
Copyright © 2000 by Karl E. Wiegers

Karl Wiegers Describes 10 Requirements Traps to Avoid1

Karl E. Wiegers
Process Impact

www.processimpact.com

The path to quality software begins with excellent requirements. Slighting the processes of
requirements development and management is a common cause of software project frustration
and failure. This article describes ten common traps that software projects can encounter if team
members and customers don’t take requirements seriously. I describe several symptoms that might
indicate when you’re falling victim to each trap, and I offer several solutions to control the
problem.

Be aware, though, that none of these solutions will work if you’re dealing with
unreasonable people who are convinced that writing requirements is time-wasting bureaucratic
overhead. To persuade such skeptics, present data such as that from the Standish Group’s
CHAOS report (http://www.scs.carleton.ca/~beau/PM/Standish-Report.html)—a study of 8,380
IT projects which found that more than half were “challenged,” with reduced functionality being
delivered over-budget and beyond the estimated schedule. The top three contributing factors on
challenged projects were lack of user input (12.8% of projects), incomplete requirements and
specifications (12.3%), and changing requirements and specifications (11.8%).

Trap #1: Confusion Over “Requirements”

Symptoms: Even the simple word “requirements” means different things to different people. An
executive’s notion of “requirements” might be a high-level product concept or business vision,
while a developer’s “requirements” might look suspiciously like detailed user interface designs.
Customer-provided requirements often are really solution ideas. One symptom of potential
problems is that project stakeholders refer to “the requirements” with no qualifying adjectives.
The project participants therefore will likely have different expectations of how much detail to
expect in the requirements.

Another symptom is that the users provide “the requirements,” but developers still aren’t
sure what they’re supposed to build. If requirements discussions focus exclusively on
functionality, the participants might not understand the various kinds of information that fall under
the broad rubric of “requirements.” As a consequence, important stakeholder expectations might
go unstated and unfulfilled.

Solutions: The first step is to recognize that there are several types of requirements, all legitimate
and all necessary. A second step is to educate all project participants about key requirements
engineering concepts, terminology, and practices.

I think in terms of three levels of requirements, all of which must be addressed during
requirements development (Figure 1). At the top are the business requirements, representing the
high-level objectives of the organization or customer requesting the system or product. They

1 This paper was originally published in Software Testing & Quality Engineering, January/February 2000. It is
reprinted (with modifications) with permission from Software Quality Engineering.

10 Requirements Traps to Avoid Page 2

Copyright © 2000 by Karl E. Wiegers

describe how the world will be better if the new product is in it. You can record business
requirements in a product vision and scope document.

The second level addresses the user requirements, which describe the tasks that users
must be able to perform using the new product. These are best captured in the form of use cases,
which are stories or scenarios of typical interactions between the user and the system. However,
the use cases alone often don’t provide enough detail for developers to know just what to build.
Therefore, you should derive specific software functional requirements—the third requirements
level—from the use cases. The functional requirements itemize the specific behaviors the software
must exhibit.

The software requirements specification (SRS) serves as a container for both the
functional requirements and the nonfunctional requirements. The latter include quality attribute
goals, performance objectives, business rules, design and implementation constraints, and external
interface requirements. Quality attributes (such as usability, efficiency, portability, and
maintainability) need to be elicited from users, along with the use cases. (Suggested templates for
the SRS, the vision and scope document, and use cases are available at
http://www.processimpact.com/goodies.shtml).

Figure 1. Three Levels of Software Requirements

Business
Requirements

User
Requirements

Functional
Requirements

Quality
Attributes

Other Nonfunctional
Requirements

Vision and Scope
Document

Use Cases

Software Requirements
Specification (SRS)

Trap #2: Inadequate Customer Involvement

Symptoms: Despite considerable evidence that it doesn’t work, many projects seem to rely on
telepathy as the mechanism for communicating requirements from users to developers. Users
sometimes believe that the developers should already know what users need, or that technical

10 Requirements Traps to Avoid Page 3

Copyright © 2000 by Karl E. Wiegers

stuff like requirements development doesn’t apply to users. Often, users claim to be too busy to
spend the time it takes to iteratively gather and refine the requirements. (Isn’t it funny how we
never have time to do things right, but somehow we always find the time to do them over?)

One indication of inadequate customer involvement is that user surrogates (such as user
managers, marketing staff, or software developers) supply all of the input to requirements.
Another clue is that developers have to make many requirements decisions without adequate
information and perspective. If you’ve overlooked or neglected to gather input from some of the
product’s likely user classes, someone will be unhappy with the delivered product. On one project
I know of, the customers rejected the product as unacceptable the first time they saw it, which
was at its initial rollout. This is a strong—but late and painful—indication of inadequate customer
involvement in requirements development.

