The tool is demonstrated on several examples which show

the potential archaeological and historical applicability, and provide avenues for

future improvements.
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Chapter 1

Introduction

Before there were airplanes, cars, trains, boats, or bicycles, the primary means

of transportation was on foot. Anthropologists, archaeologists, and historians

have spent a great deal of time uncovering the routes taken by ancient travelers

as they traversed between their villages, between trade-routes with long-distance

neighbors, or as they foraged for food around their camp [21]. As a general rule

of thumb, humans, through trial and error, are often quite proficient in finding

the most efficient path of travel. However, some of these paths traverse great

distances, making it near impossible to verify the actual efficiency.

This thesis is a continuation of previous work [45, 35] which was concerned

with energetic paths (paths of least caloric cost when traveling on foot) across

large terrain data sets. We provide tools and algorithms that can work with even

larger data sets, for example the contiguous US, and provide an interactive 3D

perspective viewing application. When working with such a large data set, sim-

plification and approximation are necessary. This work explores various graph

simplification and path approximation algorithms in order to create a real-time

path finding algorithm for massive data. Furthermore, this work provides a more
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efficient means of generating paths by restricting the search to a subset of the

original data. We validate this approach by comparing the paths generated in

this manner with paths generated on the full, unrestricted data. In addition, vi-

sualization techniques to compare potential paths, difficult terrain, and alternate

destinations are explored.

The tools are written in C++ using the OpenGL graphics API and Berkeley

Database. Satellite imagery is utilized to provide a 93,600 by 212,400 elevation

and landcover data grid covering the contiguous US. The application is interac-

tive and allows the user to select start and end locations, as well as one of several

path computation algorithms. The available algorithms are Dijkstra’s, Fast Di-

jkstra’s (a multi-threaded variant of Dijkstra’s introduced in this thesis), A∗, and

Single-Query Single Direction PRM (a Probabilistic Road Map algorithm). Most

computations are divided into a global and detailed search phase. The global

search phase identifies a rough path using a simplified dataset. This rough path

is then used to significantly reduce the total memory and computational time

required for the detailed search phase, which computes the exact path on the full

dataset, by ensuring that only relevant areas of the terrain are searched.

Our results show that path computation over massive out-of-core datasets

is possible. We conclude that using Dijkstra’s algorithm (or the Fast Dijkstra

variant) provides the best results in terms of accuracy, but can require additional

memory. However, alternate methods such as Probabilistic Road Maps can be

used to great effect in certain scenarios (for example, when generating very short

paths).
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1.1 Contributions

The contributions of this thesis are listed below:

• Tools for managing and performing energetic analysis on massive out-of-

core data sets are presented. In particular, a restrictive tiling scheme is

constructed which significantly reduces the search space without reducing

accuracy.

• Energetic equations that account for terrain type, specifically the presence

of water, are introduced.

• A comparison between multiple path computation algorithms in terms of

runtime, memory usage, and accuracy is conducted.

• A multi-threaded bidirectional version of Dijkstra’s shortest path algorithm

that does not suffer any accuracy loss is presented.

• An interactive 3-D perspective viewing application is provided.

• Visualizations that allow the comparison of similar paths are introduced.

3



Chapter 2

Previous Work

This section contains descriptions of the previous work in this area.

2.1 Path Finding and Data Management

There has been significant work in the area of path finding algorithms. In

general, these algorithms transform the data into a graph structure and iterate

over the data starting at a specific node in the graph and making connections to

other nodes in an expanding fashion until the destination is found. Dijkstra’s [8]

and Fast Marching [22] are two examples of a path finding algorithms that find

optimal paths. A∗ [16] and Probabilistic Road Maps [19] are examples of path

finding algorithms which may sacrifice accuracy for speed. The algorithms used

in this paper are covered in detail in Chapter 3.

The Berkeley Database [32] is a mature, non-relational database developed

at the University of California at Berkeley. It stores information as arbitrary

key/value pairs, making it useful for applications which utilize large groups of
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data, but are not concerned with creating relations between individual data. The

Berkeley DB is covered in detail in Section 4.1.1.

2.2 Energetic Analyst

The Energetic Analyst tool developed by Brian Wood [45, 46] was designed

to aid archeologist’s in finding energetically optimal paths. Wood’s work demon-

strated the importance of using a human-centered, as opposed to distance-centered,

metric for determining the routes of travel. Energetic Analyst contained visu-

alization tools to display terrain described by digital elevation models (DEM’s),

as well as the path of least caloric cost between two points on the terrain found

using Dijkstra’s shortest path algorithm.

Energetic Analyst was constrained in several ways which made the analysis of

large terrain datasets infeasible. All the data required for the path computation

was stored in memory, thus severely limiting the size of the DEM that could be

analyzed. In conjunction with this, only the ArcInfo ASCII DEM format was

supported. While this format is simple and easy to parse, it consumes a large

amount of space on disk and in memory, thus further limiting the potential for

analyzing large DEM’s.

2.3 Continuous Energetically Optimal Paths

Jason Rickwald continued Brian Wood’s work by providing tools to compute

continuously energetic optimal paths (CEP) across larger terrain datasets [35].

Rickwald utilized the Fast Marching Algorithm in his path computations. In

essence, the Fast Marching Algorithm tracks an expanding wavefront as it moves
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across a surface. For terrain data, this has the benefit of allowing paths to cross a

grid face, rather than being constrained to the grid edges. In addition, Rickwald

introduced a multi-threaded variant of Fast Marching, which significantly reduced

the runtime but introduced a small error in the energetic path computation.

Rickwald addressed the memory limitations encountered by Wood by provid-

ing a mechanism for swapping terrain data between memory and disk. However,

the same ArcInfo ASCII DEM format is used, again hindering the capability

of analyzing very large datasets. For comparison a 3600x3600 ASCII DEM grid

requires roughly 77.3 megabytes of disk space, whereas a binary HGT format con-

taining the same information requires only 24.7 megabytes. In addition, finding

paths between two widely spaced points using these tools required a significant

amount of time. Rickwald tested his implementation on a dataset covering most

of the state of Oregon and noted that a path computation across the state re-

quired most of the day.
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Chapter 3

Algorithms

This section details the algorithms used in analyzing the terrain data.

