
SOFTWARE AND STRICT PRODUCTS LIABILITY: TECHNICAL
CHALLENGES TO LEGAL NOTIONS OF RESPONSIBILITY

CLARK SAVAGE TURNER
Department of Computer Science

California Polytechnic State University
San Luis Obispo, CA. 93407

(805) 756 6133, csturner@calpoly.edu

DEBRA J. RICHARDSON
Department of Info. and Computer Science

University of California, Irvine
Irvine, CA. 92697-3425

(949) 856 2131, djr@ics.uci.edu

Keywords: consumer protection, software safety,
products liability.

Abstract

     The law of products liability in tort is designed to
maintain a reasonable balance between the inevitable
social costs and the benefits of innovative product
technologies.  Technological development must be
supported but only to the extent that society receives
sufficient benefits to make the sacrifice worthwhile.  The
entire basis for implementation of this balance resides in
the objective categorization of any given product defect
into one of the following:  (1) manufacturing defects:
failures to correctly implement safety features from the
design; and (2) design defects: failures of the design itself
to exhibit socially acceptable levels of safety.

     Software has been described as an artifact with
fundamentally different properties than other engineered
artifacts.  This paper will show that software has unique
characteristics that increase the overlap between the
categories of defect such that known distinctions break
down and become useless in promoting the social and
technical goals that supported their creation in the law.

1. INTRODUCTION

     Software1 is a relatively new technological artifact to
reach the consumer market.  It has made possible a new
                                               
Clark Savage Turner is an Associate Professor of
Computer Science at the California Polytechnic State
University in San Luis Obispo, CA.  He holds a J.D.
(Maine) and a Ph.D. in Computer Science (UC Irvine).
His research interests include software systems safety and
legal implications of software control.

Debra J. Richardson is Chair of the Department of
Information and Computer Science at the University of
California, Irvine.  She holds a B.S. in Math and a Ph.D.

array of technological possibilities with its speed,
efficiency and general applicability.  It is increasingly
being tasked to control products that are socially valuable
but have the potential for personal injury.  It has already
been involved in cases of human injury and death.2

     When a consumer is injured and the common law of
products liability is invoked, two different legal standards
are available: negligence and strict liability.  These
standards have different incentive structures for the
parties and may result in different outcomes when
applied to similar cases.   The application of each
standard to the proper case is necessary to support the
overall goals of the tort liability system. The applicable
legal standard is determined relative to the category of
the particular defect considered.  A reliable test to
determine defect category is therefore critical to the
operation of products liability law.

     Software products may be fundamentally different
from traditionally engineered products.3  If this is true, to
what extent will the nature of this new product affect the
application of current legal and engineering tools used to
determine the standard of liability?   Both legal and
technical aspects of the question are at issue here.

                                                                          
in Computer Science (U. Mass.)  She has done
pioneering work in establishing the use of formal
specifications to guide and evaluate testing and analysis
of software systems.

1 For a definition of “software,” see generally Schach,
Classical and Object-Oriented Software Engineering,
4TH Ed., McGraw-Hill, 1999; Gemignani, Product
Liability and Software, 8 Rutgers Computer &
Technology  L. J., 173 (1981).
2 Leveson, Turner, An Investigation of the Therac-25
Accidents, IEEE Computer, Vol. 26, no. 7, July 1993.
3 Hamlet, Are We Testing for True Reliability? IEEE
Software, 21, July 1992.



     This paper is concerned with software embedded4 in a
larger physical system that is already considered a
product for purposes of products liability law.  Examples
include avionics systems, ABS brakes, computerized
ignition systems, and medical devices.

2. PRODUCTS LIABILITY

     The modern law of products liability developed from
roots in negligence and warranty causes of action.  In the
1960’s strict products liability in tort developed in
response to the perceived inadequacies of negligence and
contract-warranty causes of action when applied to
products of modern complexity involved in personal
injury.5   It was to be based on proof of product defect
rather than proof of fault.  Once a product was proven
defective, damages could be awarded.  On the other
hand, for a negligence case, fault (unreasonable conduct)
must be proved, the injury may be merely economic in
nature, and a product need not be the instrumentality of
the injury (it could be a service).   Further, products
liability cases in tort are not subject to contract or
license disclaimers of liability.6  The common
“limitations of liability” and bold statements negating the
manufacturer’s responsibility for the behavior of the
product have no bearing on a products liability case.

