
The Benefits And Reasons for Doing Refactoring

CSC508 Software Engineering
by Magnus Aase

December 11, 2001

The people behind the work of Refactoring seem all to agree on that Refactoring is not a
cure for all software ills. They say “It is no silver bullet” referring to the famous essay by
Frederick Brooks, “No Silver Bullet – Essence and Accident in Software Engineering”,
The Mythical Man-Month, 1986. In this essay Brooks is referring to the Silver Bullet as
the only bullet that can kill a werewolf. Brooks is saying that there is no such thing as a
Silver Bullet in software processes, there is no one special solution to solve all our
software problems. One size does not fit all. Unfortunately this goes for Refactoring as
well. However, I will here look at why Refactoring is still a valuable activity that should
be used for several purposes in software development. I will look at following reasons
and analyze them more in depth in a later section:

• Refactoring Improves the Design of Software
• Refactoring Makes Software Easier to Understand
• Refactoring Helps You to Find Bugs
• Refactoring Increases The Quality Of The Software
• Refactoring As an Educational Tool
• Refactoring Increases Morale
• Refactoring Helps You to Program Faster (…in the end)

All of these above reasons are overlapping each other in one or several ways. However, I
will come back to that discussion later. This chapter is just describing what is claimed
about Refactoring.

Refactoring Improves the Design of Software
People tend to do changes to realize short-term goals [8]. The trade-off: redesigning
causes short-term pain for a longer term gain, is neglected. Developers avoid short-term
pains. It now becomes harder to see and understand the design by reading the code.
Refactoring is trying to help with this, by shapening up the code. Work is done to remove
bits that are not really in the right place. Regular Refactoring helps code retain its shape.

So how does Refactoring improve the design? One important way is to eliminate
duplicate code to ensure the code says everything once and only once, which is an
essence of good design. Poorly designed code often takes more code to do the same
things, because the code quite literally does the same thing in several places. We want to
avoid redundancy in our code. The importance of this lies in future modifications to the
code. The more code there is, the harder it is to modify correctly. There is simply more

1

code to understand. Example, you change this block of code here, but the system does not
do what you expected, because you had to change the code in three other places as well.

Refactoring and design will also be discussed in a later section. But for now, Refactoring
helps to take the depreciated code back into a useful and good design, by applying the
necessary refactorings step after step with a lot of testing in between.

Refactoring Makes Software Easier to Understand
Programming is in many ways a conversation with a computer. You write code that tells
the computer what to do, and it responds by doing exactly what you tell it to do.
Hopefully, in time you close the gap between what you want it to do and what you tell it
to do. Programming in this mode is all about saying exactly what you want. But then
there is another user of your source code. Someone will try to read your code in a few
months time to make some changes. So if that programmer takes a week to do that
change instead of one hour, that matters. The trouble from my own experience, however,
is that when you are trying to get the program to what you want, you are not thinking
about that future developer. You are just too focused to get that darn thing to work.
Refactoring helps you to make changes that make the code easier to understand. When
Refactoring you have the code that works but is not ideally structured. Some time spent
Refactoring can make the code better communicate its purpose. Programming in this
mode is all about saying what you want.

Refactoring can also help on program understanding for new hires.[15]. When
introducing a project to new hires or people new to the project, doing refactoring can help
them to understand how the system works. To improve the design of the existing working
system, they will have to figure out what to improve, and why the new changes will
improve the system.

When refactoring one changes the code to reflect a better understanding, some of the
ways to do this are explained in the How to Refactor? chapter. One example would be to
replace comments and the code with a new self-explaining method. To have the code
communicate its purpose and intention without the use of commenting makes it faster and
easier to read. When you feel the need to write a comment, first try to refactor the code so
that any comment becomes superfluous. [1]

Refactoring Helps You to Find Bugs
Help in understanding the code also helps in spotting bugs. When one work with and
refactor code, one gets a deeper understanding of what the code does, and the
understanding is put right back in the code. Along with XP’s pair programming
refactoring is a good tool for finding bugs in a systematic way.

Refactoring Increases The Quality Of The Software
Software Quality has many connotations that I will not go deeper into right now.
However, in this context, increasing the quality of the software contains methods for
making maintenance and adding functionality easier. By applying refactoring methods on
software, the goal is to improve the design of existing code. Hence, the improvement
make the basis for better quality. I will try to discuss this further later.

