
1

Rethinking Software Process: the Key to Negligence
Liability

Clark Savage Turner, J.D., Ph.D., Foaad Khosmood
Department of Computer Science

California Polytechnic State University
San Luis Obispo, CA. 93407

(805) 756 6133
csturner@calpoly.edu, foaad.khosmood@intel.com

Keywords: workflow modeling and applications, process constraints, negligence

Abstract

The risk of negligence liability can be considerably reduced by application of basic legal
concepts early in the development lifecycle. The costs of preparing and defending a suit
can be considerably reduced as well. This paper develops a simple model for integration
of these considerations into the development process. The model stresses the following:
1. early consideration of process constraints derived from negligence law;
2. explicit consideration of such constraints during the development process; and,
3. documentation of all significant tradeoffs that is traceable to key constraints.

Introduction

 Negligence liability costs can be among the most expensive for any safety-critical

software development organization [See generally LT93, Ka95a]. Such costs commonly

include not only a final award made by a judge or jury, but also the enormous

investigation effort required to prepare a defense (even when a case never sees a court!)

A common approach to this problem is to retain legal counsel and initiate a thorough

investigation only when absolutely necessary: after a lawsuit has been filed. This

approach has two distinct disadvantages:

1. the evidence crucial to the case may not have been recorded (or exist) because the

software development lifecycle did not include legal process constraints; and,

2

2. the evidence gathering process becomes difficult and expensive because the

lawyers are forced to evaluate the development process from meager process

documentation.

The model presented in this paper will attempt to reduce costs by both reducing

risks of negligence liability and reducing costs of defense against a potential lawsuit. It

does so by integrating negligence considerations explicitly into the development process.

This model requires the creation of a database where important legal constraints are

linked to specific development aspects that address them. The database can serve as a

rich, persistent source of evidence for the purposes of legal analysis. It enables partial

automation of the legal evaluation that is often done manually, years after the fact.

Negligence Law

Negligence is based upon conduct that is socially unreasonable. It involves the

endeavor to “.. strike some reasonable balance between the plaintiff’s claim to protection

against damage and the defendant’s claim to freedom of action for his own ends”

[Pro71]. Negligence imposes a set of expectations on behavior through the concept of

duty. We all have a duty to act with “reasonable prudence” whenever our conduct

foreseeably creates a threat of injury to others. This defines a portion of the economic

exposure of an industry to foreseeable damages caused by its products (and services)

whenever its failure to take reasonable precautions contributes to such damages.

Since the duty in negligence focuses on behavior, it yields constraints on

development processes and not the products themselves. Processes that fail to meet

negligence constraints may be a basis for liability. Processes that satisfy these constraints

3

will not be the basis for liability, even if the product caused harm to an innocent party.

Distinguish this from strict products liability for manufacturing defects [TR00].

Evaluation of processes for satisfaction of negligence constraints is a matter of

evidence. The evidence usually comes in the form of engineers’ testimony and process

documentation. It must be evaluated by Court approved experts in the relevant field who

look for strengths and weaknesses in engineering tradeoffs. The Court evaluates the

tradeoff process according to a social risk-benefit analysis. Documentary evidence is

persistent and not easily dismissed. Total reliance on human testimony about intricate

process details (often years after the fact) is a very risky strategy [Wit85].

Unfortunately, many organizations must rely heavily on human testimony due to

the absence of process documentation traceable to particular negligence considerations.

Even when evidence is available, it is often difficult to locate and link appropriately.

This time-consuming task falls upon the legal team, often a costly proposition.

Negligence Consideration in the Development Lifecycle

As Parnas noted in 1986, the software development process suffers from many

inherent difficulties [Par86]. Among these is the lack of useful documentation. He

recommends “faking” the ideal process by producing a post-hoc rationalization.

However, he goes further to mandate a policy of recording all of the design alternatives

that were considered and rejected. He requires an explanation of the tradeoffs that led to

the choice. He shows that this sort of documentation aids in maintenance of the software.

We believe that this simple principle can be extended to the realm of negligence: this

sort of documentation is necessary to defend a negligence case.

4

The software development process is subject to the current set of negligence

constraints as are other development processes [see, for example, the analysis in Ka95b].

Similarly, the process of developing the constraints themselves is subject to the current

state of the art in software development processes [TRK96]. See figure 1.

Collection
of Software
Processes

Collection
of

Negligence
Processes

Decision: Precedence

General Negligence
Constraints on

Development Processes

State of the Art of all
Software Processes in

Domain

Precise Description of the
Particular Process in

Question

Figure 1: Software and Negligence Interdependent Processes

Consider this figure as a very high level view of the [co-evolutionary] interaction

between the current state of the art in software process and negligence law itself.

Through the decisions issued in particular cases, Courts establish general principles that

outline the scope of reasonability in industry practices. In order to apply these principles

accurately to a given process, Courts must rely on evidence regarding the state of the art

in software process. Therefore, the well informed software organization will prepare to

produce evidence regarding the following:

1. the state of the art in software process for the given domain; and,

2. a precise and accurate picture of the process in question.

The Court’s ultimate judgment is negligence liability if 2 is significantly outside the

bounds established in 1. On the other hand, if the organization can demonstrate that their

process is well within the bounds of 1, they are judged non-negligent.

