
1

Rethinking Software Process: the Key to Negligence Liability

Clark Savage Turner, J.D., Ph.D.,
Foaad Khosmood

Department of Computer Science
Cal Poly State University

San Luis Obispo, CA. 93407 USA
(805) 756 6133

csturner@calpoly.edu, foaad.khosmood@intel.com
www.csc.calpoly.edu/~csturner

ABSTRACT

The risk of negligence liability can be considerably
reduced by application of basic legal concepts early in the
development lifecycle. The costs of preparing and
defending a suit can be considerably reduced as well.
This paper develops a simple model for integration of
these considerations into the development process. The
model stresses the following:

1. early consideration of process constraints derived
from negligence law;

2. explicit consideration of such constraints during the
development process; and,

3. documentation of all significant tradeoffs that is
traceable to key constraints.

KEY WORDS: workflow modeling and applications,
process constraints, negligence

1. INTRODUCTION

Negligence liability costs can be among the most
expensive for any safety-critical software development
organization [See generally 3, 1]. Such costs commonly
include not only a final award made by a judge or jury,
but also the enormous investigation effort required to
prepare a defense (even when a case never sees a court!)
A common approach to this problem is to retain legal
counsel and initiate a thorough investigation only when
absolutely necessary: after a lawsuit has been filed. This
approach has two distinct disadvantages:

1. the evidence crucial to the case may not have
been recorded (or exist) because the software

development lifecycle did not include legal
process constraints; and,

2. the evidence gathering process becomes difficult
and expensive because the lawyers are forced to
evaluate the development process from meager
process documentation.

The model presented in this paper will attempt to reduce
costs by both reducing risks of negligence liability and
reducing costs of defense against a potential lawsuit. It
does so by integrating negligence considerations
explicitly into the development process. This model
requires the creation of a database where important legal
constraints are linked to specific development aspects that
address them. The database can serve as a rich, persistent
source of evidence for the purposes of legal analysis. It
enables partial automation of the legal evaluation that is
often done manually, years after the fact.

2. NEGLIGENCE LAW

Negligence is based upon conduct that is socially
unreasonable. It involves the endeavor to “.. strike some
reasonable balance between the plaintiff’s claim to
protection against damage and the defendant’s claim to
freedom of action for his own ends” [7]. Negligence
imposes a set of expectations on behavior through the
concept of duty. We all have a duty to act with
“reasonable prudence” whenever our conduct foreseeably
creates a threat of injury to others. This defines a portion
of the economic exposure of an industry to foreseeable
damages caused by its products (and services) whenever
its failure to take reasonable precautions contributes to
such damages.

Since the duty in negligence focuses on behavior, it yields
constraints on development processes and not the
products themselves. Processes that fail to meet

2

negligence constraints may be a basis for liability.
Processes that satisfy these constraints will not be the
basis for liability, even if the product caused harm to an
innocent party. Distinguish this from strict products
liability for manufacturing defects [7].

Evaluation of processes for satisfaction of negligence
constraints is a matter of evidence. The evidence usually
comes in the form of engineers’ testimony and process
documentation. It must be evaluated by Court approved
experts in the relevant field who look for strengths and
weaknesses in engineering tradeoffs. The Court evaluates
the tradeoff process according to a social risk-benefit
analysis. Documentary evidence is persistent and not
easily dismissed. Total reliance on human testimony
about intricate process details (often years after the fact)
is a very risky strategy [9].

Unfortunately, many organizations must rely heavily on
human testimony due to the absence of process
documentation traceable to particular negligence
considerations. Even when evidence is available, it is
often difficult to locate and link appropriately. This time-
consuming task falls upon the legal team, often a costly
proposition.