3.1 Caloric Cost

The equations used in this work to determine the caloric cost of travel between

two points are the same as for Energetic Analysis and CEP. These equations

were determined and verified under various conditions [9, 11, 23, 33]. First, the

metabolic rate for traveling between two points is calculated based on the physical

parameters of the subject and the slope (grade) of travel. Equation (3.1) shows

rate when traveling on a positive grade (uphill), while Equation (3.2) is for a

negative grade:

MRuphill = M (3.1)

MRdownhill = M − C (3.2)
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M = 1.5w + 2.0 (w + l)

(
l

w

)2

+ n (w + l)
(
1.5v2 + 0.35vg

)
(3.3)

C = n

(
g (w + l) v

3.5
− (w + l) (g + 6)2

w
+ 25− v2

)
(3.4)

Where:

MR is the metabolic rate in watts

w is the person’s weight in kilograms

l is the load carried in kilograms

v is the velocity in meters per second

g is the percent grade

n is the terrain factor

Terrain factors are given by [23]:

1.0 Black Top Road / Treadmill

1.1 Dirt Road

1.2 Light Brush

1.5 Heavy Brush

1.8 Swampy Bog

2.1 Loose Sand

1.3+0.082*D Snow, where D = depression depth in cm

For this work, the average velocity when traveling across open ground is

1.34112m
s

, or approximately 4.8km
hr

. When traversing water, it has been experi-

mentally determined that swimming at 0.7m
s

is roughly equivalent to running at

3.3m
s

[34, 41].
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Unfortunately, the above equations can potentially under-predict the caloric

cost when traveling downhill at certain velocities. Thus, the above metabolic

rate is compared to the metabolic rate while standing [15](SMR), with the larger

being used to complete the calculation:

MRdownhill = max{MRdownhill3.2 , SMR} (3.5)

SMR = 1.2 ∗BMR (3.6)

BMRmale = 66 + (13.7 ∗ w) + (5 ∗ h)− (6.8 ∗ a) (3.7)

BMRfemale = 655 + (9.6 ∗ w) + (1.7 ∗ h)− (4.7 ∗ a) (3.8)

Where:

MR is the metabolic rate in watts

SMR is the standing metabolic rate in watts

BMR is the basal metabolic rate in watts

w is the person’s weight in kilograms

h is the person’s height in centimeters

a is the person’s age in years
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The metabolic rate gives the amount of energy expended over time, thus it

is necessary to obtain the approximate time required to travel between the two

points:

T =
disttotal

v
(3.9)

disttotal =
√
dist2lat + dist2long (3.10)

distlat = n|alat − blat| (3.11)

distlong = n ∗ cos(alat) ∗ |along − blong| (3.12)

Where:

a is the starting location in latitude/longitude

b is the destination in latitude/longitude

v is the velocity in meters per second

T is the time to travel between a and b in seconds

Finally, the caloric cost (CC) is calculated and converted to kilocalories using

Equation (3.13):

CC =
MR ∗ T

4184 J
kilocalorie

(3.13)
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3.2 Dijkstra and A∗

Dijkstra’s shortest path algorithm [8] is a well known and extremely pervasive

algorithm for determining paths of least cost between two points on a graph. In

general, the algorithm uses a priority queue to expand the search in a wavefront

propagation until the destination is found.

A∗ [16] is a slight modification of Dijkstra’s algorithm. This algorithm utilizes

an admissible heuristic function to estimate the cost from the current node to

the destination node1. Thus, an appropriate heuristic can cause the algorithm

to converge to the destination node in much shorter time than Dijkstra’s by

estimating the cost to reach the destination for each node and ignoring nodes of

higher cost. For this work, the heuristic uses the Euclidean distance from the

current node to the destination, combined with the metabolic rate associated

with the corresponding grade, to estimate the total caloric cost. Unfortunately,

this heuristic is not admissible in certain rare cases, which introduces a small

error into the path computation. Thus, the paths provided using A∗ are not

necessarily the most energetic.

3.3 Fast Dijkstra

There has been significant recent work on developing parallelized cost approx-

imation algorithms [35, 42, 39] to utilize the increasing number of cores within

standard processors, as well as new GPGPU architectures which are capable of

running potentially thousands of threads simultaneously [14, 29]. However, the

general problem with these algorithms is that they provide approximations of

1Admissible indicates that the heuristic must not overestimate the cost to the destination
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optimal cost paths, thus sacrificing accuracy for speed.

This work presents a bidirectional implementation of Dijkstra’s shortest path

algorithm which uses two threads to capitalize on modern multi-core processors.

This algorithm does not disrupt the optimality properties of Dijkstra’s, thus pro-

viding optimal paths with a minimal amount of memory overhead. In essence,

Dijkstra’s algorithm is run separately in two threads with one thread calculating

the cost from the start node to the destination node, while the second thread

simultaneously calculates the cost from the destination to the start. The two

threads meet roughly half-way to their respective goals where one thread is given

priority and is responsible for combining the results of the two threads. Algo-

rithms 1 and 2 contain the pseudo code for the 2-threaded version of Dijkstra’s,

called Fast Dijkstra. The initialization code has been removed for brevity while

FORWARD and BACKWARD denote the two threads. A tainted node indicates that

the FORWARD thread has visited, but not necessarily found an optimal path to,

this node.

Algorithm 1 is very similar to the traditional Dijkstra’s algorithm, with the

exception of lines 5, 8, and 13. Line 5 indicates a new termination condition.

It is assumed that the FORWARD thread will take precedence, and is therefore

responsible for terminating the algorithm. However, the FORWARD thread should

never encounter the destination node since the BACKWARD thread should have been

computing paths from the destination. Thus, it is sufficient to check if this is

the FORWARD thread and that it is not contained in BACKWARD’s set of unvisited

nodes (i.e. BACKWARD has found a shortest path from the destination to this node).

These two conditions imply that a shortest path has been found by FORWARD from

the start node to this node, and a shortest path has been found by BACKWARD from

the destination node to this node. This is explained in greater detail during the

12



Algorithm 1 The Fast Dijkstra Algorithm
Input: source, target

Output: Path from source to target

1: Qf , Qb ← All nodes in graph

2: T ← ∅ {Set of tainted nodes}

3: while Qd is not empty do {Qd is the set for the direction}

4: u← vertex in Qd with smallest cost

5: if FORWARD && u /∈ Qb then

6: Break {Least cost path found}

7: end if

8: if BACKWARD && u ∈ T then

9: Continue {FORWARD results take precedence}

10: end if

11: Remove u from Qd

12: for all neighbors v of u do {Where v ∈ Qd}

13: if BACKWARD && v ∈ T then

14: Continue {FORWARD results take precedence}

15: end if

16: UPDATE(u, v)

17: end for

18: end while

19: path← path(source, u) + path(u, target)

20: return path

13



discussion of Algorithm 2 below.

Lines 8 and 13 of Algorithm 1 indicate that the BACKWARD thread should not

continue to analyze any nodes that the FORWARD thread has begun analyzing. This

effectively means that the FORWARD thread overwrites all of BACKWARD’s unfinished2

computations.

