
Discovery in Negligence Analysis: Evolution of a Sufficiently Safe Spec

Foaad Khosmood, Clark Savage Turner, J.D., Ph.D.
Department of Computer Science

California Polytechnic State University
San Luis Obispo, CA. 93407 / (805)756-6133

fkhosmoo@calpoly.edu, csturner@calpoly.edu.

Abstract

 Negligence liability is a rapidly increasing area of
concern for software engineers and designers. The
implications of negligence are sufficiently severe that
most companies can no longer ignore the legal
consequences of engineering design decisions [1][2]. As
engineers and industry participants, it is our duty to
balance the interests of public safety against our own
profits.

 This paper continues previous work [3] toward a
comprehensive software process augmented to include
preliminary legal tasks and milestones. Specifically the
implementation of the first part in the proposed model is
further explored and suggestions are given. We shall call
this step “discovery.” Discovery 1 consists firstly of the
negligence analysis, before the design work begins.
Secondly, it involves the recording of subsequent changes
and tradeoffs and the updating of the negligence analysis
during the design process itself. This method provides a
foundation upon which the legal consequences of design
decisions can be judged. Once the product is released, this
method will help control and manage possible negligence
claims rather than react to them.

Keywords

 Software process, negligence, workflow modeling,
liability

Introduction

 The general social understanding of negligence and the
accepted legal processes about negligence occurring
within the realm of software engineering are constantly
evolving. In fact the collection of software processes and
those of the negligence processes can be shown to have a
symbiotic relationship as described in [3].

1 Discovery here is meant in the same sense as the legal
term “discovery,” or “pretrial discovery,” whereby an
effort is made to gather as much relevant information as
possible before the formation of a legal position.

 There are typically two ways for a company to face
liability in a lawsuit: Strict liability and negligence [2].
Our present focus is the latter in which no contracts exist
with end users of a product.2

 Negligence lawsuits are always concerned with
awareness and reasonability of tradeoffs where public
safety is at stake. In negligence cases it is often the social
reasonability of the specs that is legally in question. The
first half of the process described in [3] –called
Discovery- is explored here in order to defend the
reasonability of the tradeoffs made in the spec.

 Traditional safety analysis in industrial production and
post-hoc accident investigations provides a rich source of
well-established methods for prevention of hazards [6].
These lessons and techniques can be adapted to the realm
of negligence analysis in software engineering.

 A carefully drafted spec along with equally
negligence-conscious software processes will address
many of the issues raised here and in [3]. Our contribution
is to organize the recording and linking of software
processes to legal principles, sources and decisions in
order to rationalize the spec to any reader at a later time.
In addition we hope to standardize an evolutionary
negligence analysis strategy lending itself to automation.

Discovery

 Much like the development of software itself, the
formulation of a legal strategy should follow evolutionary
rationalization as articulated in [4]. The law contains
safety principles developed over hundreds of years
through the testimony of many engineering experts. These
principles should be treated as additional “requirements”
for safety critical product design.

 The first section of the process laid forth in [3] is the
discovery. Keeping in mind that discovery should be

2 Warnings and disclaimers do exist on products but these
are generally not effective to avoid liability.

conducted at every stage of software development, the
goals of this step are:

• first, to consider the impending software

development stage as a whole. Gather relevant
industrial, academic and social standards. Investigate
the codification of these standards into law either as
legislation or as prior case law and study the resulting
constraints upon engineering processes [5]. The idea
is to formulate a legal strategy to exhibit rational
tradeoffs respecting public safety; and,

• second, as the development stage is specified, the
same research is recursively applied and applicable
constraints are updated for each sub-component of
that development stage.

 The first goal should ideally be realized before
engineering work can begin in the development stage in
question. What is learned from the legal research could
conceivably render the development stage too risky to
perform or it could reassess the scope or other
characteristics of the project. Preserving this order should
be reflected in the design schedules and project timeline
calculations. Understanding this strategy to be necessarily
imperfect, it should be articulated in such a way as to
make future clarifications and modifications [4].

 The second goal is realized in form of an interrupt-
driven process that runs during the engineering
development stage itself. Upon tackling design issues, one
would go back and record the background research for
any particular methodology one employs. The process
closely resembles evolutionary rationalization [4]. Just as
the design and specifications evolve during
implementation, negligence strategies and legal
documentation, too, evolve during the design process. In
fact, in both cases, changes should continue to trickle in
until the product is released and -in the case of legal
analysis - even after that point.

Negligence “Safety Analysis”

 Traditionally, failure or negligence analysis occurs
post-design: At best before product release and at worst
after disaster occurs or negligence is claimed [3]. While
this approach is clearly undesirable, it does have the
added advantage of hindsight. It is much easier to ask the
“right questions” once negligence is already claimed or
disaster struck. A fault-tree analysis could easily be
constructed once the top node is identified. Such an
analysis has already been considered for software testing
processes [5]. At its heart discovery is concerned with
making the right inquiries and formulating the right
responses as early as possible. But how do we predict and
judge future negligence outcomes before they occur?
What are the right questions to ask? Is there a method or
process for determining future undesirable outcomes and
guarding against them in the present?