Solutions: Begin by identifying your various user classes. User classes are groups of users who
differ in their frequency of using the product, the features they use, their access privilege level, or
in other ways. (See “User-Driven Design” by Donald Gause and Brian Lawrence in STQE,
January/February 1999, for an excellent discussion of user classes.)

An effective technique is to identify individual “product champions” to represent specific
user classes. Product champions collect input from other members of their user class, supply the
user requirements, and provide input on quality attributes and requirement priorities.

This approach is particularly valuable when developing systems for internal corporate use;
for commercial product development it might be easier to convene focus groups of representative
users. Focus group participants can provide a broad range of input on desired product features
and characteristics. The individuals you select as user representatives can also evaluate any
prototypes you create, and review the SRS for completeness and accuracy. Strive to build a
collaborative relationship between your customer representatives and the development team.

Trap #3: Vague and Ambiguous Requirements

Symptoms: Ambiguity is the great bugaboo of software requirements. You’ve encountered
ambiguity if a requirement statement can have several different meanings and you’re not sure
which is correct. A more insidious form of ambiguity results when multiple readers interpret a
requirement in different ways. Each reader concludes that his or her interpretation is correct, and
the ambiguity remains undetected until later—when it’s more expensive to resolve.

Another hint that your requirements are vague or incomplete is that the SRS is missing
information the developers need. If you can’t think of test cases to verify whether each
requirement was properly implemented, your requirements are not sufficiently well defined.
Developers might assume that whatever they’ve been given in the form of requirements is a
definitive and complete product description, but this is a risky assumption.

The ultimate symptom of vague requirements is that developers have to ask the analyst or
customers many questions, or they have to guess about what is really intended. The extent of this
guessing game might not be recognized until the project is far along and implementation has
diverged from what is really required. At this point, expensive rework may be needed to bring
things back into alignment.

Solutions: Avoid using intrinsically subjective and ambiguous words when you write
requirements. Terms like minimize, maximize, optimize, rapid, user-friendly, easy, simple, often,
normal, usual, large, intuitive, robust, state-of-the-art, improved, efficient, and flexible are
particularly dangerous. Avoid “and/or” and “etc.” like the plague. Requirements that include the

10 Requirements Traps to Avoid Page 4

Copyright © 2000 by Karl E. Wiegers

word “support” are not verifiable; define just what the software must do to “support” something.
It’s fine to include “TBD” (to be determined) markers in your SRS to indicate current
uncertainties, but make sure you resolve them before proceeding with design and construction.

To ferret out ambiguity, have a team that represents diverse perspectives formally inspect
the requirements documents. Suitable inspectors include:

• the analyst who wrote the requirements
• the customer or marketing representative who supplied them (particularly for use case

reviews)
• a developer who must implement them
• a tester who must verify them

Another powerful technique is to begin writing test cases early in requirements
development. Writing conceptual test cases against the use cases and functional requirements
crystallizes your vision of how the software should behave under certain conditions. This practice
helps reveal ambiguities and missing information, and it also leads to a requirements document
that supports comprehensive test case generation.

Consider developing prototypes; they make the requirements more tangible than does a
lifeless textual SRS. Create a partial, preliminary, or possible implementation of a poorly
understood portion of the requirements to clarify gaps in your knowledge. Analysis models such
as data flow diagrams, entity-relationship diagrams, class and collaboration diagrams, state-
transition diagrams, and dialog maps provide alternative and complementary views of
requirements that also reveal knowledge gaps.

Trap #4: Unprioritized Requirements

Symptoms: “We don’t need to prioritize requirements,” said the user representative. “They’re all
important, or I wouldn’t have given them to you.” Declaring all requirements to be equally critical
deprives the project manager of a way to respond to new requirements and to changes in project
realities (staff, schedule, quality goals). If it’s not clear which features you could defer during the
all-too-common “rapid descoping phase” late in a project, you’re at risk from unprioritized
requirements.

Another symptom of this trap is that more than 90% of your requirements are classified as
high priority. Various stakeholders might interpret “high” priority differently, leading to
mismatched expectations about what functionality will be included in the next release. Sometimes
developers balk at prioritizing requirements because they don’t want to admit they can’t do it all
in the time available. Often users are also reluctant to prioritize because they fear the developers
will automatically restrict the project to the highest priority items and the others will never be
implemented. They might be right about that, but the alternatives can include software that is
never delivered and having ill-informed people make the priority trade-off decisions.