If the two threads have not yet encountered any nodes visited by the other

thread, then the update step described in Algorithm 2 proceeds as it normally

would in the standard Dijkstra’s algorithm. It should be noted that lines 2 and

15 differ only in the order in which the cost function analyzes the two nodes.

This is to account for bidirectional graphs, which is important in this work as

the caloric cost of traveling uphill differs from traveling downhill as discussed in

Section 3.1. The reversed order means that BACKWARD actually calculates paths

from a node to the destination, not from the destination to the node (as this

would create incorrect paths as all uphill travel would be calculated as downhill

and vice versa).

Lines 3 through 13 handle the case when the two threads begin to analyze

nodes seen by the other thread (i.e. where the search space of the two threads

overlap). Line 3 indicates that special consideration is only taken if BACKWARD

has found a shortest path to node v from the destination. If BACKWARD has

updated the cost to reach v, but not yet found a shortest path to it, then FORWARD

overrides any of those results (lines 11 and 13). However, if BACKWARD has found

a shortest path to v, then we want save those results (lines 5 and 6). Hereafter,

the cost to reach v is augmented with the cost to reach the destination from v

as determined by the BACKWARD thread. Essentially, this says that if BACKWARD

2Unfinished means that the thread may have assigned a cost to reach a node, but has not
declared that the shortest path to that node has been found.
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Algorithm 2 The Fast Dijkstra Algorithm Update Step

Input: u {node to expand from}, v {node to expand to}

Output: Updated path from u to v

1: if FORWARD then

2: alt← cost[u] + cost(u, v)

3: if v /∈ Qb then {If BACKWARD has found a shortest path}

4: if v /∈ T then {First time FORWARD has seen v}

5: sPrev[v]← prev[v] {Save the previous from BACKWARD}

6: sCost[v]← cost[v] {Save the cost from BACKWARD}

7: end if

8: alt← alt+ sCost[v] {Cost is to get to the target}

9: end if

10: if v /∈ T then

11: cost[v]←∞ {Force the relaxation}

12: end if

13: T ← T ∪ v {Taint v}

14: else {This is BACKWARD}

15: alt← cost[u] + cost(v, u) {Bidirectional graph}

16: end if

17: if alt < cost[v] then {Relax(u, v)}

18: cost[v]← alt

19: prev[v]← u

20: end if

21: return

15



Figure 3.1: This shows the areas searched by each thread during a run
of the Fast Dijkstra algorithm. Notice that one thread gains priority
when the search areas overlap each other.
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has found a shortest path from v to the destination, then once FORWARD finds

the shortest path from the start node to v, the optimal substructure property of

Dijkstra’s algorithm tells us we have found the shortest path from the start to

the destination that goes through v. Therefore, line 5 in Algorithm 1 terminates

the algorithm when the node that offers the ‘best’ connection between the paths

found by both threads is found.

3.4 Probabilistic Road Maps

A Probabilistic Road Map (PRM) [19, 18, 25, 26] is defined as being a dis-

crete representation of a continuous configuration space generated by randomly

sampling the free configurations of a search space and connecting those points

in a graph. Essentially, the algorithm randomly samples the search space until

a path can be constructed from the start to the destination. These algorithms

are designed for speed at the cost of accuracy. However, due to the probabilistic

nature of the algorithms, it is possible to randomly produce an optimal path in

a fraction of the time of other algorithms.

PRM’s have had success in finding paths in spaces that are difficult to model,

or have many degrees of freedom. The later point is the reason for the application

of PRM’s to the task of finding energetic paths across massive data. At any given

point, a path can diverge in eight different directions (see Figure 4.1). Using

PRM’s we hope to eliminate the need to search many of these directions, thus

greatly decreasing the necessary computation time.

The specific PRM algorithm used in this work is the Single-Query Single

Directional PRM (SQPRM) [19]. The idea is to grow a tree type path in random

directions until the destination is found. However, since SQPRM’s expand in a

17



random fashion, it may require a large amount of time to randomly select and

connect the destination node to the graph. Thus, the algorithm terminates when

a node is examined that is in the endgame region, meaning that it is sufficiently

close to the destination node. The pseudo code for the basic algorithm is given

in Algorithm 3 with an illustrative example of how SQPRM would be run on a

DEM grid shown in Figure 3.2.

Node selection (line 3) is important to ensure that a large portion of the search

space is examined in a short amount of time. A poor choice for node selection,

such as giving all nodes an equal probability of being chosen, often results in

the searched nodes being closely packed together instead of spread throughout

the search space. This is termed clustering. To alleviate this problem, candidate

nodes (those in T ) can be weighted with their node density (the percentage of

neighbors that are also in T ). This allows us to pick nodes with a probability

proportional to the inverse of node density, thus forcing faster coverage of the

search space. Figure 3.3 shows the effect of clustering and the results after a

weighting scheme is applied.

An efficient and highly effective method of node weighting is given in [20].

First, the entire search space is discretized into cells. A cell is considered occupied

if there exists a node within the cell that is part of the current tree. Thus, node

selection occurs by randomly selecting from the the set of occupied cells, then

randomly selecting a node within that cell. Figure 3.4 illustrates this method.
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Algorithm 3 Single-Query Single Directional PRM

Input: start, endgame region

Output: Path from start to endgame region

1: Insert the start node into T

2: loop

3: Pick a node n from T with probability πT (n)

4: Generate a new node n′ near n

5: if n′ is reachable from n then

6: Add n′ to T

7: if n′ ∈ endgame region then

8: return path

9: end if

10: end if

11: if Stopping criteria is met then

12: return

13: end if

14: end loop
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(a) Iteration 1 (b) Iteration 2

(c) Iteration 6 (d) Iteration 10

Figure 3.2: An example showing the Single-Query Single Directional
PRM algorithm at various iterations. The double circles represent the
start and end nodes, the grey area represents the endgame region, and
the red node and line indicate the selected node and expansion for the
iteration. In (c), the X indicates that the edge is rejected based on
some criteria (step 5 in Algorithm 3).

20



(a) Not Weighted (b) Weighted

Figure 3.3: The impact of node selection for PRM’s. The figures show
the searched nodes after a given amount of time. (a) shows the effect
of clustering while (b) shows the effect of a weighting scheme. Image
courtesy of [6].

Figure 3.4: The Kindel Method for selecting a node to expand. The
blue dots indicate candidate nodes while the red outline indicates the
cell and node that are selected. Image courtesy of [6].
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3.4.1 Difficulties

The PRM class of algorithms are designed to quickly construct a traversable

path in a large search space, but are not concerned with the actual efficiency of

the path. Thus, if a potential edge is not accepted (step 5 in Algorithm 3), it

can be assumed that that edge will never be added to the graph. However, in the

context of energetic paths where a criteria for acceptance may be the total cost

of the path up to that point, it is possible that a previously rejected edge may

become viable at a later iteration. This situation is detailed in Figure 3.5 and

shows that an edge may be erroneously rejected due to out-dated information.