3. NEGLIGENCE CONSIDERATION IN
THE DEVELOPMENT LIFECYCLE

As Parnas noted in 1986, the software development
process suffers from many inherent difficulties [4].
Among these is the lack of useful documentation. He
recommends “faking” the ideal process by producing a
post-hoc rationalization. However, he goes further to
mandate a policy of recording all of the design
alternatives that were considered and rejected. He
requires an explanation of the tradeoffs that led to the
choice. He shows that this sort of documentation aids in
maintenance of the software. We believe that this simple
principle can be extended to the realm of negligence: this
sort of documentation is necessary to defend a negligence
case.

The software development process is subject to the
current set of negligence constraints as are other
development processes [see, for example, the analysis in
2]. Similarly, the process of developing the constraints
themselves is subject to the current state of the art in
software development processes [8]. See figure 1.

Collection
of Software
Processes

Collection
of

Negligence
Processes

Decision: Precedence

General Negligence
Constraints on

Development Processes

State of the Art of all
Software Processes in

Domain

Precise Description of the
Particular Process in

Question

Figure 1: Software and Negligence Interdependent
Processes

Consider this figure as a very high level view of the [co-
evolutionary] interaction between the current state of the
art in software process and negligence law itself.
Through the decisions issued in particular cases, Courts
establish general principles that outline the scope of
reasonability in industry practices. In order to apply these
principles accurately to a given process, Courts must rely
on evidence regarding the state of the art in software
process. Therefore, the well informed software
organization will prepare to produce evidence regarding
the following:

1. the state of the art in software process for the given
domain; and,

2. a precise and accurate picture of the process in
question.

The Court’s ultimate judgment is negligence liability if 2
is significantly outside the bounds established in 1. On
the other hand, if the organization can demonstrate that
their process is well within the bounds of 1, they are
judged non-negligent.

For a more thorough discussion of these issues, a relevant
survey of legal and software authorities is given in [6].
The authors searched the literature and found no direct
followup to our work done in [8] on negligence analysis
for safety-critical software processes. A thorough survey
of similar topics was undertaken in [6] and though a
concern for negligence liability is evidenced throughout
the literature, little work is directed to formal models of
possible solutions.

4. AN ENHANCED PROCESS MODEL

Negligent behavior may be found during any stage of the
lifecycle. It may occur as a part of testing, requirements
or the design process. Thus, negligence considerations
must permeate every stage of the lifecycle. With this in
mind, consider figure 2.

3

evidence generation, archiving, traceability

decisions made
based on

negligence
considerations

to: next stage control flow
information flow

development
stage

re
se

ar
ch

ed
 m

at
er

ia
l

negligence
considerations

relevant to given
stage

negligence analysis / research

Figure 2: Proposed Enhancement to the Existing
Software Development Stage

In this model, a single stage within the lifecycle is
augmented to include negligence considerations. Any of
the lifecycle stages may be placed in the gray box at the
center. This model takes the original stage and
encapsulates it in two additional steps that perform and
record the negligence analysis. The first step, “negligence
analysis / research,” consists of examining prior law and
industry trends in order to understand what will constitute
a reasonable process. A legal team on a medical device
software project will examine industry trends in medical
practices and similar software packages asking critical
questions to help in the design stage. Have there been
negligence lawsuits brought involving these sorts of
packages in the recent past? If yes, what was the basis of
the negligence? What is the industry consensus on what
is reasonable when it comes to software design in this
domain? What sort of evidence was relevant in such
cases?

The legal data produced will be saved until the stage is
nearly completed. Then it will be compared with the
specific tradeoffs made during the process. This data
provides new feedback to the stage itself: that is, tradeoffs
could be made or altered based on the research that has
just been done. Conversely, if a particular decision
appears to warrant further legal or industry research,
control is passed back to the first step and relevant
research milestones can be accomplished before moving
on in the process.

The second step is “evidence generation, archiving and
traceability” which occurs immediately after the stage is
considered complete. The purpose of this step is to
document the tradeoffs made and match them with the
key constraints found in negligence from step 1. The
results must be stored in a database with easy indexing for

future reference. This activity creates well-documented
and researched evidence that can be conveniently
retrieved at the time of a legal investigation. It has the
potential to provide the legal team with a fair
understanding of the situation quickly and at low cost.