Solutions: The relative implementation priority is an important attribute of each use case, feature,
or individual functional requirement. Align use cases with business requirements, so you know
which functionality most strongly supports your key business objectives. Your high-priority use
cases might be based on:

• The anticipated frequency or volume of usage
• Satisfying your most favored user classes
• Implementing core business processes

10 Requirements Traps to Avoid Page 5

Copyright © 2000 by Karl E. Wiegers

• Functionality demanded for regulatory compliance

If you derived functional requirements from the use case descriptions, this alignment helps
you implement the truly essential functionality first. Allocate each requirement or feature to a
specific build or release.

Many organizations use a three-level prioritization scale. If you do, define the priority
categories clearly to promote consistent classification and common expectations. A more robust
solution is to analytically prioritize discretionary requirements, based on their projected customer
value and the estimated cost and technical risk associated with construction. (A spreadsheet to
assist with this approach is available online; see this article’s Web Infolink for more information.)

Trap #5: Building Functionality No One Uses

Symptoms: I’ve experienced the frustration of implementing features that users swore they
needed, then not seeing anyone use them. I could have spent that development time much more
constructively. Beware of customers who don’t distinguish glitzy user interface “chrome” from
the essential “steel” that must be present for the software to be useful. Also beware of developer
gold plating, which adds unnecessary functionality that “the users are just going to love.” In short,
watch out for proposed functionality that isn’t clearly related to known user tasks or to achieving
your business goals.

Solutions: Make sure you can trace every functional requirement back to its origin, such as a
specific use case, higher-level system requirement, business rule, industry standard, or government
regulation. If you don’t know where a requirement came from, question whether you really need
it. Identify the user classes that will benefit from each feature or use case.

Deriving the functional requirements from use cases is an excellent way to avoid orphan
functionality that just seems like a cool idea. Analytically prioritizing the requirements, use cases,
or features also helps you avoid this trap. Have customers rate the value of each proposed feature,
based on the relative customer benefit provided if it is present—and the relative penalty if it is not.
Then have developers estimate the relative cost and risk for each feature. Use the spreadsheet
mentioned under Trap #4 to calculate a range of priorities, and avoid those requirements that
incur a high cost but provide relatively low value.

Trap #6: Analysis Paralysis

Symptoms: If requirements development seems to go on forever, you might be a victim of
analysis paralysis. Though less common than skimping on the requirements process, analysis
paralysis results when the viewpoint prevails that construction cannot begin until the SRS is
complete and perfect. New versions of the SRS are released so frequently that version numbers
resemble IP addresses, and a requirements baseline is never established. All requirements are
modeled six ways from Sunday, the entire system is prototyped, and development is held up until
all requirement changes cease.

Solutions: Your goal is not to create a perfect SRS, but to develop a set of clearly expressed
requirements that permit development to proceed at acceptable risk. If some requirements are
uncertain, select an appropriate development lifecycle that will let you implement portions of the
requirements as they become well understood. (Some lifecycle choices include the spiral model,
staged release, evolutionary prototyping, and time-boxing.) Flag any knowledge gaps in your SRS

10 Requirements Traps to Avoid Page 6

Copyright © 2000 by Karl E. Wiegers

with “TBD” markers, to indicate that proceeding with construction of those parts of the system is
a high-risk activity.

Identify your key decision-makers early in the project, so you know who can resolve
issues to let you break out of the paralysis and move ahead with development. Those who must
use the requirements for subsequent work (design, coding, testing, writing user documentation)
should review them to judge when it’s appropriate to proceed with implementation. Model and
prototype just the complex or poorly understood parts of the system, not the whole thing. Don’t
make prototypes more elaborate than necessary to resolve the uncertainties and clarify user needs.

Trap #7: Scope Creep

Symptoms: Most projects face the threat of scope creep, in which new requirements are
continually added during development. The Marketing department demands new features that
your competitors just released in their products. Users keep thinking of more functions to include,
additional business processes to support, and critical information they overlooked initially.
Typically, project deadlines don’t change, no more resources are provided, and nothing is deleted
to accommodate the new functionality.

Scope creep is most likely when the product scope was never clearly defined in the first
place. If new requirements are proposed, rejected, and resurface later—with ongoing debates
about whether they belong in the system—your scope definition is probably inadequate.

Requirement changes that sneak in through the back door, rather than through an
established and enforced change control process, lead to the schedule overruns characteristic of
scope creep. If Management’s sign-off on the requirements documents is just a game or a
meaningless ritual, you can expect a continuous wave of changes to batter your project.

Solutions: All projects should expect some requirements growth, and your plans should include
buffers to accommodate such natural evolution. The first question you should ask when a new
feature, use case, or functional requirement is proposed is: “Is this in scope?” To help you answer
this question, document the product’s vision and scope and use it as the reference for deciding
which proposed functionality to include.

