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A Critical Look at Inheritance

“You can choose your associates,
but you’re stuck with your

ancestors.”

Inheritance in OOD

• Inheritance is often held to be sacrosanct in
OOD.

• Tendency for OO developers to gauge the
success of their efforts by the complexity of
their inheritance hierarchy.

• It is interesting to note that inheritance
hierarchy examples in OO texts seldom deal
with software design problems.
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Inheritance--The Reality
• Inheritance is a complex issue.

– Many different types of inheritance relationships.
– Basic notions differ among OO languages
– Some controversial issues--e.g. multiple

inheritance.
– Inheritance can break encapsulation.
– Poorly conceived inheritance relationships can

frustrate system reliability, maintainability, and
evolvability.

• Inheritance is neither inherently good or bad.
It must be used in a disciplined manner.

Inheritance--A Simple Classification

• Subclassing
– inheritance of implementation fragments/code

from a superclass.

• Interface Inheritance
– inheritance of contract fragments/interfaces.
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The Complexities of Subclassing

• Methods of a class may freely invoke each
other.

• Subclasses may override inherited methods.
• Subclass methods may call methods of

superclasses, including overridden
superclass methods.

• This is actually a form of “callback” from
subclass to superclass.

Inheritance Issues Example
Text

-text: Array of Char
-used:Integer = 0
-caret:Integer = 0

+max( ):Integer
+length( ):Integer
+write(pos:Integer, ch:Char)
+delete(pos:Integer)
+caretPos( ):Integer
+setCaret(pos:Integer)
posToXCoord(pos:Integer):Integer
posToYCoord(pos:Integer):Integer
posFromCoord(x:Integer,
                        y:Integer):Integer
+type(Char)
+rubout( )

+setCaret(pos:Integer)
+posToXCoord(pos:Integer):Integer
+posToYCoord(pos:Integer):Integer
+posFromCoord(x:Integer, 
                            y:Integer):Integer
+hideCaret( )
+showCaret( )

-cacheX: Integer = 0
-cacheY: Integer = 0

SimpleText
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Example--Continued
abstract class Text {

.

.

.
  private int caret = 0;

.

.

.
  void setCaret(int pos)  {
    caret = pos;
   }

.

.

.
}

class SimpleText extends Text {
.
.
.

  void setCaret(int pos) {
    int old = caretPos( );
    if (old != pos) {
      hideCaret( );
      super.setCaret(pos);
      showCaret( );
    }

.

.

.
}

Example--Continued
Interaction diagram resulting from call to method type of Text class:

Text SimpleText Display
type

caretPos

write
setCaret

hideCaret
(update display)

Super.setCaret
showCaret

setCaret
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Example--Continued
A new version of Text class that “breaks” the subclass SimpleText:

abstract class Text  {
.
.
.

  void write (int pos, char ch) {
    int i;
    for ( i = used; i > pos; i--)
       text[i] = text[i-1];
    used = used + 1;
    if (caret >= pos)
       caret = caret +1;
    text[pos] = ch;
  }

...

      

Inheritance Issues--The Fragile Base
Class Problem

• There is an implicit interface between a
class and its ancestor classes (superclasses).
– Syntactic aspect--Does a class need to be

recompiled due to purely syntactic changes
among it superclasses?

– Semantic Aspect--How dependent is a subclass
upon changes in the implementation of its
superclasses?
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Dealing With Class-Subclass
Dependencies

• Specialization Interface
– Interface between a class and its subclasses
– For Java and C++, the specialization interface

consists of the public and protected interface of
the superclass.

• Various methods have been proposed to
control behavior across a specialization
interface, but these are largely of theoretical
interest.

Alternatives to Inheritance--Object
Composition

• Object composition--composition of
behavior based upon references among
objects rather than inheritance relations.

• Based upon “part of” relationship among
objects.
– Suppose object A requests help from object B
– B is “part of” A is references to B do not leave

A.
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Object Composition

B

CA

inner
(owned)
objects

outer
(owning)
object

Note: A reuses  the implementation of objects B and C

Composition Versus Inheritance
• An instantiated object has one notion of self

even though it may inherit parts of its
implementation from several superclasses.

• “Self-recursive invocations of methods
always return to the overriding version in
the lowest level subclass

• Composed objects do not have a common
self--outer object does not share identify
with inner objects.
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Example of self-recursive calls

Base
A( )

Sub
A( )

SubSub

Base SubSub

A( )

Sub

A( )

 uses A( )

B( )

super.A( )
super.A( )uses

super.A( )

uses
super.A

Example of Composition

Base
A”( )

Sub
A’( )

SubSub
A( )

B( )

uses

uses

:Base:SubSub :Sub

A
A’

A’’
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Composition--Additional Observations
• Composition requires that object

interactions, including recursive interactions
among objects, be explicitly designed-in
rather than an implicit by-product of
implementation inheritance.

• Composition is a relationship between
instantiated objects, not a relationship
between classes.

• Composition can be made as general as
subclassing by use of delegation.

Inheritance Versus Composition--
Another Example

• Inheritance is generally not appropriate for
“is a role played by” relationships.

• For instance, consider roles in an airline
reservation system:
– passenger
– ticket agent
– flight crew
– etc.
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Roles Example--A Potential
Inheritance Hierarchy

Person

CrewMember TicketAgent Passenger

Problem with this approach:  a person may play different 
roles.  An instantiated subclass can only represent one role.

Roles Example--An Attempt to Fix
the Inheritance Hierarchy

Person

CrewMember Passenger TicketAgent

CrewMemberAndTicketAgent

CrewMemberAndPassenger

TicketAgentAndPassenger

CrewMemberAndTicketAgentAndPassenger
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Roles Example--A More Rational
Solution using Composition

CrewMember TicketAgent Passenger

Person

Uses Uses Uses

1 1

1

0..1 0..1 0..1

Note:  Many authors refer to this as delegation. 

TicketAgent
Object

Person
Object

Passenger
Object

Person
Object

Object Encapsulation via 
Composition
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An Alternative Composition for the
Roles Example

CrewMember TicketAgent Passenger

Person

Uses Uses Uses

1 1

1

0..1 0..1 0..1

Object Encapsulation for Alternative
Composition

Passenger

Person

Ticket
Agent Flight

Crew
Ticket
Agent

Person
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Inheritance Versus Composition--
Some Guidelines

• It is generally not a good idea to use
inheritance for the following purposes:
– To represent dynamically changing alternative

roles of a superclass
– To hide methods or attributes inherited from a

superclass.
– To implement a domain-specific class as a

subclass of a utility class.

Potential Drawbacks of Composition
(Delegation)

• There may be some minor performance
penalty for invoking an operation across
object boundaries as opposed to using an
inherited method.

• Delegation can’t be used with partially
abstract (uninstantiable) classes

• Delegation does not, in and of itself, impose
any disciplined structure on the design (but
neither does a class hierarchy).


