
1

A Critical Look at Inheritance

“You can choose your associates,
but you’re stuck with your

ancestors.”

Inheritance in OOD

• Inheritance is often held to be sacrosanct in
OOD.

• Tendency for OO developers to gauge the
success of their efforts by the complexity of
their inheritance hierarchy.

• It is interesting to note that inheritance
hierarchy examples in OO texts seldom deal
with software design problems.

2

Inheritance--The Reality
• Inheritance is a complex issue.

– Many different types of inheritance relationships.
– Basic notions differ among OO languages
– Some controversial issues--e.g. multiple

inheritance.
– Inheritance can break encapsulation.
– Poorly conceived inheritance relationships can

frustrate system reliability, maintainability, and
evolvability.

• Inheritance is neither inherently good or bad.
It must be used in a disciplined manner.

Inheritance--A Simple Classification

• Subclassing
– inheritance of implementation fragments/code

from a superclass.

• Interface Inheritance
– inheritance of contract fragments/interfaces.

3

The Complexities of Subclassing

• Methods of a class may freely invoke each
other.

• Subclasses may override inherited methods.
• Subclass methods may call methods of

superclasses, including overridden
superclass methods.

• This is actually a form of “callback” from
subclass to superclass.

Inheritance Issues Example
Text

-text: Array of Char
-used:Integer = 0
-caret:Integer = 0

+max():Integer
+length():Integer
+write(pos:Integer, ch:Char)
+delete(pos:Integer)
+caretPos():Integer
+setCaret(pos:Integer)
posToXCoord(pos:Integer):Integer
posToYCoord(pos:Integer):Integer
posFromCoord(x:Integer,
 y:Integer):Integer
+type(Char)
+rubout()

+setCaret(pos:Integer)
+posToXCoord(pos:Integer):Integer
+posToYCoord(pos:Integer):Integer
+posFromCoord(x:Integer,
 y:Integer):Integer
+hideCaret()
+showCaret()

-cacheX: Integer = 0
-cacheY: Integer = 0

SimpleText

4

Example--Continued
abstract class Text {

.

.

.
 private int caret = 0;

.

.

.
 void setCaret(int pos) {
 caret = pos;
 }

.

.

.
}

class SimpleText extends Text {
.
.
.

 void setCaret(int pos) {
 int old = caretPos();
 if (old != pos) {
 hideCaret();
 super.setCaret(pos);
 showCaret();
 }

.

.

.
}

Example--Continued
Interaction diagram resulting from call to method type of Text class:

Text SimpleText Display
type

caretPos

write
setCaret

hideCaret
(update display)

Super.setCaret
showCaret

setCaret

5

Example--Continued
A new version of Text class that “breaks” the subclass SimpleText:

abstract class Text {
.
.
.

 void write (int pos, char ch) {
 int i;
 for (i = used; i > pos; i--)
 text[i] = text[i-1];
 used = used + 1;
 if (caret >= pos)
 caret = caret +1;
 text[pos] = ch;
 }

...

Inheritance Issues--The Fragile Base
Class Problem

• There is an implicit interface between a
class and its ancestor classes (superclasses).
– Syntactic aspect--Does a class need to be

recompiled due to purely syntactic changes
among it superclasses?

– Semantic Aspect--How dependent is a subclass
upon changes in the implementation of its
superclasses?

6

Dealing With Class-Subclass
Dependencies

• Specialization Interface
– Interface between a class and its subclasses
– For Java and C++, the specialization interface

consists of the public and protected interface of
the superclass.

• Various methods have been proposed to
control behavior across a specialization
interface, but these are largely of theoretical
interest.

Alternatives to Inheritance--Object
Composition

• Object composition--composition of
behavior based upon references among
objects rather than inheritance relations.

• Based upon “part of” relationship among
objects.
– Suppose object A requests help from object B
– B is “part of” A is references to B do not leave

A.

7

Object Composition

B

CA

inner
(owned)
objects

outer
(owning)
object

Note: A reuses the implementation of objects B and C

Composition Versus Inheritance
• An instantiated object has one notion of self

even though it may inherit parts of its
implementation from several superclasses.

• “Self-recursive invocations of methods
always return to the overriding version in
the lowest level subclass

• Composed objects do not have a common
self--outer object does not share identify
with inner objects.

8

Example of self-recursive calls

Base
A()

Sub
A()

SubSub

Base SubSub

A()

Sub

A()

 uses A()

B()

super.A()
super.A()uses

super.A()

uses
super.A

Example of Composition

Base
A”()

Sub
A’()

SubSub
A()

B()

uses

uses

:Base:SubSub :Sub

A
A’

A’’

9

Composition--Additional Observations
• Composition requires that object

interactions, including recursive interactions
among objects, be explicitly designed-in
rather than an implicit by-product of
implementation inheritance.

• Composition is a relationship between
instantiated objects, not a relationship
between classes.

• Composition can be made as general as
subclassing by use of delegation.

Inheritance Versus Composition--
Another Example

• Inheritance is generally not appropriate for
“is a role played by” relationships.

• For instance, consider roles in an airline
reservation system:
– passenger
– ticket agent
– flight crew
– etc.

10

Roles Example--A Potential
Inheritance Hierarchy

Person

CrewMember TicketAgent Passenger

Problem with this approach: a person may play different
roles. An instantiated subclass can only represent one role.

Roles Example--An Attempt to Fix
the Inheritance Hierarchy

Person

CrewMember Passenger TicketAgent

CrewMemberAndTicketAgent

CrewMemberAndPassenger

TicketAgentAndPassenger

CrewMemberAndTicketAgentAndPassenger

11

Roles Example--A More Rational
Solution using Composition

CrewMember TicketAgent Passenger

Person

Uses Uses Uses

1 1

1

0..1 0..1 0..1

Note: Many authors refer to this as delegation.

TicketAgent
Object

Person
Object

Passenger
Object

Person
Object

Object Encapsulation via
Composition

12

An Alternative Composition for the
Roles Example

CrewMember TicketAgent Passenger

Person

Uses Uses Uses

1 1

1

0..1 0..1 0..1

Object Encapsulation for Alternative
Composition

Passenger

Person

Ticket
Agent Flight

Crew
Ticket
Agent

Person

13

Inheritance Versus Composition--
Some Guidelines

• It is generally not a good idea to use
inheritance for the following purposes:
– To represent dynamically changing alternative

roles of a superclass
– To hide methods or attributes inherited from a

superclass.
– To implement a domain-specific class as a

subclass of a utility class.

Potential Drawbacks of Composition
(Delegation)

• There may be some minor performance
penalty for invoking an operation across
object boundaries as opposed to using an
inherited method.

• Delegation can’t be used with partially
abstract (uninstantiable) classes

• Delegation does not, in and of itself, impose
any disciplined structure on the design (but
neither does a class hierarchy).

