
64

Kevin McNeish

kevinm@oakleafsd.com 804-
979-2417

Kevin McNeish is President of
Oak Leaf Enterprises - a
company that specializes in
object-oriented custom soft-
ware, training and developer
tools. He is the creator of The
Mere Mortals Framework and
has spoken at many software
developer conferences and user
groups in North America and
Europe. He uses Visual FoxPro
and the new C# .NET language
as his primary development
tools. He is co-author of the
book "What's New in Visual
FoxPro 7" and has also written
articles for CoDe, FoxPro
Advisor and FoxTalk magazines.

Kevin mentors and trains many
software companies to build
flexible, component-based
applications that scale from the
desktop to the Internet. He is a
Microsoft-Certified Developer
and has created many enter-
prise-wide applications for a
wide variety of vertical markets.

UML Sequence Diagrams
Sequence diagrams are one of the most interesting and useful
diagrams in the Unified Modeling Language (UML). They help you
document and understand the dynamic aspects of your software system—specifi-
cally the sequence of messages that are sent and received between objects. They
can help you comprehend and solve difficult issues in the process-intensive por-
tions of your applications.

This third article in the series covers one of the
most interesting diagrams in the UML—sequence
diagrams. They are most often used in the
construction phase of software projects and are
especially useful when analyzing the process-
intensive portions of your appli-
cation. Sequence diagrams are
closely related to collaboration
diagrams (discussed in the next
article in this series). While the
collaboration diagram’s main
focus is to show how objects are
associated with each other,
sequence diagrams show the
time ordering of messages
between objects.

Why use Sequence
Diagrams?
As mentioned in the previous
article on class diagrams, unless
you are using business objects in
your applications, you won’t
have much need for sequence
diagrams. This is because if
you’re not using business
objects, most of your application
logic resides inside methods of
user interface objects or in func-
tions and procedures—and there
really isn’t much messaging that occurs between
objects. However, once you decide to elevate your
programming by using business objects in your
applications, sequence diagrams help you answer
two very important questions:

1. Which objects should be assigned a
particular responsibility?

2. In what order should messages pass
between objects?

These questions are very difficult to answer
correctly when you simply try to envision object
messaging in your head. In contrast, when you
document your thought process in a sequence
diagram, suddenly the answers to these questions
become crystal clear. At a higher level, it also
helps you comprehend the overall flow of a partic-
ular process. In addition, sequence diagrams help
you easily identify unnecessary messages between

objects and factor them out. You may also
discover that objects you originally thought should
be involved in a particular process shouldn’t be
involved at all!

Modeling Use
Cases
So, what kinds of things should
you document in a sequence
diagram? Usually, a sequence
diagram is used to document
the logic of a use case (for a
discussion of use cases, see
CoDe Magazine
Issue 2 - 2001).

In this article, we’ll go step-by-
step through the process of
building a sequence diagram
for a particular use case, but
first, you need to learn about
the different elements of
sequence diagrams.

Sequence Diagram
Elements
There are four primary
elements of a sequence
diagram:

• Objects

• Lifelines

• Messages

• Focus of control

Figure 1 demonstrates the use of each of these
elements in a simple sequence diagram.

Objects

Objects that are involved in the sequence of events
you are documenting should be placed at the top
of the sequence diagram across its horizontal axis.
As shown in Figure 1, it’s a good idea to place the
actor that initiates a particular sequence at the
upper left side of the diagram. You can also place
a “UI” (user interface) placeholder class on the
diagram with which the actor interacts. This is an
excellent tool for providing context for a use case.
Next, you can place objects on the diagram that

Fast Facts
Sequence diagrams are one of

the five UML diagrams that help
you model the dynamic aspects

of your software (use case,
collaboration, statechart and
activity diagrams being the

others).

Sequence diagrams and their
cousin, collaboration diagrams,
are both known as interaction
diagrams because they show

the dynamic interaction
between objects in the system.

A sequence diagram’s focus is
the time ordering of messages
between objects (usually busi-

ness objects).

65

are instantiated by the UI (e.g., the User object) or
by other objects. You should place the most
important objects to the left and subordinate
objects to the right. It’s best to place objects on the
diagram in a way that minimizes lines that cross.

Lifelines

The lifeline is the dotted line that extends down
the vertical axis from the base of each object. The
lifeline indicates the life span of an object over a
period of time.

