

THE MODIFICATION PROCESS: A PRACTICAL MEANS TO UNDERSTAND
AND ENHANCE THE SOFTWARE REQUIREMENTS ENGINEERING

PROCESS

Julie Hatalsky
Trimble Navigation, Ltd.
9825 Huer Huero Road

Creston, CA 93432 USA
(805) 438-3418

julie_hatalsky@trimble.com

Paul S. Corwin
Clark Savage Turner, J.D., Ph.D.
Department of Computer Science

Cal Poly State University
San Luis Obispo, CA. 93407 USA

(805) 756-6133
pcorwin@calpoly.edu, csturner@calpoly.edu

www.csc.calpoly.edu/~csturner

ABSTRACT

Software requirements elicitation is a difficult process
with many existing problems, and no single elicitation
method solves all these problems. We introduce a new
way of looking at the requirements elicitation process.
Our model shows the requirements elicitation problem as
a process of merging the users’ wants and the users’ needs
into the same entity. In the context of our model, existing
processes can be enhanced to help ensure that the users’
wants and needs are both met. In doing so, we show that
resulting requirements are more correct, complete, and
feasible. Furthermore, using our model can help limit the
solution to what the user truly needs, thus reducing
unnecessary complexity.

KEY WORDS: Software Requirements, Software
Engineering, Software Methodologies, Prototyping

1. INTRODUCTION

Software requirements engineering is hard. Requirements
must be complete, correct, feasible, unambiguous,
consistent, readable, testable, and traceable [1]. Trying to
create requirements that satisfy all of these characteristics
is a difficult and complex task. According to Brooks, [2]
no technique or combination of techniques will ever
significantly reduce this complexity; however, one can
manage complexity by designing only the software that
the user wants and/or needs. But which should we, as
developers, provide them with?

An ongoing debate in software engineering is whether the
goal of a software project should be to give the customer
what they want or to give the customer what they need.
Beizer [3], in enumerating a list of questions to which
‘yes’ should be answered regarding a software package,
asks: “Does it have the features the users need (as

contrasted to want)?” By making note of need being
contrasted to want, Beizer implies that the two are not one
and the same, and that it is more important to provide the
users with what they need. On the contrary, in Gause and
Weinberg’s classic text on requirements [4], they go so
far as to say that it is a mistake to try to give customers
what they need rather than what they want. This paper
investigates the issue further to envision the ideal where
the software requirements process could merge what the
customer wants and what the customer needs into the
same idea. We take the problem from a high level
discussion and dissect it to understand in a deeper and
more practical manner what happens in the requirements
engineering process.

Taking a closer look at [4] suggests another way to look
at the problem. They state, “If you find yourself feeling
that you know better what the customers need, … try to
convince your customers that they really need what you
think they need. If you can’t convince them, either
produce what they want, or find yourself some other
customer.” This suggests that the customers’ ideas of the
project consist of the wants and the developers’ ideas of
the project consist of the needs. That is, at the start of the
project the customers have an idea of what they want, the
User Set of solutions. The developers have an idea of
what the customer needs, the Developer Set of solutions.
At the end of the requirements engineering process, these
two sets should intersect such that a common solution can
be created that exists within both sets. In this paper we
discuss not only the User and Developer Sets, but we also
introduce a third set, the Constraints Set.

In this paper, first we introduce and discuss the Three Sets
of software requirements. Then we discuss how the sets
are modified during the requirements elicitation process.
Next we discuss the possible outcomes of a simple
requirements process viewed in the context of our model.
We look at the ways in which the shape of the sets can
end up and what each relationship means. Then we give

an example of the model in use followed by conclusions
and suggestions for future work.

2. THE THREE SETS OF SOFTWARE

REQUIREMENTS

User and Developer Sets

At the beginning of a software project the users have an
idea of what they want implemented. We define this as
the User Set of solutions. The make-up of this set
changes constantly throughout the software creation
process and, in fact, many the initial members of the set
would not satisfy the users’ needs [4]. In addition, the
developer has an initial idea of what the users need. We
define this as the Developer Set of solutions. This set is
also constantly changing and the initial set probably has
few members that would actually satisfy the users’ needs
[2]. The two sets initially may have very little or no
overlap (see Figure 1).