2

Refactoring As an Educational Tool
Having become familiar and experienced with use of refactorings and their qualities,
this skill has now become a part of your development skills. The more you do
refactoring, the more you learn about bad designs that you had to refactor and how you
would have done it instead.

Refactoring Increases Morale [15]
According to Dan Stearns , professor at Computer Science, California Polytechnic State
University, Refactoring increases morale. His experience was from reverse engineering,
which had many similarities to refactoring. I will try to explain this in another chapter.
Refactoring increased the morale because the system was to be improved. By having the
system improved in such manner, the team knew it was beneficial. The result was a
system that was easier to understand and to work on.

Refactoring Helps You to Program Faster
In the end, all earlier points come down to this: Refactoring helps you develop code
more quickly. This might sound counterintuitive, because refactoring does not add
functionality to the system. When Fowler talks about refactoring, he says people can see
that refactoring improves the quality. Improving design, improving readability, reducing
bugs, all improves the quality. What quality of code is, will be discussed later.

3

Insufficiencies with Refactoring and When to Avoid Using It.

Now that I have looked at the benefits and when to refactor, it could also be useful to take
a look at the other side. I will here take a look at the problems and some addressed issues
with Refactoring. The more discussion about it and its trade-offs will be discussed later.

“When you learn a new technique that greatly improves your productivity, it might be
hard so see when it does not apply. Usually you learn it within a specific context, often
just a single project. It might be hard to see what causes the technique to be less effective,
even harmful.” - Martin Fowler

Problems with refactoring and to know its limitations, is the same as with objects in the
early ninetiees according to Fowler. It was not that one didn’t think objects had
limitations, it was just that one didn’t know what the limitations were. This can be
compared to Refactoring. Since Refactoring is such a new concept, there has not been
enough experience about it to see where the limitations apply. Therefore, as more people
learn about refactoring, we will learn more by monitoring its progress.

In the essay about a 1960’s experience “Plan to throw one away” Fred Brooks arguments:
“Plan to throw one away; you will anyway”. In most projects, the first system is barely
usable. He says it might be too slow, too big, awkward to use, or all three of these. There
is no alternative but to start again, this time smarter and build a redesigned version in
which these problems are solved. He arguments that from all large-system experience
shows that it wil be done and it is really hard get it right the first time.

Refactoring can suffer from this too. Refactoring can get a great deal out of decayed
software but it has no magically powers [1] If the concerned code is neither able to
compile or to run in a stable manner, it might be better to throw it away and rewrite the
software from scratch. Then next time one will use refactoring to avoid the mistakes
made earlier.

When doing refactoring, one should stop when arriving close to a deadline. At that point
the productivity gain from refactoring would appear after the deadline and thus to be too
late. Ward Cunningham [14] describes unfinished refactoring as going into debt. Most
companies need some debt in order to function efficiently. However, with debt come
interest payments, that is, the extra cost of maintenance and extension caused by overly
complex code. You can bear some interest payments, but if the payments become too
great, you will be overwhelmed. It is therefore important to manage your debt, paying
parts of it off by means of refactoring. Then getting close to the deadline might be less
painful.

Dealing with the insufficiencies of refactoring, is for most of us a learning experience as
mentioned by Fowler earlier. Therefore, unfortunately, only a couple of issues have been
adressed so far.

4

Databases.
Many business applications are tightly coupled to the database schema that supports
them. When working with relational databases refactoring that move the data to another
place are very costly to implement as the database schemas have to be modified as well.
Therfore refactoring is hard to do. Data migration is another reason. Even by carefully
layering out the system to minimize the dependencies between the database schema and
the object model, changing the database schema forces you to migrate the data, which
can be a long and painful task when it has to be done manually.

Changing Interfaces
In the OO world we can change the implementation of a software module seperately from
changing the interface. Changes to the internals of an object can safely be done without
anyone else worrying about it. However, by changing the interface, in the case where the
users have only access to the interface (and not the implemented object), everybody
needs to change their calls to it.

Collective ownership [Beck] tries to solve this by having collective ownership of the
interfaces. Then you will have a copy of the interface for your own use and collaborate
on the changes with the other users when done. So, one should try to avoid publishing
interfaces prematurely, and rather modifying the code ownership.