This problem can be alleviated by propagating an updated cost to all related

(connected through a sequence of edges) nodes along the path whenever a node

is updated. Thus, if a previously rejected edge is reconsidered, the most recent

information will be available. However, due to the size of the search space, and the

potentially large number of connections related to a given node, experimentation

with this method has shown a considerable decrease in efficiency.

Therefore, the approach taken in this work is to allow a node to be selected

and expanded multiple (possibly unlimited) times, with the cost to reach directly

connected (as opposed to all related) nodes being updated when appropriate.

Thus, any change to a nodes cost may be slowly propagated as the algorithm

progresses. While this does not completely eliminate out-dated information from

being used to make decisions, it does provide a means to reevaluate certain edges

and allows the algorithm to be applied to problems where path efficiency is of

concern. However, the number of times the node is allowed to be updated can

significantly impact the efficiency of the algorithm. This is shown in detail in

Chapter 5.
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(a) Edge Rejected (b) Additional Edges Reduce Cost

(c) Related Nodes Not Updated (d) Edge Erroneously Rejected

Figure 3.5: An example showing the difficulty in applying the Single-
Query Single Directional PRM algorithm to energetic path finding.
The number inside the node indicates the current cost to reach that
node, while the numbers on the edges are the cost of traversing that
edge. In (a), an edge is rejected based on the cost being greater than
a previous path. After several iterations, (b) shows new paths which
reduce the cost of reaching another node. However, the cost is not
propagated to all connected nodes, as shown in (c). If selected again,
the originally rejected edge should be accepted based on the updated
costs, but is again rejected since the cost was not propagated, as shown
in (d).
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Chapter 4

Implementation

This section contains the implementation details for this work.

4.1 Data Sources

Graphical Information Systems (GIS) is a general term applied to software

that captures and manages data related to geographical locations. This work

utilizes two types of GIS data, Digital Elevation Models (DEM’s) and Landcover

data.

DEM’s describe the elevation of a given terrain in a regularly interspersed grid

pattern in various resolutions and formats. For any particular DEM, there are

a variety of ways in which that data may have been collected which may affect

their accuracy and completeness. These techniques include photogrammetric

mapping [30], Light Detection and Ranging (LIDAR) [4], and Interferometric

Synthetic Aperture Radar (InSAR) [3]. DEM data is available from a wide variety

of sources including the US Geological Survey [40], Lakes Environmental [24], and
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various other online sources [43, 28].

The data used for this work was obtained during the Shuttle Radar Topogra-

phy Mission (SRTM) [13]. This mission used an InSAR array on-board the Space

Shuttle Endeavor during an 11 day mission in February of 2000. Using data from

this mission provides several benefits. First, elevation data was collected on a

global scale, providing a consistent data source and format allowing seamless in-

tegration of large areas. In addition, several passes were made over most areas,

allowing for corrections and higher resolution results. Finally, the data has been

rigorously validated for accuracy [1]. The obtained data comes in a binary HGT

format at 30 meter resolution (1 arcsecond) and is available through FTP [38].

The area selected for this work covers the entirety of the contiguous US and con-

tains 19,880,640,000 data points. For the remainder of this paper, this data is

referred to as the full dataset. Figure 4.1 illustrates how a DEM grid is converted

to a graph for use in the path finding algorithms.

In addition to elevation data, this work incorporates landcover data from the

National Land-Cover Database (NLCD) created by the Multi-Resolution Land

Characteristics Consortium [17, 27]. This dataset provides land cover classifica-

tion into 16 different categories (i.e. open water, forested, and wetlands) in the

same resolution as the SRTM data.

Finally, cartographic boundary coordinates were obtained from the U.S. Cen-

sus Bureau [2].

4.1.1 Data Management

The Berkeley Database [32] was chosen in order to facilitate the management

of the acquired data, as well as any data generated during the path computations.
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Figure 4.1: A DEM grid (left) is converted into a weighted graph
(right) for use in the path algorithms. The numbers on the left indi-
cate elevations, whereas the numbers on the right are caloric costs as
determined in Section 3.1

The Berkeley DB is not a relational database, but rather a transactional database

that stores binary data chunks using simple key/value pairs. It creates a local

DB, thus avoiding the performance overhead of client/server database solutions.

The gisDB tool performs the actions necessary to load all the required data

into a Berkeley DB. This includes both the terrain and landcover datasets. In

addition, gisDB functions as a wrapper to the Berkeley DB API, allowing other

tools to access the data with ease. In order to expedite the transfer of information

between memory and disk, all information is stored in a compact binary format.

Terrain and landcover data require 3 bytes total per data point, while data neces-

sary for path computation require 5 bytes per data point (4 bytes for the cost to

reach the node and 1 byte for various flags). To save space, the path computation

information is only stored during a particular run, and erased as soon as it is no

longer needed. The terrain and landcover data is stored in groups of nearest data

points, as opposed to sequential order. This allows a certain degree of prefetching
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since if one node is requested, it is likely that nodes near it will soon be required.

4.2 Simplification

A goal of this thesis was to provide a 3-D perspective viewing application

capable of rendering a representation of the entire dataset. As the dataset com-

prises over 19 billion data points, it would be impossible to display the exact data

in a real-time fashion. Thus, it was necessary to develop tools to provide a highly

simplified, yet acceptably accurate, representation of the dataset.

This is accomplished through the gisSimp tool. The dataset was first broken

down into 434*1,000 non-overlapping rectangular clusters1. The tool then utilizes

gisDB to individually load each cluster and performs a simplification on those

data points to obtain a single representative data point. For the terrain data,

two simplified datasets were created; one which represents the average of all the

points in the cluster, and one which represents the median data point. For the

landcover data, the simplified dataset represents the classification that appears

most often in each cluster.

4.3 Interaction

The gisProj tool is used as the entry point into the main application. It

is responsible for displaying the simplified datasets generated by gisSimp using

OpenGL [31], as well as handling all user interaction. Figure 4.2 shows the

simplified terrain dataset generated by gisSimp and rendered by gisProj.