Figure 1: User and Developer Solution Sets

These sets can be looked at as the perceived wants of the
user (User Set) and the developers’ perception of the
users needs (Developer Set). Throughout the
requirements elicitation process, these sets change to
more accurately mirror the set of solutions that would
actually satisfy the user. These are the actual needs as
opposed to the perceived wants and needs. We discuss
the movement of the sets more thoroughly in Section
Three.

Taking a solution from the intersection of the two sets
helps insure that the actual needs of the user are met,
adding to the completeness and correctness of the
requirements.

The Constraints Set

Thus far we have discussed only the users’ and the
developers’ ideas of what solutions will satisfy the users’
needs. However, there is an important third set, the
Constraints Set, that affects the software engineering
process. “Constraints are restrictions that are placed on
the choices available to the developer for design and
construction of the software product.” [1] This set
contains solutions that satisfy certain project constraints,

such as schedule, cost, complexity, staffing, software
speed, and necessary hardware, to name only a few of the
many possible constraints.

As noted above, taking a solution from the intersection of
the User and Developer sets helps insure that the users’
wants and needs are met. Also notice a key difference
between the Constraints Set and the User and Developer
Sets: a satisfactory solution cannot be taken from outside
the Constraints Set. The Constraints Set represents all of
the solutions that would satisfy the users actual needs (as
opposed to perceived wants and needs) that can be
achieved given the current stated constraints. It would be
infeasible to build a satisfactory solution not taken from
this set, in terms of cost, man-hours, or some other
possible constraint. To insure the feasibility of the project
as well as the users’ acceptance of the eventual product,
the solution must be taken from the intersection of all
three sets (see Figure 2).

Figure 2: Three Sets of Software Requirements

Breaking Down the Sets

The idea of one User Set, one Developer Set, and one
Constraint Set is an over-simplification used to help
visualize the problem. To help our understanding of the
requirements engineering process we need to look at each
of the Three Sets as the representation of many smaller
sets. For example, there typically is not one user involved
in a software engineering project. There can be many
different individuals and even different types of users
involved [1]. For example, the following different sets
could be contained in the User Set for a specific project:

- User (Project Champion)
- Actual End User
- Project Executive Sponser
- Project Marketing

The intersection of these smaller sets is the actual User
Set (see Figure 3).

Figure 3: Possible Make-up of the User Set

The Developer and Constraints Sets can be similarly
broken down.

3. THE MODIFICATION PROCESS

The Modification Process is simply another way of
looking what is actually happening during the
requirements engineering process. We call this process
the Modification Process because it modifies the Three
Sets described above. Set modification can either expand
or shrink a set through the requirements elicitation
process. This is done by eliminating possible solutions
from a set or by adding new possible solutions to a set.
For example, consider a software system that keeps track
of member data for a gym. The user informing the
developer that the software must be able to keep track of
how long a person has been a member changes the
possible solutions in the Developer Set. The effect can
make a set appear to be moving. The overall effect of the
process should make the three sets merge into one
Intersection Set (see Figure 4) that the eventual solution is
taken from.

Figure 4: The Modification Process through requirements
elicitation

The idea of the sets moving does not necessarily indicate
that the problem itself is changing. While the problem
generally remains static, the perceived sets shift as
information is revealed and discoveries occur [1]. An
exception to this is the Constraints Set whose makeup is
initially the solutions that will actually satisfy the users’
needs given the current stated constraints. The User and
Developer Sets shift during requirements elicitation with
the goal of more accurately matching some actual
solutions contained in the Constraints Set. However, the
Constraints Set can also change during the Modification
Process. Some features of the Set, such as cost and man-
hours, could be deliberately changed by the user. Other
features might vary depending on factors not under the

control of either the user or the developer, such as
economics or business cycle.