Optimized code
Optimized code is another topic which can make refactoring difficult. Soloway [17], note
that reviewers have difficulty reviewing and understanding code that has been optimized.
To assist in code reviews and walktroughs, the unoptimized code sections might be
shown in the refinement of the desgin representation aling with mapings to the actual
code. Hence, for walkthroughs, code reviews, optimized code is not preferred due to its
readability. It is simply hard to read and understand optimized code. This goes for the
process of debugging optimized code as well [24].

5

When to Refactor?

Opposed to setting aside time every other week or the end of the day, refactoring is an
activity that you do all the time in little bursts [Fowler]. You don’t decide to refactor, but
because you want to do something else.

There are three general cases for when to do Refactoring.

• Refactor Before You Add Functionality
o Improve the design for a better understanding.
o Then add functionality.

When introduced to new code, the first reason to refactor is to help understanding. If the
code is perplexing, then one should do refactoring to make it clearer. Improve the design.
Once the design is refactored, adding features can go more quickly and smoothly.

• Refactor When You Need to Fix a Bug
o Improve the design for a better understanding.
o Then remove bug.

If you get a bug report, then it could be a sign for refactoring, because the code was not
clear enough for you to see there was a bug.

• Refactor As You Do Code Reviews
o Improve the design for a better common understanding.
o Make suggestions for changes
o Agree on a solution.

Having knowledge about Refactoring, knowing what to change to improve the code, can
be a good tool for code reviews. The suggested way by Fowler, is to one reviewer and the
original author work on the code together. The reviewer suggests changes, and they both
decide whether the changes can be refactored in. If so, they make the changes. This is
also one of the main ideas from XP and pair-programming. [2]

Now that we have looked at the idea of in which working situation you would be doing
refactoring, the more challenging task for the developer is to figure out where in the code
that should be refactored. So, when working with the code, when do you know you have
to change it?

Answer: This is a process often based on human intuition and experience.[1]
“Bad smells in code” is a notion for the process when to refactor explained by Kent Beck
[2]. This process looks for certain familiar structures and patterns in the code that
suggests the possibility for refactoring. To figure out when to refactor, one has to first
localize and identify the problem. This problem characterized as the “bad smell”. The
following bad smells are describing a part of a larger catalogue [1][2] based on
comprehensive programming experience in the industry.

6

Since the list of bad smells is rather long, I will here just look at some of the of them. The
italic method names, are names of the refactorings approaching the smells explained in
the chapter “How to Refactor”.

Duplicate Code
By saying everything once and only once, comes the problems of duplication. The
number one in the stink parade. If you see the same code structure in more than one
place, you can be sure that your program will be better if you find a way to combine
them.

Example. The simplest duplicated code problem is when one have the same expression in
two methods of the same class. Then all one have to do is the Extract Method and join the
code from both places.

Another common duplication problem is when one have the same expression in two
sibling subclasses. One can eliminate this duplication by using the Extract Method in
both classes then Pull Up Field. If the code is similar but not the same, you need to use
Extract Method to separate the similar bits from the different ones. If then the methods do
the same thing with a different algorithm, you can choose the clearer of the two
algorithms and use Substitute Algorithm.

Long Method
The object programs that live best and longest are those with short methods [1]. The
longer a procedure is, the more difficult it is to understand. Another way for easier
understanding is good naming. This method is aggressive about decomposing methods,
and the heuristic is whenever one feel to comment something, write a method instead.
Such a method contains the code that was commented but it is named after the intention
of the code rather than how it is done. The key here is to narrow the semantic distance
between what the method does and how it does it.

Most of the times, this method is using the Extract Method, find parts of the method that
seem to go nicely together and make a new method. However, if you have a lots of
parameters and temporary variables, these elements get in the way of extracting methods.
What happens is that using Extract Method ends up passing the parameters and variables
to the extracted method making it even less readable than the original. To overcome this
problem, one can use the Replace Temp with Query to eliminate the temporary variables
and the long lists of parameters can be slimmed down by using Introduce Parameter
Object and Preserve Whole Object.

Large class
When a class is trying to do too much, it often shows up as too many instance variables.
When a class has too many instance variables, duplicated code are often occurring.