1These dimensions were chosen as they maintain the approximate latitude to longitude ratio
across the US.
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Figure 4.2: Display of the simplified terrain dataset. The color of the
terrain is based on its elevation, with the exception of areas of water
(blue) and wetlands (light blue).
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The gisMesh and gisTileManager tools are designed to handle the analysis of

the simplified and full datasets respectively. gisMesh takes as input the simplified

dataset generated by gisSimp and constructs an internal graph representation of

the dataset. Path computation occurs when the user interacts with gisProj to

select two arbitrary points on the displayed terrain. The latitude and longitude of

these two points is then passed to gisMesh, which performs a variant of Dijkstra’s

shortest path algorithm that is optimized for the particular graph structure. The

resulting path serves as an approximation to the actual path, and is passed back

to gisProj and overlayed onto the simplified terrain.

The gisTileManager tool is used to perform path analysis on the full dataset.

Since the dataset is too large to fit in memory, gisDB is utilized to swap portions

of the dataset that are not currently being used with those being actively searched

into memory. gisTileManager is capable of performing each of the algorithms

discussed in Chapter 3.

Previous work had difficulty analyzing large datasets due to the large search

space and limited memory available. To address this problem, we present a

restrictive tiling scheme in which the search space is drastically reduced based

on an approximation of the actual path. First, the full dataset is divided into

into several hundred tiles. Next, an approximate path is generated on the sim-

plified dataset using gisMesh. We determine which tiles the approximate path

crosses over, and use this information to restrict the algorithms contained in

gisTileManager to only searching within these tiles. For robustness, a config-

urable buffer can be set so that if the path falls near the boundary of a tile, the

neighboring tiles can also be searched. Through several experiments, its appears

that this method is successful in limiting the search space without compromising

the accuracy of the resulting path. This is a very important feature of our imple-
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(a) Unrestricted (b) Restricted

Figure 4.3: The impact of restricting the search space. The green tiles
indicate those currently in memory. The red tiles do not currently fit
in memory, but are needed to continue the computation. (a) shows an
unrestricted run where a large amount of swapping will occur, whereas
(b) shows a restricted search space. Notice that when the wavefront
encounters an edge, those tiles can be removed from memory perma-
nently. This allows all tiles on the wavefront to be in memory, avoiding
costly swaps.

mentation as it prevents a large amount of data swapping that would occur if the

path computation was allowed to run un-restricted on the full dataset. Figure 4.3

illustrates the importance of this feature.

Figure 4.4 shows the application part-way through a path computation on

the full dataset along with which tiles are in the current search space. Figure 4.5

illustrates a path found on the simplified dataset along with the corresponding

path found on the full dataset.
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Figure 4.4: Display of an in progress path computation on the full
dataset. The red squares indicate tiles that are within the search space
while green tiles are currently loaded in memory. The simplified path
(cyan) used to determine which tiles to search is also shown.
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Figure 4.5: Display of the path across the simplified dataset (cyan)
with the corresponding path across the restricted dataset (yellow).
This path is from Los Angeles to New York City.
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4.4 Visualizations

Each tile can be viewed individually, thus allowing a more detailed representa-

tion of a particular portion of the dataset. In addition to showing the fine-grained

details of a particular path, several visualizations generated by gisTileManager

are available which allow further analysis of the generated paths.

Figure 4.6 illustrates the landcover effect visualization, which shows how in-

corporating landcover data can affect the generated paths.

Figure 4.7 illustrates the directional difference visualization, which shows how

the energetic path can differ based on which direction you are traveling. Note

that it is often the case that both directions use the same path. Thus, this

visualization is only available in rare circumstances.

Figures 4.8 and 4.9 illustrates the nearby paths visualization, which shows

potential paths that end near the original destination. This is useful for observing

nearby paths that may be traversed if the original path is blocked or undesirable

in some way.

Figures 4.10 and 4.11 illustrates the alternate destinations visualization, which

shows potential destinations that could be reached for the same caloric cost as

the original destination. Note that this visualization is only available if the path

was constructed using Dijkstra’s shortest path algorithm as it is the only algo-

rithm which provides accurate caloric costs in a single-source multiple-destination

manner.

Figure 4.12 illustrates the caloric radius visualization, which shows areas that

can be reached from a particular location for a range of caloric costs. This can

be used to determine the area in which a person could walk in a given amount
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of time, or how far a particular tribe could forage for food. For the latter case,

this provides a better estimate than straight distance as the terrain can greatly

effect the reachable areas.

Figures 4.13 and 4.14 illustrates the divergent paths visualization, which shows

areas that could be reached while traversing the original path for a nominal caloric

cost. This is useful for showing potential areas of travel should the original path

be blocked, areas that could be explored with minimal extra energy expenditure,

or areas that could represent possible camp locations when on a long journey.

Figure 4.15 illustrates the gradient visualization, showing how the cost to

reach any point on the tile increases radiating out from the start. This is useful for

estimating the cost to travel to any location within the tile, as well as displaying

how the caloric cost is impacted by certain terrain (such as steep mountains or

water).
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Figure 4.6: The landcover effect visualization. The yellow path takes
into account the specific landcover of the terrain, while the cyan path
treats all terrain as grasslands. Note that the terrain is colored based
on its elevation, not its landcover.
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Figure 4.7: The directional difference visualization. The yellow path
is the most energetic when traveling left to right, while the cyan path
is the most energetic when traveling right to left.
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Figure 4.8: The nearby paths visualization. The yellow line indicates
the original path, while the cyan line indicates a path from a destina-
tion that is very close to the original destination. On flat terrain, the
nearby paths are very similar to the original. This is due to the actual
length of the path having a higher impact than the minimal elevation
changes.
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Figure 4.9: Another nearby paths visualization. The yellow line in-
dicates the original path, while the cyan line indicates a path from a
destination that is very close to the original destination. Compared to
Figure 4.8, mountainous terrain may contain several distinct paths to
avoid natural obstacles.
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Figure 4.10: The alternate destinations visualization. The colored
area represents destinations that can be reached from the start with
a similar cost to the original destination. The color is scaled between
violet (-150 kilocalories of original), green (same cost as original), and
red (150 kilocalories of original).
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Figure 4.11: Another alternate destinations visualization. Compared
to Figure 4.10, notice that mountainous terrain can greatly effect the
overall distance that can be traversed for a similar cost to the original
destination.

40



Figure 4.12: The caloric radius visualization. The colored area repre-
sents destinations that can be reached from the location for a particular
cost. The color is scaled between violet (850 kilocalories), green (1000
kilocalories), and red (1150 kilocalories).
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Figure 4.13: The divergent paths visualization. The green areas rep-
resent areas that can be reached within a 50 kilocalorie expenditure.
The red areas can be reached within a 150 kilocalorie expenditure.
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Figure 4.14: Another divergent paths visualization. Using the right
half of Figure 4.13 as a terrain reference, notice that a larger area
can be reached when the path falls on more open terrain (lower left
quadrant), whereas the reachable area drastically decreases as it traces
through a valley (upper right quadrant).
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Figure 4.15: The gradient visualization. The colors are scaled based
on their percentage of the final cost in 15% increments.
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Chapter 5

Results

To demonstrate the tools effectiveness, a number of paths were constructed

which tested their ability to accurately and efficiently analyze massive terrain

datasets. Several representative results are presented here1. Table 5.1 describes

each path finding method that was used. For each result, the error percentage

is based on the difference in cost between the indicated method and the cost

obtained from running Dijkstra’s shortest path algorithm unrestricted on the full

dataset (marked with a * in the results table). The ‘Nodes’ column indicates the

number of data points that were analyzed by the particular method. All costs

are in kilocalories.