     There are two prerequisites for any case of products
liability in tort:  (1) personal injuries or harm to other
property must be involved, “pure” economic damages
will not support a case; and (2) the instrumentality
causing the injury must be considered a product or a
product component;  provision of services won’t support
a case.7  This paper is concerned with cases involving
personal injury, so the first of these prerequisites is not at
issue.  The second involves a legal judgment that the
software will be subject to the law of products liability.
Some scholars have wondered whether software is really
part of a “product” or more in the nature of a “service”
performed for a client.   If all software is classified as the
provision of a service, any strict products liability

                                               
4 Embedded software is an integral part of a physical
system, considered a distinct “component” by many
software analysts.  See generally Leveson, Safeware,
Addison-Wesley, 1995.
5 For a good historical view of the development of strict
products liability, see generally Birnbaum, Unmasking
the Test for Design Defect: From Negligence [to
Warranty] to Strict Liability to Negligence, 33
Vanderbuilt Law Review, 593 (1980)
6 Henningsen v. Bloomfield Motors, Inc., 161 A. 2d 69
(NJ 1960)
7   Prosser, Keeton, Prosser and Keeton on Torts, 5th

Edition, West Publishing Co., MN, 1984.

analysis ends because the case does not involve a
product.8  Though this issue has not been settled by the
courts, there is a general consensus among commentators
that certain software systems are considered products for
the purpose of products liability.9  Software that is part of
a hardware system (already a product) that is mass
produced for the consumer market is the primary
example.10  The class of software systems considered
here falls within this group.11

     In 1998, after years of work and revision, the
Restatement of the Law, Third Edition, Torts, Products
Liability was published.12  Section One provides,

Section 1.  Liability of a Commercial Seller or
Distributor for Harm Caused by Defective
Products

One engaged in the business of selling or
otherwise distributing products who sells or
distributes a defective product is subject to
liability for harm to persons or property caused
by the defect.

The central legal idea that triggers liability for products
liability law is therefore product defect.   Two distinct
categories of defect emerge in the common law.

                                               
8  The negligence standard applies to the provision of
services.  If software is indeed seen as service oriented,
the attendant professional negligence issues will come to
the forefront as pressure from the plaintiff’s bar rises.
For a general discussion of such issues, see, Kaner.
Software Negligence and Testing Coverage, Software QA
Quarterly, Vol. 2, No. 2, 1995.
9 See generally Miyaki, Computer Software Defects:
Should Computer Software Manufacturers Be Held
Strictly Liable For Computer Software Defects?
(Comment) 8 Computer & High Technology Law
Journal 121 (1992).
10 Products liability has already been used in a Georgia
case involving an embedded software system, though the
issues appear not to have been raised.  See GMC v.
Johnston, 592 So. 2d 1054 (Sup. Ct. Ala., 1992)
11 It is an integral part of a physical product.  One might
also argue that the software is a “component” of a larger
product system as in Wolpert, Product Liability and
Software Implicated in Personal Injury, Defense Counsel
Journal, October 1993, 519, 523.
12 Restatement Third, Torts: Products Liability,
American Law Institute, 1998



2.1 MANUFACTURING DEFECTS

     As early as the 1200’s, some forms of liability for
manufacturing defects was imposed by the law.   In the
1960’s, American courts began to recognize that a
commercial seller of any product having a manufacturing
defect should be strictly liable in tort for harm caused by
the defect.  Liability is based completely upon the
product’s failure to satisfy the manufacturer’s own design
intention.  The product is “more dangerous than it was
designed to be.”  Once the product is shown to have
caused injury, the proof of a manufacturing defect is
sufficient to result in liability.  Thus, the liability is to
attach even if the manufacturer’s quality control was
reasonable. “Due care” of the manufacturer is irrelevant!

2.2 DESIGN DEFECTS

     In the late 1960’s and early 1970’s, questions of
design defects began to arise when the product in
question satisfied the intended design but the design itself
was unacceptably risky.  In such cases, defects cannot be
judged by reference to the manufacturer’s own design
standards because those are the very standards under
scrutiny.    The design defect involves a social judgment
about the trade-offs necessary to determine which
accident costs are more fairly and efficiently borne by
those who incur them (the victims) and which are best
borne by product users and consumers through
internalization of the accident costs (by the
manufacturers) and having product prices reflect the
relevant costs.  Judgment of  design defectiveness is often
based on the availability of a cost-effective alternative
design that would have prevented the harm.13  This is not
a strict liability standard, but one more in the nature of
negligence, based on lack of due care during the design
process.14  It is a legal conclusion based on social
standards for design adequacy.  Injuries may indeed be
caused by design decisions, but unlike the manufacturing
defect, if due care was exercised, the manufacturer is not
held liable.