5

Negligent behavior may be found during any stage of the lifecycle. It may occur

as a part of testing, requirements or the design process. Thus, negligence considerations

must permeate every stage of the lifecycle. With this in mind, consider figure 2.

evidence generation, archiving, traceability

decisions made
based on

negligence
considerations

to: next stage control flow
information flow

development
stage

re
se

ar
ch

ed
 m

at
er

ia
l

negligence
considerations

relevant to given
stage

negligence analysis / research

Figure 2: Proposed Enhancement to the Existing Software Development Stage

In this model, a single stage within the lifecycle is augmented to include

negligence considerations. Any of the lifecycle stages may be placed in the gray box at

the center. This model takes the original stage and encapsulates it in two additional steps

that perform and record the negligence analysis. The first step, “negligence analysis /

research,” consists of examining prior law and industry trends in order to understand

what will constitute a reasonable process. A legal team on a medical device software

project will examine industry trends in medical practices and similar software packages

asking critical questions to help in the design stage. Have there been negligence lawsuits

brought involving these sorts of packages in the recent past? If yes, what was the basis of

the negligence? What is the industry consensus on what is reasonable when it comes to

software design in this domain? What sort of evidence was relevant in such cases?

6

The legal data produced will be saved until the stage is nearly completed. Then it

will be compared with the specific tradeoffs made during the process. This data provides

new feedback to the stage itself: that is, tradeoffs could be made or altered based on the

research that has just been done. Conversely, if a particular decision appears to warrant

further legal or industry research, control is passed back to the first step and relevant

research milestones can be accomplished before moving on in the process.

The second step is “evidence generation, archiving and traceability” which occurs

immediately after the stage is considered complete. The purpose of this step is to

document the tradeoffs made and match them with the key constraints found in

negligence from step 1. The results must be stored in a database with easy indexing for

future reference. This activity creates well-documented and researched evidence that can

be conveniently retrieved at the time of a legal investigation. It has the potential to

provide the legal team with a fair understanding of the situation quickly and at low cost.

The breadth and depth of this analysis is set according to a basic risk analysis. A

riskier project requires much more effort than one of low risk. Safety-critical projects

require extensive efforts while simple accounting package projects normally entail less.

Implications

The model presented here can enhance the product lifecycle in the following

ways:

1. By focusing on relevant legal principles early and continuously in the process,

and by providing the feedback mechanism back to step 1, the end product is likely

of a higher quality prior to release [Ka95a].

7

2. By adopting and following the model presented, software engineering

organizations can demonstrate a reflective built-in process that explicitly

considers negligence. Merely having this process in place is a socially

responsible thing to do! (For many reasons, it may be crucial to establishing that

the development process was socially reasonable to a Court.)

3. By maintaining a comprehensive and well-established database, evidence for

potential liability lawsuits can be readily at hand and easily produced. The legal

team benefits from lower operating costs by reducing the investigation costs.

This in turn may save further costs by leading to a fast verdict or a speedy

settlement.

4. By carefully archiving the research and the evidence generated from previous

products, the organization will be able to accomplish the same tasks faster and for

lower cost in future ventures. The research and evidence generation techniques

will fine-tune themselves in an evolutionary manner.

Shortcomings and Future Work

First, the scope of the application is narrow: the model presented in this paper is

most appropriate for safety-critical development. Furthermore, the principles of

negligence liability do not generally apply when a contract is involved. These facts

exclude the vast majority of the software development organizations.

Secondly, the model as it currently stands does demand additional cost and time

investment compared to the traditional development cycle. Adopting this model means

an organization will have to incur higher costs prior to release for a promise of lower

costs after the release. This can be difficult to justify especially since there may be no

8

lawsuit in any event. It is the contention of the authors, however, that such costs would

be far more reasonable under this model in the long run. The involvement of the legal

team at an early stage would be cheaper and less time-consuming than an after-the-fact

investigation.

In order to effectively implement negligence considerations throughout the life

cycle of the software, the said considerations must be represented as additional

milestones and constraints in the organization workflow. Most organizations already

have detailed workflow documentation in place. This documentation, consisting of task

procedures and scheduling information, is becoming increasingly electronic. Future

considerations by the authors will include a demonstration of an electronic workflow

system that implements their proposed model.

About the Authors

Clark Savage Turner is an Attorney and Associate Professor of Computer Science at
California Polytechnic State University in San Luis Obispo, CA. His research interests
include software systems safety and legal implications of software control.

Foaad Khosmood is Senior Software Engineer at Intel Corporation and a graduate student
at California Polytechnic State University, San Luis Obispo.

9

References

[Ka95a] Kaner, "Software Quality & the Law" in The Gate, the newsletter of the San
Francisco Section of the American Society for Quality Control, July, 1995, p. 1.

[Ka95b] Kaner, “Software Negligence and Testing Coverage,” The Software QA
Quarterly, Vol. 2, No. 2, 1995.

[LT93] Leveson, Turner, “An Investigation of the Therac-25 Accidents,” IEEE
Computer, Vol. 26 No. 7, July 1993.

[Par86] Parnas, “A Rational Design Process: How and Why to Fake It,” IEEE Trans. on
Software Engineering, No. 2, Feb. 1986.

[Pro71] Prosser, Handbook of the Law of Torts, 4th Edition, West Publ, St. Paul, MN.
1971.

[TR00] Turner, Richardson, “Software and Strict Products Liability: Technical
Challenges to Legal Notions of Responsibility,” Proceedings of the IASTED
International Conference on Law and Technology, San Francisco, Oct. 2000.

[TRK96] Turner, Richardson, King, “Legal Sufficiency of Testing Processes,”
Proceedings of the 15th International Conference on Computer Safety, Reliability and
Security, Vienna, Austria, Oct 1996.

[Wit85] Witherell, How to Avoid Products Liability Lawsuits and Damages, Noyes
Publications, 1985.

	Abstract
	Introduction
	Negligence Law
	Negligence Consideration in the Development Lifecycle
	
	Figure 1: Software and Negligence Interdependent Processes