Note that the results occasionally show a slight difference in cost between

Dijkstra’s shortest path algorithm and the Fast Dijkstra variant. The paths

generated from each method were checked and in all cases the two paths were

found to be identical. Thus, we attribute the cost difference to be caused by

floating point rounding differences during the caloric cost calculations.

1All results were obtained on a 2.5 Ghz Intel Core 2 Duo MacBook Pro running OS X 10.5.6
with 4 GB 667 MHz DDR2 SDRAM and a 5400 RPM Fujitsu hard drive.
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Also note that the results provided for the PRM algorithms are for a specific

run. Due to the probabilistic nature of the algorithms, each run will likely produce

a different result.

Dijk The standard Dijkstra’s shortest path algorithm.
DijkFast The multi-threaded variant of Dijkstra’s shortest path algorithm as

described in section 3.3.
A∗ The standard A∗ algorithm. The heuristic used is the caloric cost of

traveling from the current node directly to the destination node.
PRM The Probabilistic Road Map algorithm as described in section 3.4. Re-

ferring to Algorithm 3, the following conditions are imposed:

• The Kindel method is used to select the node n to expand
(line 3)

• For increased speed, n is expanded four times, with each expan-
sion node n′ occurring eight data points away from n in a random
direction (line 4)

• The endgame region contains all nodes within 128 data points of
the destination (line 7)

• A node can be selected for expansion an unlimited number of
times

PRMFast A variant of PRM designed for additional speed over accuracy. All
conditions of PRM are used with the exception that a node can only
be selected for expansion twice. In general, this will lower the accu-
racy of the path by reducing the number of nodes searched, as well as
preventing expensive paths from being replaced by more efficient ones.
See Section 3.4.1 and Figure 3.5 for details.

Dijk → α α can be any of the above methods. Indicates that Dijk was run on
the simplified dataset to determine an approximate path ξ, followed by
α on the full dataset, but restricted to the tiles crossed by ξ.

Buffer Applies to Dijk → α. ‘Without Buffer’ indicates that only the tiles
crossed by an approximate path are searched on the full dataset. ‘With
Buffer’ indicates that the tiles crossed by an approximate path, as well
as neighboring tiles when the path falls near a tiles border, are searched
on the full dataset.

Table 5.1: Path Finding Methods
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5.1 California Indian Trails

This test was selected to demonstrate the potential application to the field

of Archeology and Anthropology. Historical records show evidence of healthy

trade relations among many of the California Indian tribes. However, the actual

trails used for these trades is somewhat of a mystery. Work by James Davis [7]

has provided several plausible routes between the numerous tribes, as shown in

Figure 5.1.

A trail was plotted between two Indian tribes, one located within a valley

between two mountain ranges2, and the other located near the coast3. The dis-

tance between these two tribes necessitates searching most of southern California.

Figure 5.2 displays the energetic path found by the tools, while Table 5.2 shows

the runtime required for the different algorithms.

As can be seen, using the simplified dataset to get an approximate path

and restricting the search space (with a small buffer) on the detailed dataset

can still produce a perfectly accurate path. Notice that the required time is

drastically reduced for both the Dijkstra′s and Fast Dijkstra variant, but with

no error in the path. In addition, A∗ provides a path with very little error while

requiring even less time than the Fast Dijkstra algorithm. However, PRM

took a substantially longer amount of time to complete and provided a highly

inaccurate path. This does not conclusively determine the inappropriateness

of PRM as the probabilistic nature of it means it may occasionally require a

longer runtime. In addition, the specific implementation of PRM can drastically

change the results. This can be seen in PRMFast, which completes very quickly,

but provides a path with a much higher energy requirement.

237◦ 06’ N, 118◦ 25’ W
334◦ 11’ N, 119◦ 6’ W
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Unrestricted
Method Nodes Runtime Memory Cost Error

*Dijk 265,024,564 1h 21m 3s 2.36 GB 42,455.5 0.00%
PRMFast 7,888,454 42m 3s 2.66 GB 91,207 114.83%

With Buffer
Method Nodes Runtime Memory Cost Error

Dijk → Dijk 92,548,510 23m 37s 1.35 GB 42,455.5 0.00%
Dijk → DijkFast 100,371,403 14m 26s 1.51 GB 42,455.2 0.00%

Dijk → A∗ 39,576,328 11m 31s 1.35 GB 42,880.5 1.00%
Dijk → PRM 77,423,841 42m 3s 1.19 GB 54,417.4 28.17%

Dijk → PRMFast 2,665,417 46s 1.19 GB 76,938.2 81.22%

Without Buffer
Method Nodes Runtime Memory Cost Error

Dijk → Dijk 54,998,209 13m 10s 919 MB 48,748.9 14.82%
Dijk → DijkFast 60,236,478 8m 12s 997 MB 48,748.4 14.82%

Dijk → A∗ 42,019,677 11m 22s 923 MB 49,175.5 15.82%
Dijk → PRM 38,949,512 22m 15s 758 MB 67,133.6 58.12%

Dijk → PRMFast 1,579,735 30s 911 MB 91,187.1 114.78%

Table 5.2: Results for path computation of a California Indian Trail.
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Figure 5.1: A map of California Indian trails by James Davis [7]. The
green rectangle indicates the area shown in 5.2 while the red and brown
paths indicate possible corresponding trails.
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Figure 5.2: An energetic path found by the application, possibly cor-
responding to the trails shown in Figure 5.1.

50



5.2 Oregon Trail

This test was selected to allow a comparison against previous work while

demonstrating a historical application. The Oregon Trail is a well known trail

taken by settlers journeying to the western United States in the mid 1800’s.

Despite the name, the trail actually splits in several places, allowing travel to

various places of settlement in what is now known as California, Oregon, and

Washington.

This test concentrates on a section of the Oregon Trail that crosses Oregon

itself. The trail begins at Old Fort Boise in Idaho4 and ends at Oregon City in

Oregon5. Figures 5.3 and 5.4 show the paths generated on the simplified and full

datasets respectively, while Table 5.3 presents the results.