2.3 DISTINGUISHING DEFECTS

      The Restatement distills the two theories15 of product
defectiveness into the following description of the law:

                                               
13 Banks v. ICI Americas, Inc, 450 S.E.2d 671 (Ga.
1994)
14 See Birnbaum, supra., note 5.
15 Note that we do not consider the theory of  “defective
warning” here since it would not add to the discussion.

Section 2.  Categories of Product Defect

A product is defective when, at the time of sale
or distribution, it contains a manufacturing
defect, is defective in design,  [...]  A product:

(a) contains a manufacturing defect when the
product departs from its intended design even
though all possible care was exercised in the
preparation and marketing of the product;

(b) is defective in design when the foreseeable
risks of harm posed by the product could have
been reduced or avoided by the adoption of a
reasonable alternative design by the seller or
other distributor, or a predecessor in the
commercial chain of distribution, and the
omission of the alternative design renders the
product not reasonably safe;

Note that Courts seek “intended design” as the marker to
determine defect category and set the proper legal
standard.  Caselaw exhibits two ways that Courts
determine this marker:16  (1) design specifications, and,
(2) deviation from the norm.17  These are discussed, in
turn, below.

     When the Court searches for the manufacturer’s
intended design, a natural starting point is internal design
documentation for the product.  After all, the
manufacturer often uses such documentation in its own
efforts at quality control.  In this sense, these documents
can exhibit the manufacturer’s intended design: a precise
definition of what the manufacturer intended to produce.
Ideal design specification documents contain a complete,
consistent, correct, unambiguous, comprehensible
expression of the product design.  If such design
documents were always on hand, if product features were
always traceable to their counterparts in the specification,
and if the specification counterpart could be used to
answer the question, “is the specification satisfied?” they
would be sufficient to reliably distinguish manufacturing
defects from design decisions.   This is not true in
general.18   Real design documentation often does not

                                               
16 See, for example, the cases cited in the Restatement
Third, Products Liability, section 2 in the Reporter’s
Notes, comment c, Manufacturing defects.
17 This test was so named by Justice Traynor in Traynor,
The Ways and Meanings of Defective Products and Strict
Liability, 32 Tenn. L. Rev. 363, 367 (1965).
18 Requirements always contain conflicts such as speed
and safety, efficiency and cost, etc.  “It is quite
impossible for any design to be the ‘logical outcome of
the requirements’ simply because, the requirements being
in conflict, their logical outcome is an impossibility.”



provide enough information to make an unambiguous
comparison to arbitrary product features.

      If the specification is missing, incomprehensible,
incorrect, inconsistent or ambiguous, it cannot be used to
reliably divine “intended design.”  Some other way is
needed to distinguish a manufacturing from a design
defect.  The “deviation from the norm” test compares the
product in question to a number of others from the same
production run.19  If the given product defect is found in
all the others, then it is said to be one of design intention.
This fact gives rise to the descriptive term `generic’
defects, referring to those defects that affect the entire
product line (by design).20  If the product feature in
question is unique, it is likely a manufacturing flaw, the
result of a “mistake,” not a plan.     This test is easy to
understand and its genius lies in the ability to infer
intended design from some sample of products - without
reference to the design specifications at all.  Simple and
practical, it circumvents many known problems of a test
to the design specifications.

3. APPLICATION TO THE SOFTWARE
PRODUCT

     Similarly to other engineered products, the software
product involves human decisions that exhibit
engineering tradeoffs: reliability versus safety, cost
versus safety, performance versus safety, etc.21  These
decisions are ideally recorded in software design
specifications. Software research explains that the
problems of consistency, correctness, completeness and
ambiguity are serious and continuing ones for software
products of nontrivial size and complexity.22  These
practical and omnipresent deficiencies with software
specifications become problematic for a Court whose
task is to determine whether a software product departs
from its design intention.  As we have seen, these
problems are not unique to software.23  Engineering

                                                                          
Pye, The Nature and Aesthetics of Design, Van Nostrand
Reinhold Company, 1978.
19 See Traynor, supra note 17.
20 “Generic” as applied to product defects is discussed in
Henderson, Judicial Review of Manufacturers’ Conscious
Design Choices: The Limits of Adjudication, 73
Columbia Law Review 1530, 1543 (1973).
21 See generally Leveson, supra note 4.
22 See Jaffe, Completeness, Robustness, and Safety in
Real-Time Software Requirements Specifications: A
Logical Positivist Looks at Requirements Engineering,
Dissertation, University of California, Irvine, UMI, 1988.
23 Petroski, To Engineer is Human, Vintage Books, NY.,
1992.

experience and the common law have provided the
deviation from the norm test to determine whether the
product departs from its specifications without reference
to the written design specifications.   Will this test work
for the software component of a product?  No.