Messages

Messages are the most important element of a
sequence diagram. They indicate when one object
calls an operation on another object (or itself).
They are also used to indicate return values.
Message flow begins at the top left object (which
is usually an actor) and flows down the vertical
axis from one object to another.

Messages are shown on UML diagrams as labeled
arrows, with the arrowhead indicating the direc-
tion of the call. When a message is sent to an
object, the text associated with the message speci-
fies the name of the method that is being called on
the receiving object. For example, in Figure 1, the
ValidateUser() message is sent to the “User”
object. This indicates that the User object has a
method named “ValidateUser.” In addition, the
ValidateUser() method accepts two arguments: ID
and password. With most modeling tools you can
optionally display the type of the arguments (e.g.,
boolean, currency, string).

When a message is sent from an actor to the user
interface, it does not indicate the name of a
method on the UI. Rather, since the UI class is
simply a placeholder, the message text is used to
indicate the action that the actor performs (e.g.,
“Enter ID and password”).
Note: When you add a message to a sequence
diagram, most modeling tools automatically add a
corresponding operation to the class that receives
the message.

When an object calls an operation on itself, this is
known as a reflexive message or message to self.
For example, in Figure 1, the UI object (though
not a real object) has a reflexive “Display error”
message.

It is not necessary to document a return for every
message on a sequence diagram because in the
UML specification a return is implied. However, if
the method is returning something of interest, it’s
perfectly valid to show the return value on the
diagram.

Focus of Control

Focus of control (FOC) is used in sequence
diagrams to show the period of time during which
an object performs an action. FOC is rendered as
a thin, rectangular object that sits on top of object

lifelines. The top of the FOC rectangle coincides
with the receipt of a message. The bottom of the
rectangle coincides with the completion of an
action and can be marked with a return message.

FOC rectangles can be stacked in layers on a
sequence diagram to indicate focus of control
nesting. This layering usually occurs when an
object makes a call to self (Figure 1) or receives a
callback from another object.

Creation and Deletion of
Objects
The vertical position of an object in a sequence
diagram indicates when it is instantiated. If an

Figure 2 - This simple diagram modeling the logic of a
“logging in” use case demonstrates the basic elements of
sequence diagrams.

Figure 1 - A sequence diagram can be created for each use
case in a software system.

66

object is “alive” from the beginning of the entire
sequence, you should place it at the top of the
diagram and its lifelines should extend to the
bottom. If an object is instantiated at a later time,
you should move it down the vertical axis to the
place at which it is instantiated. If an object is
destroyed before the end of a sequence, you can
indicate this by placing an “X” at the bottom of
the lifeline at the point where the object is
released.

Specifying Recurrence

At times you need to indicate that a particular
message is run conditionally, or you may want to
specify its iteration (how many times it is called).
Both of these adornments fall into the category of
recurrence. In the UML, you can indicate recur-
rence by placing text in square brackets above a
particular message.

For example, in Figure 1, the “Display Error”
message is called conditionally. The text in square
brackets above the message indicates that
“Display Error” is only called if the cResponse
string returned from the ValidateUser() operation
is not empty.

Creating a Sequence Diagram

As mentioned previously, you often create a
sequence diagram to model the logic of a use case.
To demonstrate the correlation between use cases
and sequence diagrams, let’s use a software system

for a company’s in-house technical library as an
example. There are a variety of use cases shown in
Figure 2 for our simple library application—
checking out media, checking in media, searching
for media, etc. You can create a sequence diagram
for each of these use cases.

The “Check out media” use case is a good one to
use as an example. The finished sequence diagram
for this use case is shown in Figure 3. The
following steps show how this diagram was
created.

Step 1: Select a Use Case

We’ve already decided that we are going to model
the “Check out media.” Here is the flow of events
description for the use case:

1. The actor (in this case, the Librarian)
navigates to the “Check Out Media” form
and enters the borrower’s ID.

2. The system responds by validating the
borrower (no overdue media, outstanding
fines less than $100, and no more than five
items checked out).

3. If the borrower is invalid, the system
displays a warning message and the use
case scenario ends here.

4. If the borrower is valid, the actor enters the
media ID.

5. The system responds by marking the media
as “checked out” for the specified
borrower.

Step 2: Add the Actor, UI Objects
and Use Case Text

Each use case is carried out by an actor (signifying
a specific type of user). This step simply involves
adding the appropriate actor and a UI class to the
sequence diagram as shown in Figure 3.