The breadth and depth of this analysis is set according to
a basic risk analysis. A riskier project requires much
more effort than one of low risk. Safety-critical projects
require extensive efforts while simple accounting package
projects normally entail less.

5. CONCLUSIONS

The model presented here can enhance the product
lifecycle in the following ways:

1. By focusing on relevant legal principles early and
continuously in the process, and by providing the
feedback mechanism back to step 1, the end product
is likely of a higher quality prior to release [1].

2. By adopting and following the model presented,
software engineering organizations can demonstrate a
reflective built-in process that explicitly considers
negligence. Merely having this process in place is a
socially responsible thing to do! (For many reasons,
it may be crucial to establishing that the development
process was socially reasonable to a Court.)

3. By maintaining a comprehensive and well-
established database, evidence for potential liability
lawsuits can be readily at hand and easily produced.
The legal team benefits from lower operating costs
by reducing the investigation costs. This in turn may
save further costs by leading to a fast verdict or a
speedy settlement.

4. By carefully archiving the research and the evidence
generated from previous products, the organization
will be able to accomplish the same tasks faster and
for lower cost in future ventures. The research and
evidence generation techniques will fine-tune
themselves in an evolutionary manner.

6. SHORTCOMINGS AND FUTURE
WORK

First, the scope of the application is narrow: the model
presented in this paper is most appropriate for safety-
critical development. Furthermore, the principles of
negligence liability do not generally apply when a
contract is involved. These facts exclude the vast
majority of the software development organizations.

Secondly, the model as it currently stands does demand
additional cost and time investment compared to the
traditional development cycle. Adopting this model
means an organization will have to incur higher costs

4

prior to release for a promise of lower costs after the
release. This can be difficult to justify especially since
there may be no lawsuit in any event. It is the contention
of the authors, however, that such costs would be far more
reasonable under this model in the long run. The
involvement of the legal team at an early stage would be
cheaper and less time-consuming than an after-the-fact
investigation.

In order to effectively implement negligence
considerations throughout the life cycle of the software,
the said considerations must be represented as additional
milestones and constraints in the organization workflow.
Most organizations already have detailed workflow
documentation in place. This documentation, consisting
of task procedures and scheduling information, is
becoming increasingly electronic. Future considerations
by the authors will include a demonstration of an
electronic workflow system that implements their
proposed model.

7. ACKNOWLEDGEMENT

We gratefully acknowledge the encouragement and
generous support of Mr. Jon Simonds and his wife Olivia
in this work.

REFERENCES

[1] Kaner, Software Quality & the Law in The Gate, the
newsletter of the San Francisco Section of the American
Society for Quality Control, July, 1995, p. 1.

[2] Kaner, Software Negligence and Testing Coverage,
The Software QA Quarterly, Vol. 2, No. 2, 1995.

[3] Leveson, Turner, An Investigation of the Therac-25
Accidents, IEEE Computer, Vol. 26 No. 7, July 1993.

[4] Parnas, A Rational Design Process: How and Why to
Fake It, IEEE Trans. on Software Engineering, No. 2,
Feb. 1986.

[5] Prosser, Handbook of the Law of Torts, 4th Edition
(West Publ, St. Paul, MN. 1971).

[6] Turner, Software as Product: The Technical
Challenges to Social Notions of Responsibility, Ph.D.
dissertation, Department of Information and Computer
Science, University of California, Irvine, 1999.

[7] Turner, Richardson, Software and Strict Products
Liability: Technical Challenges to Legal Notions of
Responsibility, Proceedings of the IASTED International
Conference on Law and Technology, San Francisco, Oct.
2000.

[8] Turner, Richardson, King, Legal Sufficiency of
Testing Processes, Proceedings of the 15th International
Conference on Computer Safety, Reliability and Security,
Vienna, Austria, Oct 1996.

[9] Witherell, How to Avoid Products Liability Lawsuits
and Damages (Noyes Publications, 1985).