Rickwald used this trail extensively when testing his implementation. While

no timing information is given, he did note that constructing a path across Oregon

required most of the day. By contrast, the restrictive tiling scheme presented in

this work significantly reduces the amount of time required while still producing

accurate paths. The results are comparable to those of the California Indian Trail

in that both the Dijkstra and Fast Dijkstra methods produced accurate paths

even with a highly restricted search space (less than 1% error when run without a

buffer). PRMFast again requires very little time, but produces highly inaccurate

paths. It is interesting to note that A∗ had a longer runtime than Dijkstra in

both the buffered and unbuffered cases. We hypothesize that the heuristic, which

ignored the presence of water, may have caused the algorithm to explore paths

which required many river crossings before discovering more energetically optimal

terrain.

4Old Fort Boise: 43◦ 37’ N, 116◦ 11’ W
5Oregon City: 45◦ 21’ N, 122◦ 35’ W
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Unrestricted
Method Nodes Runtime Memory Cost Error

*Dijk 505,896,251 2h 41m 50s 2.34 GB 74,653.2 0.00%
PRMFast 16,601,736 28m 22s 2.68 GB 209,445 180.55%

With Buffer
Method Nodes Runtime Memory Cost Error

Dijk → Dijk 184,985,532 46m 5s 1.80 GB 74,653.2 0.00%
Dijk → DijkFast 181,351,914 26m 9s 1.95 GB 74,655.7 0.00%

Dijk → A∗ 164,865,746 47m 54s 1.95 GB 75,776.5 1.50%
Dijk → PRM 164,464,736 2h 22m 29s 1.94 GB 97,402 30.47%

Dijk → PRMFast 5,635,817 3m 10s 2.00 GB 131,743 76.47%

Without Buffer
Method Nodes Runtime Memory Cost Error

Dijk → Dijk 110,063,682 26m 43s 1.50 GB 75,046.5 0.53%
Dijk → DijkFast 116,559,602 15m 30s 1.51 GB 75,046.1 0.53%

Dijk → A∗ 101,173,730 27m 15s 1.50 GB 75,605.8 1.28%
Dijk → PRM 143,160,284 2h 13m 50s 1.34 GB 98,104.2 31.41%

Dijk → PRMFast 3,702,639 3m 1.55 GB 118,478 58.70%

Table 5.3: Results for path computation between Old Fort Boise (ID)
and Oregon City (OR).
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Figure 5.3: The estimated Oregon Trail produced on the simplified
dataset. The red boxes indicate the search space for the algorithms
run on the full dataset.
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Figure 5.4: An energetic path overlayed with an estimate of the actual
historic Oregon Trail [5].
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5.3 Moundbuilders

This test was designed to exercise the tools on a path computation over a sig-

nificant distance. During the 1700’s, early settlers of the Eastern United States

encountered large mounds of earth that could not have been made by natural

means. These mounds were often constructed in perfectly symmetrical shapes,

or into exquisite designs. Excavation of hundreds of mounds has revealed that

most were constructed as burial chambers, often filled with artifacts depicting

the occupants social status or victories in battle. However, some of the mounds

contained no human remains, but instead may have had a spiritual purpose (see

Figure 5.5). While it was apparent that these mounds were constructed by hu-

man hands, the responsible culture remained a point of mystery and debate for

over 100 years. Called the Moundbuilders, it is now generally agreed that they

consisted of early native American Indians, though from which tribes they came

remains unknown [36].

Mounds constructed by the Moundbuilders have been found all along the

central and eastern United States. Of particular interest to this work are the

mounds found near Hopewell in modern Ohio. Excavation from these mounds

have revealed flint from the Rocky Mountains, shells from the Gulf of Mexico, and

other artifacts of distant origin [12]. This indicates that the inhabitants engaged

in extremely long-distance trade, an impressive feat for a civilization that was

long gone by the time European settlers arrived.

While it is known that trade occurred between villages separated by great

distances, the actual trade routes remain somewhat of a mystery. Figure 5.6

demonstrates an energetic path that may have been used between two prominent
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Figure 5.5: The Serpent Mound found in Southern Ohio. The triangu-
lar head appears to be devouring an egg shaped object, while its tail
ends in a triple coil over 1,000 feet away. Image courtesy of [10].

Moundbuilder villages; Moundville, Alabama6 and Hopewell, Ohio7. The results

are presented in Table 5.4.

This is the longest path presented in this section, as evidenced by the increased

runtimes and nodes searched for each method. Notice that, compared to the

results for the previous paths, PRM is able to construct a relatively accurate

path in a small fraction of the time required by Dijkstra when run unrestricted

on the full dataset. However, the unbuffered Fast Dijkstra is able to produce a

far more accurate path while consuming considerably less time and memory.

6Moundville: 32◦ 59’ N, 87◦ 37’ W
7Hopewell: 39◦ 58’ N, 82◦ 10’ W
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Unrestricted
Method Nodes Runtime Memory Cost Error

*Dijk 735,795,927 3h 18m 39s 2.36 GB 107,723 0.00%
PRMFast 27,330,219 31m 6s 2.83 GB 145,731 35.28%

With Buffer
Method Nodes Runtime Memory Cost Error

Dijk → Dijk 252,449,787 1h 14m 59s 1.94 GB 107,723 0.00%
Dijk → DijkFast 285,154,704 37m 15s 1.95 GB 107,726 0.00%

Dijk → A∗ 230,861,134 1h 12m 18s 1.91 GB 112,149 4.11%
Dijk → PRM 185,307,75 2h 24m 31s 1.94 GB 123,435 14.59%

Dijk → PRMFast 8,897,884 7m 12s 2.00 GB 155,447 44.30%

Without Buffer
Method Nodes Runtime Memory Cost Error

Dijk → Dijk 158,805,328 36m 32s 1.94 GB 109,036 1.22%
Dijk → DijkFast 168,498,376 22m 2s 1.95 GB 109,039 1.22%

Dijk → A∗ 147,167,803 42m 26s 1.98 GB 112,376 4.32%
Dijk → PRM 119,739,506 1h 33m 17s 1.79 GB 126,408 17.35%

Dijk → PRMFast 5,479,137 3m 56s 2.00 GB 172,630 60.25%

Table 5.4: Results for path computation between Moundville (AL) and
Hopewell (OH).
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Figure 5.6: A possible trade route utilized by the Moundbuilders.
Note that while the path from the simplified dataset (cyan) is quite
different than the path from the full dataset (yellow), it is sufficient to
determine which tiles in the full dataset should be searched.
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5.4 California Archaeological Sites

This test was designed to demonstrate the caloric radius visualization. In the

archaeological community, a traditional means of determining a tribes hunting

and foraging grounds is to draw a circle on a map, focused on the tribes camp,

with a radius of several kilometers. However, this method does not account for

the terrain type. For example, a hunting party can travel much further on flat

terrain (thus extending the radius) as opposed to very rocky or sloped terrain.

