CPE 101, slides adapted from UW course

Lecture 15:

Linear \& Binary Search

Searching

Searching $=$ looking for something
Searching an array is particularly common

Goal: determine if a particular value is in the array
We'll see that more than one algorithm will work

Searching as a Function

Specification:
Let b be the array to be searched, n is the size of the array, and x is value we search to find.
If x appears in $b[0 . . n-1]$, return its index, i.e., return k such that $b[k]==x$. If \mathbf{x} not found, return -1

None of the parameters are changed by the function Function outline:
int search (int b[], int n, int x) \{
\cdots

Linear Search

Test:
$\operatorname{search}(\mathrm{v}, 8,6)$

Linear Search

Test:

```
        search(v, 8, 15)
```


Linear Search

Test: $\operatorname{search}(\mathrm{v}, 8,15)$

Linear Search

Test: $\operatorname{search}(\mathrm{v}, 8,15)$

Can we do better?

Time needed for linear search is proportional to the size of the array.
An alternate algorithm, "Binary search," works if the array is sorted

1. Look for the target in the middle.
2. If you don't find it, you can ignore half of the array, and repeat the process with the other half.
Example: Find first page of pizza listings in the yellow pages

Binary Search Strategy

What we want: Find split between values larger and smaller than x :

Binary Search Strategy

Binary Search Strategy
What we want: Find split between values
larger and smaller than x :

Situation while searching

Step: Look at b[(L+R)/2]. Move Lor $\mathbf{R}_{\text {P28 }}$ to the middle depending on test.

Binary Search Strategy

Situation while searching

Step: Look at $b[(L+R) / 2]$. Move L or $R_{p r 20}$ to the middle depending on test.

Binary Search Strategy

More precisely

Values in b[0..L] <= x
Values in $b[R . . n-1]>x$
Values in b[L+1..R-1] are unknown

Binary Search

/* If x appears in $b[0 . . n-1]$, return its location, i.e., return k so that $b[k]==x$. If x not found, return -1 */
int bsearch (int b[], int n, int x) \{
int L, R, mid;
while (\qquad ;) \{
$\}$
\}

Binary Search

/* If x appears in b[0.n-1], return its location, i.e., return k so that $b[k]==x$. If x not found, return -1 */ int bsearch (int b[], int n, int x) \{
int L, R, mid;
 L = mid; else $\mathrm{R}=\mathrm{mid}$; \}
\}

Loop Termination

$/^{*}$ If x appears in b[0..n-1], return its location, i.e., return k so that $b[k]==x$. If x not found, return -1 */
int bsearch (int b[], int n, int x) \{
int L, R, mid;
while (L+1!= R)
mid $=(\mathrm{L}+\mathrm{R}) / 2$;
if (b [mid] $<=x$) $L=$ mid;
else $R=m i d$
\}
\}

\qquad -

Initialization

l^{*} If x appears in $b[0 . . n-1]$, return its location, i.e., return k so that $b[k]==x$. If x not found, return -1 */
int bsearch (int b[], int n, int x) \{
int L, R, mid;
$\mathrm{L}=-1 ; \mathrm{R}=\mathrm{n}$;
while (L+1 != R) \{ mid $=(L+R) / 2$; if ($b[$ mid $]<=x$) $L=$ mid; else $R=$ mid;
\}
$\}$

Return Result

```
/* If x appears in b[0..n-1], return its location, i.e.,
    return k so that b[k]==x. If x not found, return -1 */
    int bsearch (int b[ ], int n, int x) {
    int L, R, mid;
    L = -1; R = n;
    while (L+1!= R ) {
        mid = (L+R) / 2;
        if (b[mid] <= x) L = mid;
        else R=mid;
    }
    if (L >= 0 && b[L] == x)
        return L
        else return -1
```

\}

Binary Search

Binary Search

Binary Search

Binary Search

Binary Search

Binary Search

Binary Search

Binary Search

Is it worth the trouble?

Is it worth the trouble?

Suppose you had 1000 elements
Ordinary search would require maybe 500 comparisons on average

Binary search

after 1st compare, throw away half, leaving 500 elements to be searched.
after 2 nd compare, throw away half, leaving 250. Then 125, 63, 32, 16, 8, 4, 2, 1 are left.

After at most 10 steps, you're done!
What if you had 1,000,000 elements??

How Fast Is It?

Another way to look at it: How big an array can you search if you examine a given number of array elements?

How Fast ls lt?	\# comps	Array size
	1	1
	2	2
Another way to look at it: How big an array can you search if you examine a given number of array elements?	3	4
	4	8
	5	16
	6	32
	7	64
	8	128

	11	1,024
	\ldots	\ldots p.81
	21	1,048,576

Time for Binary Search

Key observation: for binary search: size of the array n that can be searched with k comparisons: $n \sim 2^{k}$
Number of comparisons \boldsymbol{k} as a function of array size $n: k \sim \log _{2} n$
This is fundamentally faster than linear search (where $k \sim n$)

Summary

Linear search and binary search are two different algorithms for searching an array
Binary search is vastly more efficient But binary search only works if the array elements are in order
Looking ahead: we will study how to sort arrays, that is, place their elements in order