Goals of the Modification Process

Earlier we claimed that our model would help make the
resulting requirements more feasible, complete, and
correct. In addition, building only what the customer
actually wants would reduce complexity. With that in
mind, our goal for the Modification Process, is to modify
these sets such that:

• The Intersection Set exists

This insures the feasibility of a solution as the developers
and users perceive the problem.

• The Developer Set lies solely within the Constraints

Set

This insures the correctness and completeness of the
requirements. The solutions that the developer might
build will all lie within the set of actual solutions.

• The Developer Set covers a maximal portion of the

Constraints Set

This gives the developers the most flexibility to choose a
solution.

• The intersection of the User and Developer Set is as

large as possible

This insures that the solution the developers build will
satisfy only what the customer wants, reducing
unnecessary complexity.

4. OUTCOMES OF THE MODIFICATION
PROCESS

There are two possible outcomes at the conclusion of the
Modification Process:

• The Three Sets intersect
• The Three Sets do not intersect

In other words, the Intersection Set will either contain at
least one solution or it will be empty.

The Intersection Set Exists

If the Intersection Set contains solutions, the developers
can continue the software engineering process and begin
creating a solution. Of course, the Sets could continue to
change during the software creation process, causing the
Intersection Set to shift [1, 4, 5, 6]. This could cause the

chosen solution to fall outside the Intersection Set,
necessitating a change in solutions.

The developers are only aware of the solutions that exist
in the Developers Set, as these are the solutions that they
see to the problem. The solution that the developers
choose to build can come from four possible sections of
the Developer Set (see Figure 5). The following figure
and corresponding section explanations show why it is
important that the Developer Set lie as much as possible
inside the Constraints Set.

Figure 5: Developer Solution Choices

1. A solution taken from this set will not be successful.

It either does not satisfy the users’ actual needs or
cannot be built given the current constraints.

2. A solution taken from this set will also not be
successful, at least initially. It may satisfy all of the
actual needs of the user, but cannot be built given the
current constraints. If the users and developers agree
that a solution from this set is the best one to take,
then the constraints must be loosened so that the
solution falls within the new Constraints Set.

3. A solution taken from this set may be successful.
The final solution will satisfy all of the users actual
needs. However, the developers will not have the
support of the users during the construction process.
The users will believe that the end product is
something that they do not want.

4. A solution taken from this set will be successful. It
will satisfy all of the users’ needs and can be built
given the current constraints.

The Intersection Set Does Not Exist

If the Intersection Set is empty, then there is no solution
to the problem as it is currently understood. To obtain a
solution one or more of the sets needs to be shifted. The
next steps taken in the requirements process depend on
which sets do not intersect.

The situation in which the Constraint Set does not
intersect with the other two sets is shown in Figure 6.
This is the situation where the users and developers have
a common understanding of the problem, but the problem
can not be completed given the stated constraints. For
example, the solutions that the developers and users agree

on might not be feasible considering the budget or man-
hours assigned to the problem. To create an intersection
of the three sets, the users can modify the constraints on
our example project by agreeing to a larger budget or
longer projected finish date, thus moving the Constraints
Set [7]; otherwise, the users can modify their wants. For
example, some less important features could be left off
the project, thus moving the User and Developer Sets. If
the Constraints cannot be further stretched and if only the
necessary features are left on the project, then the project
should be abandoned.

Figure 6: Disjoint Constraints Set

Another possibility is that the User and Developer Sets do
not intersect. This occurs when the users and developers
can not come to a common understanding of the problem
(Figure 7). This could be because the users and
developers come from such widely different knowledge
bases that they cannot understand each other. Or, as
Gause and Weinberg suggest, “It’s not a good idea to
work for people whose intelligence is so disparate from
yours, in one direction or the other.” [4] Regardless of
the reason, it might be wise for the developer step down
and suggest that someone else continue the project.