     When software source code is constructed from
design specifications (or other engineering “intention”), it
is compiled into an executable form with other programs
that give a perfect translation for practical purposes.
This means that if the actual code deviates from design
intention (a manufacturing defect), that defect appears in
every product identically.  Design defects have been
called “generic” to indicate their presence in every
product, but for software, the manufacturing defects that
appear in the code are also generic.24  This defeats the
operation of the deviation from the norm test, the defects
are no longer distinct from the norm for software!  Thus,
it is seen that for embedded software, the defect
categorization fails to accomplish its goal of establishing
the proper legal standard for liability.

3.1 SOFTWARE IS DIFFERENT

     Similarly to all manufactured products, software
production is discussed in terms of discrete stages where
distinct activities occur.25   First, software requirements
and design activities are performed resulting in a
software design document. After that step is complete,
programmers construct computer code to implement that
design.  This is illustrated in the following figure.

This figure turns out to be a vast oversimplification.
More realistic views of the software process recognize
continuous feedback loops showing that these stages are
not really discrete, but inevitably intertwined,26 as shown
in the next figure.

                                               
24 It is interesting to note that another commentator has
thought about a similar problem: the “inadvertent design
defect.”  See Henderson, supra note 20.  The term
“generic manufacturing defect” was suggested by another
researcher in this area, Cem Kaner, during our
discussions about software defects.
25 Most evident in the “waterfall model” of the software
process,  Schach, supra note 1.
26 For a wonderful discussion of this issue, see generally
Parnas, Clements, A Rational Design Process, How and

Start: Design
Code

Finish:
Construct code
and deliver
product



This feedback loop results from broad categories of
intentional decisions27 that are possible, necessary, and
occur frequently during the programming activity for
software.28

     The scale and extent of this design activity during
construction (programming) for the software product is
of  a degree and on a scale that is new to engineers.29  If
major design is necessarily done concurrently with
construction, then the two activities merge as an activity
and the line between them becomes very murky or
vanishes.  This mixing of design and implementation
activities goes to the heart of our ability to distinguish
design intention from construction activities in code.

     For many traditionally engineered products such as
automobiles, the medium of design specification is
logical description, drawings, models and other ways of
capturing design intention so that the product may be
constructed in a physical medium, characterized by
physical constraints.  The design specification can be
used to construct a product within acceptable “tolerance”
and be said to meet that specification.30  There is a
workable dividing line between the design and
construction of the product in that the physical medium is
normally distinguishable from the medium of design. In

                                                                          
Why to Fake It, IEEE Transactions on Software
Engineering, Vol. SE-12, No. 2, 251 (1986).
27 Nothing is really new here.  This is true for automobile
manufacturing, too.  There is certainly feedback from the
assembly line, especially during the early stages of
production, where construction to the given design
proves problematic and the designers must rework the
design to accommodate production and physical reality.
See generally, Petroski, supra., note 23.
28 This is explained in Parnas, supra, note 26.  Note also
that design choices that occur during construction are
easily distinguished from the inadvertent manufacturing
defects for physical products by the deviation from the
norm test.
29 See generally, Parnas, et. al., Evaluation of Safety-
Critical Software, Communications of the ACM, no. 6, p.
636 (June 1990).
30 Notice also that for physical systems characterized by
“tolerance,” overdesign, or design strength may be used
to increase safety.  Software cannot be easily
characterized by “strength” to increase safety factors.

difficult cases, the deviation from the norm test can be
used to categorize a given defect.31

     For software, the medium of design and the medium
of construction are the same.  The software coder, in the
general sense, is only as constrained as the designer was
in the construction of the product.  With automobiles and
many other traditional physical products, the construction
of a particular product is heavily constrained by physical
laws, by tooling, by training, by the parts made available
by the management in the plant, etc.32  These constraints
are, for the most part, either missing or not as prevalent
in software construction.  Consider the following chart
comparing software products to automobiles:

Software Automobile
Medium of
Design

Logic Logic,
drawings, ...

Medium of
Construction

Logic
(correctness)

Physical
(tolerance)

The code (software construction) activity is seen as one
where both implementation (construction, inadvertent
mistakes) and design (intentional choices) activities take
place side by side.  Since the deviation from the norm
test fails for software products, the only possibility for
distinctions is to find design intention in the design
specifications and documentation.  This method has
already been shown to be unreliable.