One can Extract Class to bundle a number of the variables. Choose variables to go
together in the component that makes sense for each. For example, “depositAmount” and
“depositCurrency” are to variables likely to belong together in a component. Also, if the
component make sense as a subclass, using Extract Subclass could be useful.

7

Fowler claims that with a class with too many instance variables, and a class with too
much code is prime breeding ground for duplicated code, chaos and death. A simple
solution is to eliminate redundancy in the class itself, If one have five hundred-line
methods with lots of code in common, one may turn them into 5 ten-line methods with
another 10 two-line methods extracted from the original.

A more specific example would be a class that contain a user interface (the GUI), so the
class is representing the model and the display component.

So, for a class with a huge pile of variables, the usual solution for a class with too much
code is either to Extract Class or Extract Subclass.

Long Parameter List
In the earlier programming days one were taught to pass in all needed parameters by a
routine [Fowler]. This was understandable because the alternative was global data, and
global data is evil and usually painful. Objects change this situation because if one don’t
have something one needs, one can always ask another object to get it for you. So with
objects one doesn’t pass in everything the method needs; instead one pass enough so that
the method can get to everything it needs. Objects are passed instead. A lot of what a
method needs is available in the method’s host class.

To reduce long parameter lists, however, one can use Replace Parameter with Method
when you can get the data in one parameter by making a request of an object you already
know about. This object might be a field or it might be another parameter. Use Preserve
Whole Object take a bunch of data from an object and replace it with the object itself.

Divergent Change
Divergent Change occurs when one class is commonly changed in different ways for
different reasons. E.g “Well, I will have to change these three methods every time I get a
new database; I have to change these four methods every time I get a new financial
instrument”. This is a situation where two objects are better than one. Solution to this is
to identify everything that changes for a particular cause and use Extract Class to put
them all together.

Shotgun Surgery
This smell is the similar to Divergent Change but the is of opposite character.
Divergent Change is one class that suffers many kinds of changes, and Shotgun Surgery
is one change that alters many classes.

So for this case, one wants to use the Move Method and Move Field to put all the changes
into a single class. If no current class look like a good candidate, create one.

8

Feature Envy
This smell identifies a method that seems more interesting in a class other than its own. A
common focus the envy is the data. The method here invokes many getting methods on
another object to calculate some value. The method wants therefore wants to be
elsewhere, so the cure for this one is to use the Move Method to get there. It is not always
clear when to do this, but the heuristic is to determine which class has most data and put
the method with that data.

Data Clumps
Here we have the smell of identifying several data items, Data Clumps that seem to hang
together in lots of places: fields in a couple of classes, parameters in many method
signatures. Bunches of data that hang around together should be made into their own
object.

The first step is to look for where the clumps appear as fields. Use Extract Class on the
fields to turn the clumps into an object. Then turn the attention to method signatures
using Introduce Parameter Object or Preserve Whole Object to slim them down. The
benefit is that one can shrink a lot of parameter lists and simplify method calling. One
can now look for cases of Feature Envy, which will suggest behavior that can be moved
into you new classes.

Switch Statements
The problem with switch statements is mostly that of duplication. Often one finds the
same switch statement scattered about in a program in different places. If one add a new
clause to the switch, you have to find all these switch, statements and change them. The
object-oriented notion of polymorphism (to have multiple forms), gives a way to deal
with this problem.

Most times when seeing a switch statement, one should consider polymorphism. The
issue is where the polymorphism should occur. Often the switch statement switches on a
type code. One wants the method or class that hosts the type code value. Use Extract
Method to extract the switch statement and then Move Method to get into the class where
the polymorphism is needed. But if one only has a few cases that affect a single method,
and one doesn’t expect them to change, then polymorphism is overkill.

Lazy Class
Smell for classes that isn’t doing enough to pay for itself. These classes should be
eliminated. If they are nearly useless, use the Inline Class.

Speculative Generality
This smell concerns whereabouts generalities. This is code might be useful in the future
that includes all sorts of hooks and special cases to handle things that aren’t required. The
result of this is often harder to understand and maintain. If it is not being used and it is
not in the way, get rid of it.

9

Message Chains
One sees message chains when a client asks one object from another object, which the
client then asks for yet another object, which the client then asks for yet another object,
and so on. This is a long line of getThis methods. Navigating this way may means the
client is coupled and dependent to the structure of the navigation. Any change to the
intermediate relationships causes the client to have to change.