Figure 7: Disjoint User and Developer Sets

Another situation could be where the Developer and
Constraints Set do not intersect (see Figure 8). This could
be due to the developers not having the necessary skills or
manpower to complete the project. Here, the developer
could either step down or acquire the necessary training.
Or, in the latter case, more manpower could be allocated.
Acquiring the necessary training and allocating more
manpower might necessitate a changing of the Constraints
Set by allowing more time to finish the project and/or
more cost for development [1, 8].

Figure 8: Disjoint Developer and Constraint Sets

5. USING THE MODIFICATION PROCESS

TO ENHANCE EXISTING PROCESSES

The Modification Process is not limited to any one form
of requirements elicitation method. It is a model that gives
insight into what actually happens during any
requirements elicitation process, whether it be a form of
specification, rapid prototyping, or some other process.
By looking at their own requirements elicitation method
in the context of the Modification Process, developers can
shift their focus and enhance their method.

Consider, for example, a generic situation where there
exists a problem that a user calls upon a developer to
solve. It is not uncommon at the start of a project for the
User and Developer Sets to be placed inaccurately. That
is, they are likely to contain false solutions and inaccurate
assumption. Furthermore, real solutions may lie outside
the Sets due to overlooked facts. Gauss and Weinberg [4]
note, “We, as normal human beings, are just not very
good at seeing what we’ve overlooked.” For example,
developers working on creating a requirements document
for the A-7 aircraft [9] state that producing a list of
fundamental assumptions forced them to also list some
implicit assumptions. One reason for success of this
process is that the reviewers of the document had a much
easier time recognizing errors than they did recognizing
omissions. Developers can therefore improve the
requirements by explicitly concentrating on shifting the
sets so that these sets become more accurately placed.

To more accurately place the User and Developer Sets,
the developer might make a list of his own assumptions
and interactively review them with the user. The user can
then point out false assumptions to the developer,
resulting in a shift or resize of the Developer Set.
Likewise, the user can be made aware of ideas that he had
overlooked, thus altering the User Set as well. In both
cases the outcomes contribute to the clarification of the
problem, which in turn leads to a state of elevated
correctness and completeness in the requirements.

6. CONCLUSIONS

The Modification Process model can enhance the
requirements elicitation process by:

1. Increasing the feasibility of a solution as the

developers and users begin to perceive the problem.
2. Insuring the correctness and completeness of the

requirements. The solution that the developer
chooses to build will have a better chance of
satisfying the user.

3. Giving the developers the most flexibility to choose a
solution.

4. Insuring that the solution the developers build will
satisfy only what the customer wants, reducing
unnecessary complexity.

Developers can enhance their own process by reviewing
and updating their current requirements elicitation method
within the context of our Modification Process.

7. FUTURE WORK

Future work by the authors will include research into
which existing requirements methods fit most naturally
into the Modification Process. A prototyping
methodology might best achieve the goals listed in
Section Three. A comparison of different requirements
methods in the context of the Modification Process would
be interesting.

REFERENCES

[1] Wiegers, Software Requirements, Microsoft Press,
Redmond, Washington, 1999

[2] F.P. Brooks, No Silver Bullet: Essence and Accidents
of Software Engineering, Computer, Vol. 20, No. 4 (April
1987) pp. 10-19.

[3] B. Beizer, Software Is Different, In Proceedings
Quality Week Conference, 1996.

[4] D.C. Gause, and G. M. Weinberg, Exploring
Requirements: Quality Before Design, Dorset House
Publishing, New York NY (1989).

[5] Boehm, Software Risk Management: Principles and
Practices, IEEE Software, Vol. 8, No. 1, January 1991

[6] Gordon, Bieman, Rapid Prototyping: Lessons
Learned, IEEE Software, January 1995

[7] T. Naslund, Computers in Context – But in Which
Context?, Computers and Design in Context. MIT Press,
1997

[8] Hsia, Davis, Kung, Status Report: Requirements
Engineering, IEEE Software, November 1993

[9] K.L. Heninger, Specifying Software Requirements for
Complex Systems: New Techniques and Their
Application, IEEE Transactions on Software Engineering,
Vol. SE-6, No. 1 (January 1980) pp. 2-13.