 In [6], Suokas lays out several approaches for “search
strategies” in industrial safety analysis. With little
adjustment, these approaches can be adopted to our
discovery process which has a legal focus –specifically
negligence- as apposed to a human-safety focus, yielding
“negligence safety analysis.”

 Suokas defines safety analysis as “systematic
examination of the structure and functions of a system
aiming at identifying accident contributors, modeling
potential accidents, and finding risk-reducing measures
[6].” With regard to negligence safety analysis, we adopt
the same definition replacing the word “accidents” with
“negligence.”

 The main search strategies in safety analysis are
forward, backward and morphological analysis [6].
Forward and backward analysis are described as holistic
approaches which either project forward possibilities of
safety hazards or work backwards from those possibilities
identifying potential pitfalls along the way. These
approaches are better suited if the analysis is done as a
separate entity with the software design and
implementation processes frozen in time. Our process –
specifically discovery- demands a more fluid and
evolutionary approach grown together with all the other
aspects of the software production. Morphological search
attempts to “concentrate on the factors having the most
significant influence on safety [6].” A search for hazard
sources is conducted and potential targets are identified
and potential troubling paths are constructed and
traversed [6].

 While Suokas doesn’t present the morphological
search as being in-order, it is nevertheless well suited for
a template driven, recursive strategy such as discovery. In
other words it can find potential negligence hot-spots in
both high level and low level stages of software
development. Instances of the morphological search
approach have been standardized in the safety analysis
industry and implementation procedures are widely
available.

 We can revisit the first and the second goals of
discovery with morphological search in mind. The first
goal aims to do the background research and formulate a
broad legal strategy against negligence claims. But how
does one even begin to formulate a strategy? The essence
of the design stage in question must be examined even
though the details are not yet known. This examination
provides areas or sub-stages that can be evaluated for
their potential legal “hazards.” Rough outlines of
scenarios can be made to show potential paths to danger
and thus a broad strategy is born where certain pitfalls are
avoided by changing the direction of the design altogether.
One need not be perfect at this stage since the pursuit of
the second goal of discovery will necessitate the revisiting
of this strategy numerous times. Fine tuning of the

strategy and filling of gaps is to occur during the second
goal of discovery coinciding with the engineering design
stage itself.

 The second goal seeks to identify specific trouble spots
in the software design or production stage as it unfolds.
An implementation of the second goal of discovery would
first seek areas in the design stage that could result in
potential negligence cases: Broadly speaking areas
leading to user-interaction or potential deviations from a
contract or regulation. Once these areas are identified,
specific scenarios are explored and corrective action is
taken to minimize their possibility of occurrence. When
such an action requires a change in the legal strategy or
even the specification itself, that change can be
accomplished using the feedback loop laid forth in the
discovery model.

A Fictional Example

 Company X receives requirements from a customer for
an inter-hospital wireless patient stats transfer system.
The customer would like to record vital statistics and
information of an incoming hospital patient electronically
and transmit that information to a central server wirelessly.
Using hand-held PDA or tablet-PC type devices, the
nurses or emergency personnel can enter the data and
send it to the central system. A human-assisted decision
maker then assigns the load to a doctor on duty and the
information gets transmitted to that doctor’s hand-held
device. Thus by the time the doctor arrives, he would’ve
had a chance to review the information. After the doctor
arrives at the scene, further analysis can be done using the
system. The doctor, for example can check for potential
adverse drug interactions for that particular patient using
the handheld interface [7].

 Company X creates high level requirements for the
user interface (UI) subsystem and development begins. If
company X adopts the model in [3], then initial discovery
begins before any development. The following could be a
subset of questions that must be answered for the first
goal of the negligence analysis and research process.

• Is company X legally liable if the UI fails to
perform? [8] If so to what extent? Have specific
boundaries of liability been negotiated with the
customer? Are there contracts available that can
clarify this liability domain? What is the
standard practice for medical equipment
manufacturers and contractors?

• Are there or will there be enough instructions to
make sure a reasonable employee uses the
system correctly? [8] Does company X have the
budget or the means to develop the
documentation and training or perform the
necessary testing in order to satisfy this
reasonability concern? Are there industry

certifications that could verify company X
compliance in that regard?

• Is there any recent case law where computer UI
designers or medical equipment manufacturers
have been sued due to malfunction? If yes, was it
judged to be negligence? If yes, did the product
operations pass the reasonability standard? What
was shown to be deficient that could possibly
apply to this product? What was the ruling and
the remedy recommended by the judge? (Risk
analysis.)

• To what extent is the hardware manufacturer or
another supplier of the UI device components is
liable in case of malfunction? Does company X’s
contract with its sub-contractors and suppliers
cover liability issues as well?

• Are there insurance policies, either locally or as a
result of an agreement with another company
that could cover liability due to the UI?