3.2 TECHNICAL SOLUTION?

     As seen above, the nature of the software product
dictates that design activities necessarily accompany
construction activities, recorded and intermingled in the
code.  Ideally, the design decisions made (or changed) in
code are then recorded in some design document through
the feedback loop shown above.33  In the end, after the
fact, this would result in a more “complete” set of design
documents.  However, what is the real incentive structure
to such ideal maintenance of the design documents?

                                               
31 This test can be used to determine the defect category
“well enough” for social and engineering purposes.  No
arguments have been made that this is a bad way to
decide, and it has been in use for some time.  See
generally Traynor, supra note 17.
32 For example, the guys on the Ford Taurus line cannot
just decide to build an Oldsmobile, and they cannot
decide to build a boat that day.  However, the software
programmer is generally as free as the designer!
33 Or maybe in the comments of the source code!

Repeat: Design
Code with
incomplete
knowledge

Continue:
Construct Code
and gain
knowledge about
design



What is the possibility of creating such ideal sets of
design documents for software?  There are substantial
factors that militate against such an ideal document
capable of distinguishing design intention from
inadvertent coding mistakes in the software product:34

1. it is expensive
2. it is time consuming
3. it is difficult, maybe impossible
4. many incentives for incomplete, ambiguous design

documents35

The first 2 reasons may go without much explanation, it
takes time and resources to accomplish such ideal
documentation for a complex product.  The difficulties of
creating such ideal documentation are known and active
areas of research in the software engineering community.
Even the possibility of creating truly ideal design
documentation is in doubt among commentators in the
field of software engineering,36 though methods for
improvement are of great interest and the subject of large
efforts.37  Even if such ideal documentation could be
created (or approached through application of great
resources), the realities of the market must be addressed:
the limitations of finite amounts of time and other
resources.

4. CONCLUSIONS

     Injuries involving software products will be dealt with
under the law of products liability.   However, in real
cases, we need a method to distinguish the types of defect

                                               
34 See Parnas, supra, note 26.
35 In response to some discussions I had with a fellow
student of software engineering, Arthur Reyes, he
explained that in response to the definitions of product
defect he would like to create a design document that is
always satisfied, so that he could pull all cases against his
product into the negligence realm.  This is possible by
writing specifications that are much less detailed, at a
high level of abstraction, or “trivial” in the sense that
most any product could technically satisfy them.
36 Arguments against such ideal documentation may be
found in Parnas, supra, note 26.
37 Certainly the formal methods proponents believe that
they have much to add to the value of design
documentation, including preciseness and ability to
create products consistent with design documents.  See
generally, Schach, supra, note 1 for pointers to some
work in this area.  The arguments are discussed in detail
in Turner, Software as Product: the Technical
Challenges to Social Notions of Responsibility, Ph.D.
dissertation, Department of Information and Computer
Science, University of California, Irvine, August, 1999.

in order to properly support the goals of the law of
products liability.  This paper shows that there is
currently no reliable method by which we can distinguish
a manufacturing from a design defect in the software
product.38

     Embedded software products present new challenges
to the law of products liability to form rules that support
the basic goals of a safer society with balanced concern
for the promotion of innovation.  Discussions of the core
issues must take place now, involving the main
stakeholders: software engineers and personal injury
attorneys.  These discussions must take place before the
difficult cases arise so that all involved may have the
benefit of a thorough discussion of the issues that will
confront them, and not be stuck making decisions that
may prove to be irrational (or oppose basic social goals)
in the long run.

                                               
38  We might also ask whether we can solve the problem
by use of the legal standards.  Can we just apply the
design standard to software, subjecting all defects to a
negligence standard?  This has been suggested by Miyaki
supra note 9.  It is a possibility.  However, a fundamental
anomaly in the law of products liability would appear by
this “solution.”  Is software, in general, of higher social
value than medical devices and pharmaceuticals?
Pharmaceuticals and medical devices are subject to the
strict liability standard for manufacturing flaws even
though the design standard is much different than
ordinary negligence in recognition of such high social
value.  In fact, if software products were subject to a pure
negligence standard a strange incentive structure is set
up: incorporate more software with more responsibility
for safety in any product and enjoy freedom from strict
liability for inadvertent coding defects!  According to
noted software safety researchers Leveson and Turner
(see note 2), replacement of mechanical safety systems
by software will produce riskier products, not safer ones.
This is in direct opposition to the fundamental goal of
products liability: safer products.


	INTRODUCTION
	PRODUCTS LIABILITY
	MANUFACTURING DEFECTS
	DESIGN DEFECTS
	DISTINGUISHING DEFECTS

	APPLICATION TO THE SOFTWARE PRODUCT
	SOFTWARE IS DIFFERENT
	TECHNICAL SOLUTION?

	CONCLUSIONS