Thus, a better metric for determining a tribes hunting ground may be a caloric

measure.

Figures 5.7 and 5.8 show archaeological sites in southern California designated

CA-SLO-2 and CA-SLO-9 respectively8. For context, the body of water seen at

the top of each image is Morro Bay. The radius shows the area for which the

tribes located at these sites may have searched for food. Notice that when the

elevation remains level, such as along the coast or through valleys, a much greater

distance can be reached. Conversely, the extra energy required when the traveler

must leave the valley in order to reach a higher point of elevation can significantly

reduce the distance that can be traveled.

8Note that these images show a much closer view of the terrain compared to the other images
in this document.
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Figure 5.7: The CA-SLO-2 archaeological site with the caloric radius
visualization. The color is scaled between violet (850 kilocalories),
green (1000 kilocalories), and red (1150 kilocalories).
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Figure 5.8: The CA-SLO-9 archaeological site with the caloric radius
visualization. The color is scaled between violet (850 kilocalories),
green (1000 kilocalories), and red (1150 kilocalories).
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Chapter 6

Conclusions and Future Work

This work has presented a set of tools that can be used to analyze massive ter-

rain datasets. A key contribution is our use of a simplified dataset and restrictive

tiling scheme to vastly reduce the search space while maintaining accuracy. We

have also introduced a multi-threaded version of the popular Dijkstra’s shortest

path algorithm, which drastically reduces the time necessary to construct ener-

getic paths. Moreover, we have introduced the emerging concept of Probabilistic

Road Maps to energetic path finding. Finally, we have incorporated several differ-

ent visualizations that allow for explorations of alternative paths, difficult terrain,

and alternate destinations.

We have demonstrated the efficiency and possible historical applications of

our tools by performing several experiments to construct energetic paths across

large distances using a variety of algorithms. Using our multi-threaded Dijkstra

variant combined with the restrictive tiling scheme, we are able to construct an

accurate energetic path across the United States in under three hours. This

shows a large improvement over previous work in which a path across the state

of Oregon required most of a day.
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While we have explored several different path algorithms, our results show

that using a simplified dataset to obtain a general path, followed by Dijkstra’s

algorithm (or the Fast Dijkstra variant) provides the best results. While methods

such as PRM can provide a path in a much shorter time, the accuracy is generally

quite low. In addition, only Dijkstra’s algorithm provides the data necessary to

construct several of our alternate visualizations, such as the alternate destinations

visualization.

There are many possible avenues for future work including interface mod-

ifications, improved and additional datasets, and algorithm adjustments. For

the interface, the current method of interacting with the tools is manipulated

through a series of keyboard shortcuts. It would be necessary to construct an

intuitive graphical user interface before this tool would be viable for use in the

archaeological or historical community.

For dataset improvements, there are indications that the dataset used to test

these tools contained several missing areas, as evident by the seemingly large

body of water located near the Florida panhandle. A more complete dataset

would improve the accuracy when traveling through certain areas. Similarly,

alternate datasets could be obtained to explore other parts of the world. Trails

such as those used during the Klondike Gold Rush in Alaska, or the Aboriginal

trails of Australia would be very interesting to analyze. In addition, while the

dataset simplification methods used provided paths accurate enough to correctly

determine which tiles to search on the full dataset (when combined with a small

buffer), more advanced simplification methods may provide more accurate paths,

thus further reducing the search space.

For algorithm adjustments, there is evidence that higher altitudes may affect

the caloric requirements and metabolic rate of humans [37, 44]. It would be
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interesting to include an altitude factor when determining energetic paths in

these environments. In addition, the caloric equations used in this work do not

account for the physical limitations of humans when traversing certain terrain.

For instance, it is possible to obtain a caloric cost for traveling down a very

steep cliff, but in practice it may not be feasible for a human to traverse this

path without specialized equipment. Including these limitations may provide

more realistic paths in certain situations. Finally, while the implementations of

PRM in this work provided less than satisfactory results, there are still many

implementations and optimizations that could be used to improve the viability of

these methods. Several possibilities include taking advantage of the fast runtime

by running PRM multiple times and presenting the best result, a bidirectional

approach for further speed increases, or running PRM once and using Dijkstra’s

algorithm between interspersed nodes on the path to obtain locally optimal paths.
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Appendix A

More results

The following tables and figures show additional results. The ‘Nodes’ column

indicates the number of data points that were analyzed by the particular method.

The error percentage is based on the difference in cost between the indicated

method and the cost obtained from running Dijkstra’s shortest path algorithm

unconstrained on the full dataset (marked with a * in the results table). All costs

are in kilocalories. See Table 5.1 for an explanation of the various methods.
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Figure A.1: An energetic path for the single tile test. The red line
indicates an alternate path that has an ending nearby the original
destination.

Method Nodes Runtime Memory Cost Error

*Dijk 33,387,296 8m 27s 1.20 GB 11,048.4 0.00%
PRM 15,442,241 4m 15s 758 MB 12,094.8 9.47%

Dijk → Dijk 9,625,255 2m 9s 305 MB 11,048.4 0.00%
Dijk → DijkFast 12,574,429 1m 33s 313 MB 11,048.4 0.00%

Dijk → A∗ 5,497,456 1m 20s 305 MB 11,175.1 1.14%
Dijk → PRM 3,589,619 55s 298 MB 11,883.1 7.55%

Table A.1: (44◦ 12’ N, 107◦ 51’ W) to (44◦ 34’ N, 107◦ 8’ W)
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Figure A.2: An energetic path from Los Angeles to New York City
found on the simplified dataset.

With Buffer
Method Nodes Runtime Memory Cost Error

Dijk → Dijk 983,413,860 4h 18m 10s 1.90 GB 450,699 0.98%
Dijk → DijkFast 989,423,828 2h 33m 31s 1.94 GB 450,559 0.95%

Without Buffer
Method Nodes Runtime Memory Cost Error

Dijk → Dijk 654,000,000 2h 37m 16s 1.88 GB 455,122 0.00%
Dijk → DijkFast 655,200,408 1h 32m 1.95 GB 454,994 0.00%

Table A.2: Results for path computation between Los Angeles (33◦ 56’
N, 118◦ 24’ W) and New York City (40◦ 47’ N, 73◦ 58’ W)
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Figure A.3: A closer view of the simplified (cyan) and detailed (yellow)
paths from Los Angeles to New York City as they cross a mountainous
region.
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