You can create a single UI placeholder class to
represent all interaction with the user interface, or
you can create a different class for each user inter-
face element in your application (e.g. a different
UI class for each user entry form). In either case,
the appropriate user interface class needs to be
added to the sequence diagram.

After adding the actor and UI object to the
diagram, add a message between the actor and the
user interface that indicates the action taken by
the user. In our example in Figure 3, an “Enter
Borrower ID” message is added from the actor to
the UI object.

Although it’s not imperative, you can add the text
of the use case to the sequence diagram. This can
go a long way towards helping others understand
your diagram. It provides a simple, human
language representation of what the sequence

Figure 3 - This more complex diagram of the “check out media” process demonstrates ad-
ditional features of sequence diagrams.

67

diagram is accomplishing. If you decide to add use
case text to your sequence diagram, add it in the
left margin of the diagram as shown in Figure 3.

Step 3: Select Classes to Carry out the
System Response

When choosing the classes that carry out the
system response, you need to examine each step of
the use case and add the appropriate classes to the
diagram. This may take a bit of thought, because it
may not be readily apparent which class you
should choose to carry out each responsibility.
In our example, the Transaction and Fine objects
have been selected to carry out step 2 of the use
case.

Step 4: Add Messages Between Objects

This step involves adding messages between
objects to carry out each step of the use case. This
includes both message calls and, optionally, return
values.

In our example (Figure 3), a CalcAmtCan-
Borrow() message is sent from the user interface
to the Transaction object along with the borrower
ID (bID) argument. As specified in step 2 of the
use case, there are three criteria the borrower
must pass in order to check out media. Since the
Transaction object keeps a log of all check-in and
check-out transactions for each borrower, it can
determine by checking the transaction log if 1) the
specified borrower has any overdue media, or 2)
has less than five items checked out.

However, in order to determine if the borrower’s
fines are less than $100, the Transaction object
needs to instantiate the Fine object and send it a
CalcBorrowersFine() message. This happens
behind the scenes (without the knowledge of the
user interface), because the instantiation, calling
and release of the Fine object is encapsulated
within the Transaction object’s CalcAmtCan-
Borrow() method.

After receiving the outstanding fine amount from
the Fine object, the CalcAmtCanBorrow() method
performs its calculations and returns the number
of media that the borrower is allowed to check
out. Step 3 of the use case specifies that if the
amount is zero, the system displays a warning to
the user and the scenario ends there.

Step 4 of the use case specifies that if the
borrower is valid, the actor enters the media ID.
An “Enter Media ID” message is added between
the actor and UI object to indicate this action by
the user.

Step 5 of the use case says that the system
responds by marking the media as “checked out.”
The Transaction object and Media object have
been chosen to carry out this action. A
CheckOut() message is sent to the Transaction
object along with Borrower ID, Media ID and

Date arguments. The Transac-
tion object instantiates the
Media object and sends it a
CheckOut() message (including
a media ID argument). The
Media object marks the speci-
fied media as “checked out.”
The Media object then returns
the “Checkout period”—the
number of days the specified
piece of media can be checked
out. Next, the Transaction
object adds a record to the
transaction log indicating the
borrower, media, the date on
which the item was checked
out and due date (calculated
from the checkout period). This
completes the “Check Out
Media” use case.
An additional item of note: The
CheckOut() message has a
recurrence of [1..5] associated
with it. This indicates that the
message can be called 1
through 5 times based on the
number of items the borrower
is allowed to check out.

Using Color and
Notes to Clarify
Sequence Diagrams
At times when there are many
“calls to self” and subsequent
calls to other objects in a
sequence diagram, you can end
up with several FOC layers.
You can help your diagram be
more understandable by choosing a different fill
color for each FOC layer. This makes it much
easier to identify the methods and objects that
have focus at any given time.

You can also use notes to your advantage to help
clarify your sequence diagrams. For example, if a
section of a diagram is particularly thorny or diffi-
cult to understand, simply attach a note to one of
the methods adding text to clear up any confusion.

Summary

Sequence diagrams are an excellent tool for
modeling the dynamic aspects of your system.
They help you see the big picture of message flow
between objects that carry out the logic of use
cases. With a little practice, sequence diagrams
can help you build more streamlined and bug-free
interactions between objects in your software
applications.

Kevin McNeish