 No such set of questions can be complete, but as the
Therac25 incidents proved they are often not even asked
[9]. The idea is to ask the relevant questions and gather
the relevant data before the main development activities
begin. These questions may not be sufficient or relevant
to the final product but they should be as comprehensive
as possible. Once that work has begun the second goal of
discovery can be realized. The second goal is to make
sure the details of the development stage and major
decisions are recorded and adjustments to the negligence
analysis are made in an evolutionary fashion. To continue
the previous scenario, company X will make several
design decisions once development has started. For
instance the designers could decide to use an html based
web-page for the UI interface as opposed to a java applet
or a proprietary GUI. Once this decision has been made,
some additional information is now known about the type
of liability that this product may assume. A
morphological search can be conducted for the specific
area of html web pages in the context of this project. Thus
we can revisit the previous analysis and ask additional
question or filter out some that are no longer relevant due
to this decision. For example, the morphological search
could identify “html standardization” as an area of
potential negligence hazard. This is because not all
browsers interpret html standards alike. A potential
scenario can develop whereby a web browser on a
particular handheld device is unable to correctly interpret
a particular html tag as it was intended and as a result
some information does not get displayed and a doctor will
not be receiving it. If such information is critical –for
example existence of severe allergies detected by the
backend database from the patient’s files- then the
consequences can be devastating. The consideration of
this scenario at this level in design will result in corrective
action. For example, additional constraints could be
placed on the handheld device browsers. Perhaps only one
type of browser would be allowed and only certain tags
would be utilized by the web server. Testing cases could

be augmented to include every type of transaction just to
make sure the displays behave correctly.

 For another example, with regard to the case law
research, additional searches can be done using new
concepts such as “web” and “html” which were
previously not known. Likewise liability cases that were
pulled before could be reexamined. The ones utilizing an
HTML based GUI could be given preference while the
ones that had other types of GUI may be discarded or de-
emphasized. One may find for example, that a certain
case that was deemed relevant before was specific to
using a java-based GUI. And a negligence case will not
have been contested had the defendant in that cas e not
used Java. Therefore that case is now much less important
to company X’s legal analysis and research.

Conclusion and Future Work

 A software process enhanced to handle negligence
liability requires a robust and comprehensive discovery.
The strategy and documentation necessary for discovery
must be constructed before each design development
stage and continually augmented and revised during the
development stage. In essence a Parnas style evolutionary
tradeoff and documentation process is required for the
most detailed and comprehensive results.

 Safety analysis provides the language and the
processing tools necessary to better achieve the first and
second goals of discovery. Many time-honored
approaches exist in the area of safety analysis at various
stages of development [6]. The application of these safety
analysis tools to negligence liability analysis requires a
shift of focus from human safety to legal liability.
Additionally a shift of implementation from a holistic
approach, whereby the whole product or process is
examined post-production to a localized approach where
every development stage is individually examined
recursively. Morphological searching approach can be
used as implementation of discovery in order to find
potential negligence pitfalls in the design stage.

 Future work will continue with the second part of the
enhanced development process discussed in [3]. This step
which occurs after each traditional development stage,
involves evidence generation, archiving and traceability.
The discussion in this paper together with the next could
serve as the blueprints for the construction of an

automated legal assistance system. Such a system could
help software designers in liability cases over the lifetime
of their products.

References

[1] Turner, Richardson, Software and Strict Products
liability: Technical Challenges to Legal Notions of
Responsibility, Proceedings of the IASTED International
Conference on Law and Technology, San Francisco, USA,
Oct. 2000.

[2] Turner, C., and Fox, J.K., When Bad Code Comes
From Good Specs, Proceedings of the Sixth IASTED
International Conference on Software Engineering and
Applications, Cambridge, USA, Nov. 2002.

[3] Turner, C. and Khosmood, F. Rethinking Software
Process: The Key to Negligence Liability, Proceedings of
the Fifth IASTED International Conference on Software
Engineering and Applications, Anaheim, USA, Aug. 2001.

[4] Parnas, A rational Design Process: How and Why to
Fake It, IEEE Transactions on Software Engineering, No.
2, Feb. 1986.

[5] Turner, Richardson, King, Legal Sufficiency of
Testing Processes, Proceedings of the 15th International
Conference on Computer Safety, Reliability and Security,
Vienna, Austria, Oct 1996.

[6] Suokas, J., The Role of Safety Analysis in Accident
Prevention, Accident Analysis and Prevention , Vol 20. No.
1. , 1988, 67-68.

[7] Buchholz, E., MedApp / Handheld Distributed
Computing for Medical Practitioners, unpublished
manuscript available from Professor Clark Turner
(csturner@calpoly.edu), California Polytechnic State
University, Winter 2003.

[8] Kaner, Software Quality & the Law, The Gate, the
newsletter of the San Francisco Section of the American
Society for Quality control, July 1995, 1.

[9] Leveson, Turner, An Investigation of the Therac-25
Accidents, IEEE Computer, Vol. 26 No. 7, July 1993.