Middle Man
Smell for the Middle Man. Example. A class’s interface has half of the methods are
delegating to another class. The extra communication here is unnecessary, so use
Remove Middle Man and talk to the object that really knows what is going on.

Data Class
These are classes that have fields, getting and setting methods for the fields, and nothing
else. Such classes are dumb data holders and are almost certainly being manipulated in
far too much detail by other classes. Look for where these getting and setting methods are
used by other classes. Try to use Move Method to move behavior into the data class for
more meaning.

Refused Bequest
Subclasses get to inherit the methods and data of their parents. But what if they don’t
want or need what they are given? They are given all these great gifts and pick just a few
to play with.

The traditional thinking is that the hierarchy is wrong. One needs to create a new sibling
class and use Push Down Method and Push Down Field to push all the unused methods
to the sibling. That way the parent holds only what is common. Often you’ll hear advice
that all superclasses should be abstract.

Comments
The smell here is for figuring out when comments are superfluous and are describing
more what and how of the code rather than why. If the comments are explaining what the
block of code is doing, try Extract Method so the comments are no longer needed.

A good time to use a comment, is when one doesn’t know what to do. In addition to
describing what is going on, comment can indicate areas in which one aren’t sure.
This kind of information helps future modifiers, especially forgetful ones.

10

How to refactor?

There are currently two ways to do Refactoring. The first is refactoring manually, the
second relies on tools. I will here try to see how they are to be done.

Refactoring Manually

In these following pages I have chosen to look at 15 refactorings from Martin Fowlers
catalogue of 75 refactorings. They all tie together with the explanations of the “Bad
Smells” under the “When to Refactor” chapter.

Martin Fowler [1] is aware of the fact that his catalog is by now no complete collection of
sensible refactorings:

As you use the refactorings bear in mind that they are a starting point. You
will doubtless find gaps in them. I'm publishing them now because
although they are not perfect, I do believe they are useful. I believe they
will give you a starting point that will improve your ability to refactor
efficiently. That is what they do for me.

Extract Method (110)
Turn the fragment you are looking on into a method which explains by its name the

purpose of the method.

Motivation: To have short, well-named methods so other methods can use it.

Before
void f() {
 …
 // compute the score
 score = a * b * c;
 score -= discount;
}

After
void f() {
 …
 computeScore();
}

void computeScore() {
 score = a * b * c;
 score -= discount;
}

11

Pull Up Field
Move the field to the superclass

Motivation: To reduce duplication in two ways. It removes the duplicate data declaration
 and allows you to move from the subclasses to the superclass behavior that
 uses the field.

Substitute Algorithm(139)
Replace the body of the method with the new algorithm.

Motivation: If you find a clearer way to solve a problem, remove the whole algorithm
 and replace it with the clearer one.
Before
String foundPerson(String[] people) {

for (int i=0; i < people.length; i++) {
if(people[i].equals("Magnus")) {

return "Magnus";
}
if(people[i].equals("Erik")) {

return "Erik";
}
if(people[i].equals("Brad")) {

return "Brad";
}

}
return "";

}

After
String foundPerson(String[] people) {

List candidates = Arrays.asList(new String[] {"Magnus", "Erik", "Brad" });
for (int i=0; i < people.length; i++) {

if(candidates.contains(people[i]))
return people[i];

return "";
}

}

12

Employee

Salesman

name

Engineer

name

Employee

Salesman Salesman

name

Introduce Parameter Object (295)
Replace parameters with an object.

Motivation: By grouping the data together to an object, reduces the size of the parameter
 Lists, and long parameter lists are hard to comprehend.

Replace Temp With Query (120)
Extract expression into a method, then replace all references to the temp with the

expression.

Motivation: By replacing the temp with a query method, any method in the class can
 now get hold of the information. It is also easier to do Exctract Method since
 one has less variables to deal with.