Apparent scope creep often indicates that requirements were missed during elicitation, or
that some user classes were overlooked. Using effective requirements gathering methods early on
will help you control scope creep. Also, establish a meaningful process for baselining your
requirements specifications. All participants must agree on what they are saying when they
approve the requirements, and they must understand the costs of making changes in the future.
Follow your change control process for all changes, recognizing that you might have to
renegotiate commitments when you accept new requirements.

Trap #8: Inadequate Change Process

Symptoms: The most glaring symptom of this trap is that your project doesn’t have a defined
process for dealing with requirements changes. Consequently, new functionality might become
evident only during system or beta testing. Even if you have a change process in place, some
people might bypass it by talking to their buddies on the development team to get changes
incorporated. Developers might implement changes that were already rejected or work on
proposed changes before they’re approved. Other clues that your change process is deficient are
that it’s not clear who makes decisions about proposed changes, change decisions aren’t
communicated to all those affected, and the status of each change request isn’t known at all times.

10 Requirements Traps to Avoid Page 7

Copyright © 2000 by Karl E. Wiegers

Solutions: Define a practical change control process for your project. You can supplement the
process with a problem- or issue-tracking tool to collect, track, and communicate changes.
However, remember that a tool is not a substitute for a process. Set up a change control board
(CCB) to consider proposed changes at regular intervals and make binding decisions to accept or
reject them. (See “How to Control Software Changes” by Ronald Starbuck in STQE,
November/December 1999, for more about the CCB.)The CCB shouldn’t be any larger or more
formal than necessary to ensure that changes are processed effectively and efficiently. Establish
and enforce realistic change control policies. Compare the priority of each proposed requirement
change against the body of requirements remaining to be implemented.

Trap #9: Insufficient Change Impact Analysis

Symptoms: Sometimes developers or project managers agree to make suggested changes without
carefully thinking through the implications. The change might turn out to be more complex than
anticipated, take longer than promised, be technically or economically infeasible, or conflict with
other requirements. Such hasty decisions reflect insufficient analysis of the impact of accepting a
proposed change. Another indication of inadequate impact analysis is that developers keep finding
more affected system components as they implement the change.

Solutions: Before saying “sure, no problem,” systematically analyze the impact of each proposed
change. Understand the implications of accepting the change, identify all associated tasks, and
estimate the effort and schedule impact. Every change will consume resources, even if it’s not on
the project’s critical path. Use requirements traceability information to help you identify all
affected system components. Provide estimates of the costs and benefits of each change proposal
to the CCB before they make commitments. (A checklist and planning worksheet to assist with
requirements change impact analysis is available online; see this article’s Web Infolink for more
information.)

Trap #10: Inadequate Version Control

Symptoms: If accepted changes aren’t incorporated into the SRS periodically, project participants
won’t be sure what all is in the requirements baseline at any time. If team members can’t
distinguish different versions of the requirements documents with confidence, your version control
practices are falling short. A developer might implement a canceled feature because she didn’t
receive an updated SRS. I know of a project that experienced a spate of spurious defect reports
because the system testers were testing against an obsolete version of the SRS.

Using the document’s date to distinguish versions is risky. The dates might be the same
but the documents may be different (if you made changes more than once in a day), and identical
documents can have different “date printed” labels. If you don’t have a reliable change history for
your SRS, and earlier document versions are gone forever, you’re caught in this trap.

Solutions: Periodically merge approved changes into the SRS and communicate the revised SRS
to all who are affected. Adopt a versioning scheme for documents that clearly distinguishes drafts
from baselined versions. A more robust solution is to store the requirements documents in a
version control tool. Restrict read/write access to a few authorized individuals, but make the
current versions available in read-only format to all project stakeholders. Even better, store your
requirements in the database of a commercial requirements management tool. In addition to many
other capabilities, such tools record the complete history of every change made in every
requirement.

10 Requirements Traps to Avoid Page 8

Copyright © 2000 by Karl E. Wiegers

Keys to Excellent Software Requirements

While these ten traps aren’t the only ones lurking in the requirements minefield, they are
among the most common and most severe. To avoid or control them, assemble a robust toolkit of
practices for eliciting, analyzing, specifying, verifying, and managing a product’s requirements:

• Educating developers, managers, and customers about requirements engineering practices
and the application domain

• Establishing a collaborative customer-developer partnership for requirements development
and management

• Understanding the different kinds of requirements and classifying customer input into the
appropriate categories

• Taking an iterative and incremental approach to requirements development
• Using standard templates for your vision and scope, use case, and SRS documents
• Holding formal and informal reviews of requirements documents
• Writing test cases against requirements
• Prioritizing requirements in some analytical fashion
• Instilling the team and customer discipline to handle requirements changes consistently and

effectively

These approaches will help your next product’s requirements provide a solid foundation for
efficient construction and a successful rollout.