Before
double basePrice = quantity * itemPrice;
if(basePrice > 1000)

return basePrice * 0.95;
else

return basePrice * 0.98;

After
if(basePrice() > 1000)

return basePrice * 0.95;
else

 return basePrice * 0.98;
 ...
double basePrice() {

return quantity * itemPrice;
}

13

Customer

amountInvoiced(int start, int mid ,int end)
amountReceived(int start, int mid ,int end)
amountOverdue(int start, int mid ,int end)

Customer

amountInvoiced(DataRange())
amountReceived(DataRange())
amountOverdue(DataRange())

Preserve Whole Object (288)
Send the whole object instead

Motivation: To make the parameter list more robust and consistent. You also move more
 behavior when having access to the object.

Before
int low = daysTempRange().getLow();
int hight = daysTempRange().getHigh();
withinPlan = plan.withinRange(low. Range);

After

withinPlan = plan.withinRange(daysTempRange());

Extract Class (149)
Create a new class and move the relevant fields and methods from the old class into the

new class

Motivation:As for Extract Method, extract class if it gets too big and hard to understand.

 1

14

Person
name
officeAreaCode
officeNumber
getTelephoneNumber

Person
name

getTelephoneNumber

Telephone
NumberareaCode

number

getTelephoneNumber

Extract Subclass(330)
Create a subclass for that subset of features.

Motivation: A class has features that are used only in some instances.

Replace Parameter With Method(292)
Remove the parameter and let the receiver invoke the method.

Motivation: If a method can get a value that is passed in as parameter by another
 means, that is preferred.

Before
int basePrice = quantity * itemPrice;
discountLevel = getDiscountLevel();
double finalPrice = discountedPrice(basePrice,discountLevel);

After

// Removed the parameter and let the receiver invoke the getDiscountLevel method

int basePrice = quantitiy * itemPrice;
double finalPrice = discountedPrice(basePrice);

15

Job Item

getTotalPrice
getUnitPrice
getEmployee

Job Item

getTotalPrice
getUnitPrice

Labor Item

getUnitPrice
getEmployee

Move Method(142)
Create a new method with a similar body in the class it uses most.

Motivation: Move the method when it is used by more features of another class
 than the class on which it is defined.

Move Field(146)
Create a new field in the target class, and change all its users.

Motivation: Move the field when it is used by another class more than the class on which
 it is defined.

16

Class 1

AMethod()

Class 2

Class 1

Class 2
AMethod()

Class 1
aField

Class 2

Class 1

Class 2

AMethod()aField

Inline Class(154)
Move all its features into another class and delete it

Motivation: Used when the class isn’t doing very much.

 1

Remove Middle Man(160)
Get the client to call the delegate directly

Motivation: A class is doing to much simple delegation.

 1

 Example of a client request after refactoring:
 manager = magnus.getDepartment().getManager();

Push Down Method (328)
Move the Method to the meaningful subclass

17

Person
name

getTelephoneNumber

Telephone Number

areaCode
number

getTelephoneNumber

Person
name
areaCode
number
getTelephoneNumber

Client Class

Person

getManager

Department

Client Class

Person

getDepartment

Department

getManager

Motivation: Behavior on a superclass is relevant only for some of its subclasses.

Push Down Field (329)
Move the field to a meaningful subclass

Motivation: A field is used only by some subclasses.

18

Employee
getQuota

Salesman Engineer Salesman Engineer

Employee

getQuota

Employee
quota

Salesman Engineer Salesman Engineer

Employee

quota

	Customer
	Customer
	Telephone Number
	Person
	Person
	Job Item
	Class 2
	Class 2
	Class 2
	Class 2
	Client Class
	Client Class
	Department
	Employee
	Employee
	Salesman
	Engineer
	Salesman

	Employee
	Employee
	Salesman
	Engineer
	Salesman

	The Benefits And Reasons for Doing Refactoring
	Refactoring Improves the Design of Software
	Refactoring Makes Software Easier to Understand
	Refactoring Helps You to Find Bugs
	Refactoring Increases The Quality Of The Software
	Refactoring As an Educational Tool
	Refactoring Increases Morale [15]
	Refactoring Helps You to Program Faster

	Insufficiencies with Refactoring and When to Avoid Using It.
	Optimized code

	When to Refactor?
	Duplicate Code
	Long Method
	Large class
	Long Parameter List
	Divergent Change
	Shotgun Surgery
	Feature Envy
	Switch Statements

	How to refactor?
	Refactoring Manually
	Before
	After
	Move the field to the superclass

	Before
	After
	Send the whole object instead

	

